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Abstract 

Drinking water treatment works are increasingly placed under external stressors 

including climatic variability, land use and management, and pollution incidents. Routine 

high-frequency water quality monitoring is an integral part of operational control and is 

used to inform the treatment process and support the identification of risks. However, in 

order to improve decision making using the complex, time-series of water quality data 

that are generated (and typically archived), there must be distinction between basic sensor 

errors, artefacts of system design and management, and process driven patterns. This 

paper explores these complex data in order to support synthesis of uncleaned (or raw), 

high-frequency data; extracting information value from routine catchment wide 

monitoring. The data are presented in a form that enhances the capability and capacity to 

utilise existing complex data; improves understanding of complex surface water systems; 

and helps facilitate data driven models to investigate and forecast the dynamics between 

water quality determinands during hard-to-treat spate (or rainfall-runoff) events. 
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1 Introduction 

The problems of a ‘data rich, information poor’ approach to water quality monitoring are well 

established [1–3]. Despite increasing investment in remote and in-line water quality monitoring in 

catchments and for the protection and operation of drinking water treatment works (WTW), and despite 
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the objectives of reducing cost, reducing risk and increasing resilience, the potential value contained 

within routinely collected high-frequency water quality data is rarely realised. However, in order to 

extract valuable information from these complex data and build understanding from the knowledge 

gained through catchment wide monitoring, the data must first be thoroughly explored and audited. This 

approach raises questions on monitoring design, the impacts of operation priorities on data, the use of 

metadata, data presentation and visualisation, and interdisciplinary integration. Furthermore, with the 

advent of big data in a contemporary sense (routine monitoring generating volumes of data beyond the 

human processing capacity), and with the challenge of reconciling the communication of these complex 

data with the needs of decision makers [4], it is suggested in this paper and subsequent research that 

these questions should also recognise that we are currently ‘knowledge rich, but understanding poor’. 

 

Through a case study in the UK, this paper presents an approach to data exploration and visualisation 

to support the utilisation of existing and routinely collected high-frequency water quality data. This 

work facilitates further research in data-mining of existing water quality data; informs data-driven water 

quality modelling; and enhances the capability and capacity to utilise existing data to inform operational 

and strategic decisions, both in the short- and long-term. 

 

1.2 Case study: water quality dynamics in river spate at treatment works 

In the UK changes in land management, climatic conditions, acid deposition and emerging pollutants 

all contribute towards increasing occurrences of rainfall-runoff events where the chemical and physical 

response of the river in spate leads to increased pollution, but also to hard-to-treat ‘events’ at WTW’s. 

One such trend observed in areas of the UK supplied by upland catchments with organic-rich peat soils 

is the increasing concentration [5] and the changing nature and treatability [6,7] of dissolved organic 

carbon (DOC). When present during treatment, DOC can affect the coagulation process and thereby 

coagulant demand [8] and, where disinfection by chlorination is used, chlorine demand and 

subsequently the production of disinfection by-products [9,10]. Water companies must ensure the cost-

efficient provision of clean and wholesome drinking water (while minimising disinfection by-products 

[11]), therefore, if the concentration of DOC (and the related trihalomethane formation potential) in 

source water is elevated, this must be reduced through the drinking water treatment process [12]. 

 

When WTWs are placed under additional stressors such as population increase or extreme weather 

events, there is an escalation in the levels of treatment used in order to protect supply. While this 

escalation mitigates the risk of regulatory exceedance, it almost invariably increases the cost of 

treatment, and increases the risk of demand not being met (due to works shutdown). This highlights the 

need to understand changes in the dynamics of the relationships between water quality determinands in 

raw source water both during and following elevated flow conditions.  

 

The objective of this paper is to investigate if value can be extracted from the routinely collected, 

operational water quality data in order to support the investigation of characteristics and potential 

contributing factors for hard-to-treat storm events. This provides insight into the utilisation of these 

complex data, ultimately helping inform data-driven forecasting of operationally critical event 

characteristics. 
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2 Material and methods  

2.1 Data sources 

The data sources investigated throughout the development of this approach cover calendar years 2014 

through to 2016 and were selected to represent a range of available routine monitoring data for an 

anonymised drinking water treatment works, including: water company operational and regulatory 

monitoring regimes, UK Environment Agency flood-risk monitoring, and ongoing partnership 

monitoring of a range of catchment interventions related to upstream water storage and quality.  

