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Abstract

A broad range of real-world systems can be defined using discrete-time hybrid systems, e.g.,
chemical process plants and manufacturing systems. We characterize this application domain using a
class of discrete-event systems, max-plus linear discrete-event systems, which captures synchroniza-
tion without concurrency or selection. The model framework of these hybrid systems is non-linear in
a conventional algebra, but linear in the max-plus algebra, thereby enabling linear-time inference. We
use an observer-based framework for monitoring and diagnosing max-plus diagnostics models, and
further improve computational efficiency by searching over only the most-likely space of behaviours.
We illustrate our approach using a chemical process-control example.

1 Introduction
Diagnosing hybrid systems is known to be challenging, since tasks such as tracking and state estimation
require different underlying mathematics, algorithms, and often inference tools for the continuous and
discrete aspects. Faults might occur within the continuous aspects (e.g., valve stuck partially shut) or
the discrete aspect (on/off actuator fails in the on state) [1]; these faults may evidence themselves as
gradual or abrupt events. Some approaches (e.g., [2]) combine the two aspects, while other approaches
map the aspects into a single framework, e.g., a probabilistic framework for which we can use particle
filters or dynamic Bayesian networks to compute diagnoses [3].

This article uses a max-plus algebraic framework for diagnosing a class of hybrid systems that
allow synchronization without concurrency or selection. We define a max-plus algebra over the max-
plus semi-ring 〈Rmax,⊕,⊗〉, which is the set Rmax = R ∪ {−∞} together with operations x ⊕ y =
max(x, y) and x ⊗ y = x + y. The additive and multiplicative identities are taken to be ε = −∞ and
e = 0, respectively.

We adopt the max-plus algebra, one of many idempotent semi-rings used for computational infer-
ence, not only because its operations are associative, commutative and distributive (as in conventional
algebra), but also because it transforms inference on system timed dynamics (that are non-linear in a
conventional algebra) to be linear in the max-plus algebra [4]. Max-plus methods have been widely used
for modelling and inference, e.g., [5, 6], but have never been used for HS diagnostics inference.
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We model the discrete transitions of a hybrid system (HS) with a discrete-event system (DES). The
DES captures the event-driven state evolution depends entirely on the occurrence of discrete events over
time. We assume a DES model whose state-space is described by a discrete set with transitions that
are observed at discrete instants in time. Models describing a DES are non-linear in the conventional
algebra. We model this class of DES with a max-plus linear discrete-event system in which inference
is linear within the max-plus algebra [4, 7], and hence is computationally more efficient than traditional
approaches [8].1

This article proposes a semi-ring algebraic framework for modeling and diagnostic inference of a
hybrid system (HS). We describe a discrete-time hybrid system based on a (max,+)-linear (MPL)
algebra defined over a set Z+ or Rmax = R∪{−∞} [9, 10]. We extend this model to a switching MPL
(SMPL) framework [5], which introduces modes that the system switches between. We further extend
SMPL systems with stochastic switching behaviors to capture the stochastic nature of faults occurring.
We introduce stochastic fault occurrence through a probability distribution over mode transitions. The
stochastic SMPL framework provides a rich theoretical basis for describing a set of real-world systems,
e.g., piece-wise-affine (PWA) systems in the time-driven domain [11].

We employ a computationally efficient observer-based diagnostics approach to monitor the system
and isolate faults. Our diagnostics approach uses the max-plus model for efficient inference, and also
restricts the space of diagnoses considered during fault isolation by computing only the most-likely
system behaviours (rather than using the space of all possible behaviours).

Finally, we show the generalizability of this algebraic approach, namely that just by changing the
underlying algebraic operations we can define a range of stochastic hybrid systems, such as Markov
switching systems or even non-linear systems whose dynamics typically are defined using particle filters
[3]. We show how all the above approaches use the same formulation, and differ only in the underlying
algebraic operations.

Our contributions are as follows:

• We model a HS using a switching (max,+)-linear (SMPL) algebra.

• We define a classical observer-based monitoring framework, and extend this for fault isolation.

