EPiC Series in Engineering

Volume 3, 2018, Pages 2105-2111

HIC 2018. 13th International Conference on Hydroinformatics

Multi-GPU Implementation of 2D Shallow Water Equation
Code with Block Uniform Quad-Tree grids

Massimiliano Turchetto!, Renato Vacondio!, and Alessandro Dal Palu?

1 Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124,
Parma, Italy
2 Department of Mathematical Physical and Computer Sciences, University of Parma, Parco Area delle Scienze
53/A, 43124, Parma, Italy

Abstract

This paper presents a multi Graphic Processing Unit (GPU) implementation of a 2D shallow
water equations solver which is able to exploit the computational power of modern HPC clusters
equipped with several GPUs on different nodes. The domain has been discretized by means of a
Block Uniform Quadtree (BUQ) grid which allows to efficiently introduce variable resolution in a
GPU-accelerated finite value code. In the present work the BUQ grid is decomposed into different
partitions, and each partition is assigned to a dedicated GPU. Communications between different
partitions are then handled by means of a Message Passing Interface (MPI) protocol. Computations
and communications have been overlapped to reduce the overheads of the multi-GPU implementation.
The strong scalability test shows an efficiency dropdown better than linear in the number of GPUs
adopted by the simulation, and the weak scalability test shows that network overheads caused by
border communication are completely maskable by GPU calculations.

1 Introduction

Numerical models based on 2D Shallow Water Equations have been proven robust and suitable for
modeling flooding events. In particular, explicit finite volume schemes allow to accurately simulate
flood propagation on real bathymetries. Notwithstanding these simulations have a good accuracy, the
requested computational time can be very large, preventing the possibility of performing simulations
over large domains. Different authors [1, 6—-8] have managed to significantly reduce the simulation
time by mapping the computational grid into a parallel architecture. Vacondio et al. developed the
PARFLOOD solver, which takes advantage of CUDA GPU architecture [6], by adopting a new type of
grid called block uniform quad tree grid (BUQ), which discretizes the domain using multiple resolution
levels, thus allowing high resolution over areas of interest and lower resolution elsewhere. Simulations
carried out using BUQ grids run up to 10 times faster than those performed on Cartesian grids and reach
a ratio of physical to computational time of 12 — 15, thus making quasi real-time simulations over big
domains a viable option. However, simulation times on a single GPU can be decreased only via code
optimization and hardware upgrade. Similarly, the dimension of input grids is limited by the memory
available on the GPU. The aim of this paper is to overcome these limitations further extending the work
described in [6] by allowing simulations of flooding events to be carried out on multi GPU architectures.

G. La Loggia, G. Freni, V. Puleo and M. De Marchis (eds.), HIC 2018 (EPiC Series in Engineering, vol. 3), pp. 2105-2111

Multi-GPU 2D SWE Solver Turchetto, Vacondio and Dal Palu

The key idea behind this project is to decompose the computational domain in different partitions which
are simulated on dedicated GPUs (i.e., a different GPU for each partition). GPUs can be located on
different nodes over a network and must be able to communicate through a Message Passing Interface
(MPI) protocol. Nowadays, HPC systems which satisfy these requirements are common and provide
communication frameworks which make the implementation of parallel applications much easier.

2 Numerical Model

In this section we briefly summarize the numerical model adopted, as a detailed description is beyond the
purpose of this work. Further details can be found in [7]. The numerical model solves the 2D-Shallow
Water Equations (SWE) through a finite volume scheme in the integral form [5]:

%/UdAJr/H-ndC:/(SOJrsf)dA
A C A

where A is the area of the integration element, C' the element boundary, n the outward unit vector normal
to C, U the vector of the conserved variables, H = [F, G] the tensor of fluxes int the z and y directions,
So and Sy the bed and friction slope source term, respectively. Conserved variables and Fluxes are
defined as follows:

u? u? 0
n D n 5
U= |uh [,F= |u®h+39(n* —2n2) |.G= uvh .Sy = | ~95;
uvh uvh v2h + 1g(n? — 2nz) —977%;

where h is the flow depth, v and v are the velocity components in the = and y directions, g is the
gravitational acceleration, z is the bed elevation and = h + z is the free surface elevation above
datum.