Throughout this paper data are differentiated as: (1) ‘spot samples’, representing selected weekly or 

monthly manual water quality grab samples of raw water at the water treatment works, taken under 

normal operating conditions; (2) Intake Protection Monitoring in the river (‘IPM’), and (3) raw river 

water entering the works (‘raw water’), comprising records at 5 minute intervals of continuous signal 

from in-line sensors monitored for operational purposes; (4) flow (m3 s-1) from the UK Environment 

Agency (EA) flood-risk monitoring (calculated by the EA from 15 min stage records); and (5) sub-

hourly rainfall (mm) in a headwater sub-catchment. 

2.2 Data audit 

In order to extract meaningful and valuable information from these data there must be a distinction 

between basic sensor errors, system design, signal artefacts within data, and process driven patterns. 

Due to the complexity of the sensor, signal and system design influences on these data, extensive 

manual and automated data audits are required to establish the prevalence of factors such as: timestamp 

anomalies, missing data, zero values, data under detection limits, data flat lines, data beyond the 

physically limited minimum and maximum boundaries, outliers, sensor drift (e.g. though biofouling), 

and other unexpected data variance. In addition to the use of basic statistical tests and manual checks, 

these data were explored using multivariate analysis and data visualisation. The data audit process 

utilises bolt on ‘modules’ of script in R to facilitate proof-of-concept and rolling development at 

different phases of data audit complexity. For example, in the data presented in this paper local outliers 

were identified using a simple 3σ edit rule on a moving 2 hour window. A randomly generated selection 

of automatically identified flags were manually checked. 

2.3 Exploratory analysis: determinands, time series and events 

The analytical approaches explored though this case study include: 

 Characterising data: exploring signal complexity and artefacts, ensuring data are 

‘statistically fit for purpose’. Principal Components Analysis (PCA) was undertaken on 

normalised data (z transformation) for colour, conductivity, pH and turbidity at the IPM; 

data outside sensor or physical limitations, local outliers, and missing data were omitted 

(listwise deletion) from the analysis. 

 Event identification and extraction: automated event classification using base flow 

separation [13] and threshold values for rainfall and runoff [14]. 

 Investigation of data structures across events: extracting information on potentially 

contributing factors to hard-to-treat events though visualisation of water quality data on a 

multivariate and event basis (i.e. patterns in dynamics of relationships between recorded 

variables across a range of antecedent and event conditions). 
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3 Results and discussion 

3.1 Summary of data characterisation 

Summary statistics for the three time-series of water quality parameters (IPM, raw water and spot 

samples) following simple manual and statistical cleaning are provided in Table 1.  

 

The dynamic responses for each water quality determinand in relation to high flow events are displayed 

in Fig. 1. Under high flow conditions river water at the intake and raw water at the works increases in 

acidity, concentrations of colour and turbidity are elevated, and conductivity decreases. Although an 

investigation into the processes resulting in the changes to colour and turbidity recorded (e.g. process 

driven change in composition of suspended solids and dissolved organic matter) does not fall within the 

scope of this paper, the recorded values are consistent with: flushing of upper soil horizons, in particular 

across the shallow organic rich peaty soils of the headwater catchments [7,16–18]; contamination of 

surface runoff as a result of cultivation /tillage [19]; and point and diffuse sources of organic waste 

(primarily agricultural) [19]. These are all considered potential sources of contamination with respect 

to known land use/management in the catchment, and ongoing upstream catchment investigations and 

interventions. 

 

Different representations of the water quality dynamics through the two signal sources and the manual 

sampling across the full sequence of dates are identifiable; in the time series plots (Fig. 1), the simple 

data exploration visualisation including concentration duration curves for colour and turbidity, and the 

Q-Q plots exploding the degree of normality (Fig. 2) of these data.  

 

Using water quality parameters for the IPM, the first principal component (PC1) accounts for 58.9% of 

the variance in the data, with an extracted Eigenvalue of 2.32 and factor loading for colour (0.563), 

turbidity (0.549), pH ( 0.420) and conductivity ( 0.542). Inclusion of the second principal component 

(PC2) accounts for 82.4% overall variation in these data. The effect of PC2 is considered as the 

Eigenvalue lies between 0.9 and 1, and it falls at the inflection point of the scree plot [20]. From the 

time series plots, concentration duration curves, boxplots and PCA, the four water quality determinands 

were divided into two groups based on their response to high flow events: colour and turbidity; and 

conductivity and pH. Of these, one group (colour and turbidity), are examined further here. 