• We show that an approximation technique can compute diagnoses in time polynomial in the prob-
lem size, even though the general diagnostic inference task is NP-hard.

• We show how we can modify our HS computations to fit several other stochastic frameworks
without changing the state-space description, but only by modifying the underlying algebraic
operations.

2 Problem statement
This section summarizes the underlying diagnostic task. Because it is computationally prohibitive to
pre-define all possible fault dynamics within an observer-based FDI system (i.e., have an observer for
every fault combination). As a consequence, we use an approximation approach that we describe below.

2.1 Objective
Consider a discrete-time affine system whose dynamics obeys one of µ possible models (known and
observable), with one model corresponding to a system mode. Our objective, given a measured output
y(k) that disagrees with the expected output ŷ(k), is to determine the system mode γ(k) at time k that

1For example, in the max-plus algebra exponentiation reduces to conventional multiplication.
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most closely generates the observed dynamics. To achieve this goal, we look for the (shortest) sequence
of inputs U0,k = (u(0), ...,u(k)) and measurements Y0,k = (y(0), ...,y(k)) such that the output at
time k is consistent with only one mode γ(k) ∈ Γ. Since multiple input sequences of minimal length l
may satisfy this requirement, we select the mode that minimizes a given cost function. In the following,
we assume that only one model is active during each discrete step in [0, ..., N ].

2.2 System Architecture

Figure 1: We diagnose hybrid systems using a 3-steps approach, with steps: (1) monitoring and residual
generation, (2) mode selection and (3) fault isolation.

Our task consists of the 3-step process shown in Figure 1.

1. Observer-based monitoring and residual generation: In this phase we use an observer-based
approach to detect anomalies, using a residual r. The residual generation process, and the matrices
A, B, C, are described in Definition 3.

2. Mode selection: Given an anomaly, this phase computes the set Γ∗ ⊆ Γ of most-likely modes, and
runs a simulation (given input x(0),U0,k) for each mode γi ∈ Γ∗ to estimate the corresponding
residual value ri.

3. Fault isolation: In this phase we compute the most likely failure mode for the system based on a
cost function J (y, ŷ) and the set of ri.

In this figure, we adopt the state-space model (as presented in Definition 4), where A, B are the state
matrices, C the output matrix, and K the observation matrix.

3 Related Work
This section described prior work related to our approach.

3.1 Diagnosing Hybrid Systems
Researchers have directed considerable attention to the monitoring and fault diagnosis of hybrid sys-
tems, e.g., [19, 20, 1].Our approach is the first to employ a (max,+) algebra for this task. The (max,+)
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algebraic approach is computationally more efficient than existing approaches, but may suffer from re-
quiring longer time delays for observations for fault isolation, and a limitation to a class of HS that can
be diagnosed based on timing anomalies.

3.2 Algebraic Descriptions of Hybrid Systems
The class of switching MPL systems is related to (max,+) automata [10], which can also be character-
ized as non-stationary autonomous max-plus-linear systems with finitely valued dynamics (i.e. systems
of the form x(k + 1) = A(k) ⊗ x(k), y(k) = C ⊗ x(k) where A(k) takes its values in a finite
set {A(1), · · · , A(N)}. The main differences are that the class of systems considered here have an
additional input (u(k)), and that we define the switching mechanism completely and explicitly for the
switching max-plus-linear systems (which is not true for (max,+) automata).

We represent max-min-plus-scaling (MMPS) systems in state-space form using the operations maxi-
mization, minimization, addition and scalar multiplication. MMPS systems are equivalent to a particular
class of hybrid systems, continuous piecewise (PWA) systems [12]. PWA systems are defined by par-
titioning the state space of the system in a finite number of polyhedral regions and associating to each
region a different affine dynamic [13]. This relation between PWA and MMPS systems enables the
study of certain structural properties of PWA systems, such as observability and controllability but also
in designing controller schemes like model predictive control (MPC) [14].

Our work differs from other modeling techniques for discrete-event systems, such as Petri nets,
extended state machines, event-graphs, formal languages, generalized semi Markov processes, nonlin-
ear programming, automata, computer simulation models (see, e.g., [15, 16]), in that we employ an
algebraic approach with observers.