3 CUDA Implementation

The domain subdivision is done by means of a Block Uniform Quad-Tree grid (BUQ) [6]. Our definition
of BUQ relies on the notion of quadtree subdivision given in [4] with some adaptation to our specific
problem. A BUQ subdivision is a quadtree subdivision, Figure 1-a), in which each leaf of the quadtree is
amatrix M x M - Figure 1-b) - where M is constant for all leaves (in our models we use M € {8,16}).
We call block such matrix and cells the entries of the matrix. Each cell represents a square surface
whose dimension is 2°A for 0 < i < k where A € R and k € N1 are fixed. The integer i identifies
the resolution of a block. Blocks sharing at least one corner are called neighbours or adjacent blocks,
Figure 1-c). Furthermore, we impose an important constraint on our spatial subdivision: each pair of
adjacent blocks can differ for at most one resolution level.

The memory representation of a BUQ grid can be seen as a bidimensional array tiled up with blocks
having an unique identifier called index. Let us note that this representation does not preserve neighbour-
ing relations between blocks [6](i.e., two adjacent blocks in the BUQ can be far away from each other
in memory). Thus for keeping track of adjacency relations between blocks a directed graph G(S, E) is
defined, where S is a set of indexes and FE is the set of pairs (4, j), where i, j € S and i, j are neighbours.

The simulation is performed on Nvidia graphic processing units (GPUs) which are able to spawn
thousands of conurrent threads. In the NVIDIA™ Compute Unified Device Architecture (CUDA)
framework herein adopted, threads are grouped inside blocks which in turn are grouped inside a grid.

2106

Multi-GPU 2D SWE Solver Turchetto, Vacondio and Dal Palu

18 |19 20{21] plock
8 9 S
i mdl R S 4 border cells
4 5 6 7 W
neighbouring
2 3 R | - blocks
A\ b) ;
0 cell
12 |13 shared [4
! [t partiions corner .o
a) c)

Figure 1: a) Quad Tree Subdivision of a domain in 22 blocks. The set of blocks is split into two partitions
respectively highlighted whit white and grey areas. b) Each block is a matrix of M x M cells, where
M is the same for all blocks. ¢) Neighbours blocks share a corner.

There is a one-to-one mapping between the CUDA environment and our spatial models, namely each
spatial block is mapped into a CUDA block and each computational cell is mapped into a CUDA thread.

Although a GPU offers the possibility to perform a high number of calculations in parallel, the
simulation time can still be unsatisfactory for input grids having order of 10° - 107 cells. Furthermore,
the memory of a single GPU (up to 16GB) is rather limited for our application and so is the dimension of
the input models. To overcome these limitations, the Section 4 presents an extension of the PARFLOOD
simulator [6] which takes advantage of the spatial decomposition to perform Multi GPU simulations
over a network.

Example 3.1. In Figure 1 the set of block indexes is S = {0,1,...,21}. The neighbors of the block
1 are 0,2,3,10,12. Each block has 8 x 8 = 64 cells. The GPU simulation spawns 22 x 64 CUDA
threads, each one computing the content of a cell based on the content of neighboring cells.

4 Multi GPU Implementation

In Section 3 a single GPU implementation of the shallow water equations solver has been briefly dis-
cussed. The aim of this section is to generalize the single GPU implementation to a scalable multi GPU
version. While the former version stores the domain and the related data structures on a single GPU,
the latter version decompose the global domain into different pieces, called partitions. Each partition
is then assigned to a different GPU. The preprocessing stage presented in Section 4.1 describes the
data structures which allow different partitions to exchange border information. In Section 4.2 a multi
GPU algorithm is discussed. Finally, the Section 4.3 evaluates the performances of the algorithm by
presenting both strong and weak scalability tests.