 
Table 1.  Summary statistics (following basic phase in the data audit) 

  Colour    Turbidity   

  IPM Raw water Spot sample  IPM Raw water Spot sample 

  (Unfiltered 

Hazen) 

(Unfiltered 

Hazen) 

(Filtered 

mg/l Pt-Co) 

 (NTU) (NTU) (NTU) 

n  314340 309105 206  306708 307598 206 

Min  0.2 0 0.6  0 0 0.35 

Max  199.9 199.8 49.2  484.98 273 40 

Mean  20.42 7.93 8.9  6.6 4.39 2.58 

Median  15.4 6 6.9  1.95 1 1.3 

1st %ile  3.9 0.6 0.7  0 0 0.415 

5th %ile  6.5 2 2.875  0 1 0.615 

95th %ile  51 21.2 22.75  24.66 16 8.075 

99th %ile  98.9 42.8 38.9  88.4 50 18 
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Figure 1 Timeseries plotting 5 minute signal for intake protection monitoring in the river (IPM) and 5 minute for 

signal raw water at the water treatment works, along with selected manual spot samples of raw water. 

Demonstrating dynamics for a range of streamflow conditions captured for different sampling/monitoring 

routines and variability in signal across parameters (colour, conductivity, pH and turbidity) following a basic data 

audit. 

There is a notable difference in the distributions for colour covered by the IPM and the raw water at the 

works (both for high resolution signal and manual spot samples). Visual inspection supports the 

identification of irregular signal artefacts in the IPM signal recorded, which are attributed to signal drift 

and biofouling, with corrections applied (cleaning and recalibration) at an operationally determined 

value (<50 Hazens).  

 

 

Figure 2 Q-Q plots exploration of degree of normality for (a) 5 minute signal data from the intake protection 

monitoring of river water; (b) 5 minute signal data raw water going into the water treatment works; and (c)  for 

selected manual spot samples of raw water going into the water treatment works (sampling frequency varies from 

daily to fortnightly). 

Exploration of seasonal variation in parameter correlation and hysteresis in relationships during high 

flow events using scaling by timestamp on simple pairwise plots (fig. 3) illustrate how, through simple 

visualisation, the dynamics of the parameter relationships on seasonal and event scales can be identified 

in the structure despite the sensor drift artefacts identified.  

3.2 Event detection and separation 

Event separation [14] applied to the hydrometric time series (fig. 4) for the three year period (calendar 

years 2014 - 2016) extracted 165 events. 

3.3 Investigation of data structures across events 

Of the 136 events extracted which include water quality parameters at the IPM (using 15 min time 

resolution for water quality parameters and consisting primarily of unimodal runoff events, but 

including bimodal and other complex multimodal events): 83 record the colour signal peak lags after  
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Figure 3. Pairwise plots for water quality parameters 5 minute signal data from the intake protection 

monitoring of river water, and 15 minute reported flow. 

 

  

Figure 4. (a) hydrometric time series of rainfall in a headwater catchment, and flow of the river supplying raw 

water to the water treatment works  (b) event separation (event no. 2015_008) 
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Figure 5. Despite the differences in sensors and monitoring location, detailed hysteresis structure information is 

captured within both IPM and raw water signal (a) time series for flow, colour and turbidity for an event on 15 

January 2015 (b) hysteresis loop for this event (raw water at works)  

the turbidity signal peak (with a lag ranging from 15 minutes to 9 hours 30 minutes); 24 events record 

the peaks occurring in the same 15 minute interval; and 29 events record the turbidity signal peak 

lagging behind the colour signal peak. The dynamics of relationships between parameters during spate 

and in the 48 hours following peak flow is demonstrated by parameter hysteresis for the events 

identified (fig. 5). 

4 Conclusions 

Despite the prevalence of signal errors and unexpected structure in the existing high-frequency data, it 

is possible using simple auditing to extract information on potentially contributing factors to hard-to-

treat events. Demonstrating that this information is captured, and that it can be extracted, is the first step 

towards assessing the value of these complex data. Ongoing research into data-mining, and the 

identification and analysis of patterns in existing and routinely water quality time-series, will deliver 

improved understanding of how changing system dynamics affect drinking water treatment efficiency 

IPM Raw water 
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and effectiveness (i.e. resulting in higher process costs, or in operational or regulatory exceedances at 

works, through distribution systems, or at the end user). This has the potential to enhance the capability 

and capacity of the water industry to utilise existing data and knowledge, improving understanding in 

order to protect supply. 
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