3.3 Petri net models
Timed Petri nets include as a subclass timed event graphs (TEG), where we represent places as “arcs"
and transitions as “nodes" [17]. In this case, all places have a single transition upstream (we remove
competition in either consumption or supply of tokens in TEG) and a single one downstream (we resolve
all potential conflicts in using tokens in places by some predefined policy). We gain computational
advantage, although these limitations restrict some application domains; the limitations can generally
be satisfied by making some design and scheduling decisions at an abstract (or hierarchical) level.

Diagnosis of Petri nets (e.g., [18]) has a rich history. What is different in our approach is the
use of state-space descriptions together with observer-based monitoring, and computationally efficient
methods based on the (max,+) algebra.

4 Max-plus Algebra and Switching Max-plus Linear Systems
This section summarizes the max-plus algebra, max-plus linear (MPL) systems, and switching max-plus
linear (SMPL) systems. MPL systems can be generalized to capture a broad range of hybrid systems.
By introducing modes we can capture switching behaviours [5]. We can introduce different forms of
uncertainty in the model to capture different types of stochastic behaviours, e.g., see [21]. In this article
we introduce uncertainty in mode switching, in order to capture uncertainty in the onset of fault modes.

4.1 Max-plus Algebra
This section outlines the basis for our algebraic frameworks. We first define ε = −∞ and Rmax =
R ∪ {ε}.
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Definition 1 (max-plus-algebra [4, 22]). A max-plus-algebra 〈Rmax,⊕, ⊗〉, for numbers x, y ∈ Rmax
defines addition (⊕ ) and multiplication (⊗) as follows:

x⊕ y = max(x, y) (1)
x⊗ y = x+ y, (2)

We extend these to matrix operations as follows:

[A⊕B]ij = aij ⊕ bij = max(aij , bij), (3)

[A⊗ C]ij =

n⊕
k=1

aik ⊗ ckj = max
k=1,··· ,n

(aik + ckj) (4)

for matrices A,B ∈ Rm×nmax and C ∈ Rn×pmax.

4.2 Max-plus Linear Systems
Max-plus-linear (MPL) systems are a class of discrete-event system that allow synchronization but no
concurrency or choice [4]. We define MPL systems using two operators, max and +. The max function
models the synchronization between events: an event occurs once all processes it depends on have
finished. The + function models the process times: the moment a process finishes must equal the sum of
starting time and the time the process takes to finish. MPL systems are called max-plus-linear systems
since the underlying temporal algebra has computational complexity that is “linear" in the max-plus
algebra [4].

Definition 2 (Max-plus Linear system).

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k), (5)

with A ∈ Rn×nmax and B ∈ Rn×mmax , with a number n of states and m of inputs.

The index k denotes the event counter. For MPL systems the state x(k)2 typically contains the time
instants at which the internal events occur for the kth time, the input u(k) contains the time instants at
which the input events occur for the kth time, the output y(k) contains the time instants at which the
output events occur for the kth time.

4.3 Switching Max-plus Linear Systems
We now extend our framework to cover systems that can switch between different modes of operation
[5]. We assume that a system operates in some mode γ ∈ Γ, where |Γ| = η modes. We partition Γ into
a subset Γf of ηf fault modes and Γn of ηn nominal modes.

Definition 3 (Switching Max-plus-linear (SMPL) system). A switching max-plus-linear (SMPL) state
space model exists in mode γ(k) for event step k as governed by

x̂(k + 1) = A(γ(k)) ⊗ x̂(k)⊕B(γ(k)) ⊗ u(k) (6)
ŷ(k) = C(γ(k)) ⊗ x̂(k), (7)

in which the matrices A(γ(k)), B(γ(k)), C(γ(k)) are the system matrices for mode γ(k).