4.1 Preprocessing Stage

Before describing in detail the preprocessing stage, let us introduce some notation that will help to
make the description more clear. The symbol S denotes the set of blocks indexes in a domain and will
be referred to as the global set of blocks. The multi GPU implementation is done by partitioning the set
S into a sequence of non-empty disjoint sets St, . . ., S,, where n is the number of processes over which
the simulation is performed (e.g., in Figure 1-a n = 2). The symbol S; will be called partition. Let us

2107

Multi-GPU 2D SWE Solver Turchetto, Vacondio and Dal Palu

remote block

index(X,Y) index(X,Z) a)

’ S size(X,Y) L size(X,2)
Y | a , B ghostBuffer
Z . .
X |ndex(\QX) index(Z,X)

) size(Y,X) L size(Z,X)
---.__local ‘/ localBuffer
block

b)

Figure 2: a) Mapping of remote blocks Y and Z into the ghostBuffer inside an area reserved for X
readings. b) Mapping of local block X into the localBuffer which is sent to the partitions containing Y
and Z.

note that n is an input to the multi GPU simulation and does not change during the computation. Each
partition .S; is simulated on a different node p; equipped with a GPU. Recall that a global domain can be
represented by means of an adjacency graph G(S, F), where .S denotes the global set of blocks and F
denotes the neighboring relations between blocks. The notation neigh(b) indicates the set of neighbors
of ablock b € S. We further assume that the global domain is statically partitioned into n sets (i.e., the
content of each partition does not change during the simulation).

During the partitioning stage, a blocks distribution table T is computed for keeping track of the
distribution of blocks among different partitions. Formally, for each block b € S, T'(b) = t if and only
if b € S;. In our implementation ¢t is an integer, called rank, which uniquely identifies the process p;.
During the preprocessing stage further information is to be computed to allow neighboring domains
to exchange border information. With this purpose each process p; creates three different disjoint sets
which we call internalBlocks, borderBlocks, ghostBlocks. The first is the set of blocks b € .S; such that
all neighbors of b belong to S; (i.e., neigh(b) C Si). The second is the set of blocks b € S; such
that b has at least one remote neighbor, (i.e., Ir € neigh(b) s.t. r ¢ S;). The third is the set of blocks
r € S\ S s.t. r has at least one neighbor in S; (i.e., 3b € neigh(r) s.t. b € Sy).

This implementation does not need any assumption on how blocks are distributed among different
partitions, however we prefer to minimize exchanged boundaries by using partitions with a single self-
avoiding closed fronteer (Figure 1-a).

Example 4.1. In Figure 1 the global set of blocks is S = {0,...,21}. The domain is split into two
partitions, S; = {0, 1,2,4,5,8,10,...,14} simulated on node p;, and Sy = S\ S}, simulated on node
p2. The set of blocks associated with the partition .Sy are internalBlocks= {0,4, 10,11}, ghostBlocks=
{3,6,7,9,15,18,19} and borderBlocks= {1,2,5,8,12,13,14}. For all b € S; T'(b) = 1 and for all
be Sy T(b) =2.

During the preprocessing stage, each process p; defines two distinct memory buffers, the ghostBuffer
for storing information received from remote partitions and the localBuffer for writing local border
information which needs to be sent to remote partitions. (Figure 2).

We detail how to precompute some additional information, in order to let each each block efficiently
locate the correct offset inside ghostBuffer (resp. localBuffer) where to read (resp. to write) the data
received from (resp. to send to) some remote block. For this purpose, we introduce the remote adjacency
map which is computed for each partition .S; (see Example 4.2). In particular, given a partition Sy, for
each block index x € S, the remote adjacency map Li(x) is defined as a list of tuples of the form

2108

Multi-GPU 2D SWE Solver Turchetto, Vacondio and Dal Palu

(y, coord,index,), size(,). The number of tuples stored in L (z) is equal to the number of remote
neighbors of x. The first element y indicates a remote neighbor block located at the coordinate coord
from the point of view of z. If z is local to S; then index ., indicates the offset inside localBuffer
where the information about x has to be written and sent to the block y. Otherwise, if x is not local to
St, index ,) indicates the offset inside the ghostBuffer where y has to to read the information about
received from a remote partition. The last element, size(x,y), indicates either the number of grid cells to
write into the localBuffer (if x is local), or the number of grid cells to read from the ghostBuffer (if x is
remote). Let us note that L;(x) can be also the empty list, which means that the block = does not have
any remote neighbors. Once a map L; has been computed for each partition S;, the information about
how to read and write ghostBuffer and localBuffer is known. Notice that is also implicitly known how
much space must be allocated for each one of these buffers. In particular, the length of the ghostBuffer
is the sum of the size elements of each tuple ¢t € L(z), for all z € ghost Border. Similarly, the length
of the localBuffer is the sum of the size elements of each tuple t € L(z), for all z € local Border.

Example 4.2. In Figure 2 a local block = and two remote blocks y, z are shown. The map L(x) contains
the tuples (y, N, index(x,y), size(z,y)) and (z, E, index(z,y), size(x,y)) which tell 2 how to read
y and z from the ghostBuffer. The map L(y) contains the tuple (z,S, index(y, x),size(y, z)) and L(z)
contains the tuple (x, W,index(z, z), size(z, x)) which tells 2 how to write information for y and z in
the localBuffer. Notice that y and z may belong to two different partitions.

Each process builds his own remote adiacency map with a local viewpoint. When exchanging
buffers, a certain process p; needs to know how other processes will pack and send their local infor-
mation. To address this, we let adjacent partitions exchange their respective maps before the the simula-
tions starts. In this way a node p; can send directly his localBuffer to each neighbor, which in turn uses
the map belonging to p; to read it, and their local map to save the data into their ghostBuffer. If on one
hand this method simplifies the implementation of the communication procedures, on the other hand it
increases the network overhead of a factor proportional to the number of neighbors of the sending node.
However we will show that such overheads are small and completely maskable by the computation of
the GPU kernels.

4.2 Simulation Stage

The Listing 1 shows the pseudocode of the multi GPU implementation. Only the simulation halfstep is
described as our main goal is to discuss the communication between different processes. For a complete
version of the PARFLOOD implementation on a single GPU, please refer to [6].

Listing 1: Simulation Halfstep of the Multi GPU Implementation

1| // DeltaT calculation

2 dt = gpu_deltaT ();

3| // Compute the minimum delta T among all partitions (blocking call).
4 dtmin = deltaT_Reduction (dt);

s| // BDO procedure

6 define_wettable_blocks ();

71 // MUSCL Reconstruction for internal blocks

8 gpu_muscl_reconstruction(internalBlocks);

9

// Sending and receiving the conserved variables
10 communication(localBuffer , ghostBuffer);
1| // MUSCL Reconstruction for border blocks
12 gpu_muscl_reconstruction(borderBlocks);
13| // Update Conserved Variables for internal blocks, flux and source terms
14 gpu_fluxes_calculation(internalBlocks);
15| // Sending and receiving the reconstructed variables
16 communication(localBuffer, ghostBuffer);

2109

Multi-GPU 2D SWE Solver Turchetto, Vacondio and Dal Palu

Weak Scaling Efficency Graph Strong Scaling Efficency Graph

Weak scaling —@—

100‘\’_’_“**\0—0—0_‘

™ Stong Scaling —@—

@ O
o o

~
o

> 60 >
5 13
g 50 g
e S
G 40| b

o
o

10 20 30 40 50 60 70 80 90 100 I 12 14 16 18

2 4 6
Number of Gpus

8 10
Number of Gpus

a) b)

Figure 3: a) Resoluts of weak scalability tests up to 100 GPUs performed over a uniform resolution
BUQ grid. b) Resoults of strong scalability tests performed over a circular dam break discretized using
a multi resolution BUQ grid.

17| // Update Conserved Variables for border blocks, flux and source terms
18 gpu_fluxes_calculation(borderBlocks);

At the beginning of the temporal loop, the timestep At has to be calculated by each partition (line 2),
and then an MPI reduction has to be performed in order to obtain the global minimum value (line 4).
Since all the processes have to wait the response from the master process, this call represents the only
one which can not be masked. The call plays a critical role in the execution time, especially if the
computational load between different GPUs is unbalanced. The other communication calls (line 10, 16)
are performed in a point-to-point nonblocking fashion, without the need to synchronize the send calls
with the receive calls among neighbors. Instead, one process can perform all the send communications
and then wait for all the remote data to arrive. In line 10 the local border reconstructed variables stored
in the localBuffer are sent to the neighbor processes. Similarly remote reconstructed variables are
received from neighbor processes into the localBuffer. The same thing happens for the communication
performed in line 16, with the only difference that the buffers contain the conserved variables. Thanks
to the asynchronous nature of GPU kernels, both the MUSCL reconstruction (line 8) and the Fluxes
integration kernels (line 14) can execute concurrently with the communication calls right after them.
This can be done because such kernels execute on internalBlocks, thus they don’t need the border data.
Once the MPI communication has been completed, CUDA kernels which operate on ghostiBlocks can
be executed. In Section 4.3 we discuss the performance of this algorithm.