2In this article, boldface variables denote vectors.
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The switching allows us to model mode changes over both nominal and fault modes. Such mode
switches include changes in the structure of the system, such as breaking a synchronization or changing
the order of events. Each mode γ corresponds to a set of required synchronizations and an event order
schedule, which leads to a model with system matrices (A(γ(k)), B(γ(k))) for the γth model. The mode
γ(k) determines which max-plus linear model is valid during the kth event. The moments of switching
are determined by a switching mechanism, which may be governed by the previous state x(k − 1), the
previous mode γ(k − 1), the input variable u(k) and an (additional) control variable w(k).

We partition Rnz
max into η subsets Z(i), i = 1, · · · , η. The mode γ(k) is now obtained by deter-

mining the set that contains γ(k) at event step k. So if γ(k) ∈ Z(i), then γ(k) = i. The switching
mechanism is application-dependent; in some systems it will depend on the state x(k − 1) and input
u(k), while in other examples γ(k) will be governed by w(k).

4.4 Stochastic SMPL Systems

In real-world scenarios, fault transitions are stochastic. We can capture that behaviour in the SMPL
framework using the mode transition behaviours (switching mechanism). In our original definition, the
functional form of γ(k) was left open. We can define stochastic failure-mode transitions, together with
deterministic nominal-mode transitions, using a Markov transition matrix [21].

In this article, we assume that faults occur randomly, inducing random mode switches from a nomi-
nal mode to a fault mode. Once a fault occurs, it is persistent. We capture this using a stochastic variable
πij , which defines the probability of switching from mode γi(k− 1) at time k− 1 to mode γj at time k:

πij = P [γj(k)|γi(k − 1)].

For example, we may have a stochastic switch from a nominal mode γi(k − 1) to a failure mode γj(k),
where the switching probability is 0.01.

We can define a switching probability matrix for the stochastic variable πij over η modes, with
entries given by πij , i, j = 1, ..., η as:

PS =

π11 · · · πη1

...
. . .

...
π1η · · · πηη

 (8)

4.5 Generality of Approach

Our algebraic approach is general and extensible, in that we can maintain the problem structure and
obtain a different problem by changing the semi-ring. For example, we can maintain the problem
structure of definition 3, and simply by changing to the semi-ring 〈[0, 1], (+,×)〉, we obtain an HS
defined by a dynamic Bayesian network [23]. Furthermore, we can still use the inference architecture
of Figure 1 to solve this dynamic Bayesian network.

We make this change by defining x, y and u as stochastic variables, matrices A, B, C as Markov
transition matrices. With this modification of the model representation, we can apply the semi-ring
operations over the semi-ring 〈[0, 1], (+,×)〉.

In an analogous fashion, we can substitute several different semi-rings into definition 3 to obtain
different HS formulations, with no change in inference tools other than the semi-ring operations.
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Figure 2: Chemical Process consisting of mixing two chemicals using a solvent. The process involves
using solvent (from tank B1) to dilutes two chemicals in reactors R1, R2, and then mix them in tank
B2.

5 Running Example
As a running example we use a chemical process, as shown in figure 2; this example is take from [24].
The process mixes two chemicals, C1, C2 using a solvent. The main steps are as follows:

1. We dilute C1, C2 with solvent (from tank B1) in reactors R1, R2, respectively.

2. We mix the diluted chemicals together in tank B2.

3. We filter the solvent into tank B1, which it then used for the next cycle; the product is then
extracted and packaged.

For this process we measure the times when the levels of reactors R1, R2 and tanks B1, B2 are
full/empty, and have as controls the times when we open and shut the valves V1, ..., V7.

5.1 Discrete Nominal Model
This process follows a fixed sequence of discrete steps.

1. Dilution: We release C1 by opening valve V1 to dilute it with solvent by opening valve V2 from
tank B1, storing the mixture in reactor R1. We release C2 by opening valve V4 to dilute it with
solvent by opening valve V5 from tank B1, storing the mixture in reactor R2.