4.3 Numerical Tests

To assess the performance of our code we preformed both strong and weak scalability tests on the Piz
Daint supercomputer located at the Swiss National Super Computing Centre. Piz Daint is an hybrid
Cray XC40/XC50 system equipped with NVIDIA P100. Our GPU code has been tested on CUDA 8
and cray-mpich 7.6 as MPI implementation.

The weak scaling test shown in Figure 3-a has been performed by defining a fixed partition size of
125 x 32 blocks (i.e., == 10° cells) with the same resolution. This size is more than enough to mask the
communication overhead. The efficency drops to 88% for two GPUS and from that point on there is a

2110

Multi-GPU 2D SWE Solver Turchetto, Vacondio and Dal Palu

small degradation which keeps the efficiency around 85% up to 100 GPUs. By profiling the code with
nvprof we show that asynchronous communication steps (i.e., lines 10 and 16 of the Listing 1) do not
affect the simulation time at all. The drop of efficiency is entirely caused by the reduction performed at
line 4 (plus some minor overheads caused by data exchange between CPU and GPU).

The strong scalability test has been performed over a circular dam break model, containing a total
of 24700 blocks (i.e ~ 6.3 - 106 cells). For this test a BUQ grid (Section 3) is used and the partitioning
is performed along one dimension. We enforce that each partition contains the same number of blocks.
Figure 3-b shows that the efficiency dropdown varies from 10 to 15% by doubling the number of GPUs.
By profiling our code with nvprof we noticed that the main factor which causes the loss of efficiency
is the 1D partitioning. In fact, by doubling the number of GPUs involved in the simulation, the number
of blocks is halved for each partition, however the the size of the borders remains almost the same (i.e., a
small variation can happen due to the multiresolution grid). Thus the running time for the border kernels
(lines 12 and 18 in the Listing 1) remains constant. Another factor which causes a loss of efficiency is
related to the computational load of the kernels which execute on internal blocks (lines 8 and 14). In
particular we observed that those kernels stick to an efficiency of 100% as long as there are at least
3000 blocks for each partition. This explains the efficiency dropdown increase for a number of GPUs
higher than 8. The network overhead is caused only by the synchronization time, especially for 2 and
4 GPUs and then it becomes negligible. Instead, the asynchronous communication (lines 10 and 16) is
completely masked by kernel execution, thus it does not affect the execution time, supporting our choice
to send all the border data to each partition.

References

[1] M. Asuncién, M.J. Castro, E. Fernandez-Nieto, J.M. Mantas, S.O. Acosta, J.M. Gonzalez-Vida (2013). Effi-
cient gpu implementation of a two waves tvd-waf method for the two-dimensional one layer shallow water
system on structured meshes, Comput. Fluids 80, 441-452

[2] A.R. Brodtkorb, M.L. S@tra, M. Altinakar (2012). Efficient shallow water simulations on GPUs: Implemen-
tation, visualization, verification and validation Comput. Fluids 55, 1-12

[3] NVIDIA CUDA, 2018, CUDA C Programming Guide. docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, 2008, Computational Geometry. Algorithms and
Applications. Third Edition. Springer. 313-314.

[5] E.E Toro (1999). Shock Capturing Methods for Free Surface Shallow Water Flows. Wiley, New York.

[6] R. Vacondio, A. Dal Palu, A. Ferrari, P. Mignosa, F. Aureli, S. Dazzi (2017). A non-uniform efficient grid
type for GPU-parrallel Shallow Water Equations models. Adv. Water. Resour. 88, 119-137

[7]1 R. Vacondio, A. Dal Palu, P. Mignosa, (2014). GPU-Enhanced Finite Volume Shallow Water solver for fast
flood simulations. Environ. Model. Softw. 57, 60-75.

[8] M. Altinakar A.R. Brodtkorb, M.L. S@ tra. Efficient shallow water simulations on gpus: Implementation,
visualization, verification and validation comput. fluids 55, 1-12, 2012.

2111

	Introduction
	Numerical Model
	CUDA Implementation
	Multi GPU Implementation
	Preprocessing Stage
	Simulation Stage
	Numerical Tests