2. Mixing: We mix the diluted chemicals together in tank B2 by opening valves V3, V6.

3. Filtration: We filter the solvent into tank B1 by opening valve V7.

We use x to denote the times when certain events occur, e.g., the reactors R1/R2 and tank B2 are
empty or full (see Table 1). We use u to denote the times when we open or close some of the valves
(see Table 2).
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xi Event Transition
x1/x2 R1/R2 full q3/q7

(Start reaction 1/2)
x3/x4 R1/R2 empty q4/q8

x5 Start filter q9

x6 Solvent available q10

Table 1: Correspondence of events and transitions for x

u Event Transition
u1/u2 Open V1/V2 q1/q2

u3/u4 Open V4/V5 q5/q6

Table 2: Correspondence of events and transitions for u

We can represent this example in our state-space equation as

x(k + 1) = A(k)⊗ x(k)⊕B(k)⊗ u(k),

where x = [x1 x2 x3 x4 x5 x6], u = [u1 u2 u3 u4],

A(k) =


ε ε ε ε ε ε
ε ε ε ε ε ε
τ3 ε ε ε ε ε
ε τ6 ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε τ7 ε



B(k) =


τ1 τ2 ε ε
ε ε τ4 τ5
ε ε ε ε
ε ε ε ε
ε ε ε ε
ε ε ε ε


In our observation equation y = Cx, we assume a fully observable system, i.e., C is the identity

matrix. The residuals are given by ri = |ŷi − yi|, for i = 1, · · · , 6.

5.2 Continuous Model

We can define a continuous model for each of the process steps as follows. Consider filling reactor
R1 with chemical C1 (flowing at rate ρ1) and solvent (flowing at rate ρs). If the fluid level of reactor
i, i = 1, 2 is denoted by hi, and outflow through a valve with opening parameter νi, then we have
equation

ḣi = κ(ρi + ρs − ρoiνi), (9)

where κ is a constant that incorporates tank diameter, material properties, etc.
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5.3 Discrete Switching Model with Failure Modes
We now show how we model switching from the nominal mode to failure modes. We assume that a
switch to a fault mode occurs stochastically, and is not observable except indirectly. Second, we assume
that we have models for each failure scenario, where we represent a model in terms of matrix pair
〈Aγ(k), Bγ(k)〉 for mode γ(k).

We model the impact of faults on the system using different processing times. For example, a leak
fault in reactor R1 leads to a reduction in the value of τ3, and a partial blockage of valve V6 leads to an
increase in τ6, the time taken to empty reactor R2. If we allow component failures, then we can define
a different matrix pair 〈Aγ(k), Bγ(k)〉 for each failure scenario.3 For example, if we have a leak fault
in reactor R1, this will cause the reactor to empty more quickly than anticipated, i.e., reduce τ3 to τ3f .
In this case we can simply replace τ3 with τ3f in matrix Aγ(k). In an analogous manner, we can define
specific matrices for every failure mode of the system.

6 Diagnosing Hybrid Systems using SMPL Automata
This section introduces an observer framework for monitoring SMPL Automata; we then extend this to
isolate faults in these automata.

6.1 Observers
We now extend a max-plus-linear state space model that is in mode γ(k) ∈ 1, · · · , η for event step k
into a monitored system using a residual vector r(k). We define our state specification with observer as
follows:

Definition 4 (Observer State Space Model).

x̂(k + 1) = A(γ(k)) ⊗ x̂(k)⊕B(γ(k)) ⊗ u(k)

⊕K(γ(k)) ⊗ r(k) (10)
ŷ(k) = C(γ(k)) ⊗ x̂(k) (11)
r(k) = |ŷ(k)− y(k)|, (12)

where variables with a hat (x̂, ŷ) correspond to model predictions, and variable y (without a hat)
corresponds to the measured output.

In this description,K(γ(k)) is the observer gain matrix that we must tune. Further details of observer-
based control can be found in [26].

Given an observer, we can monitor our system and identify anomalous behaviour using the residual
as follows:

Definition 5 (Fault detection). Given a non-negative threshold δ ∈ R, an anomaly (corresponding to a
fault) exists if |r(k)| > δ.

6.2 Isolating Faults
This section describes a method for fault isolation given an anomaly. In general, we can isolate faults in
this framework using a range of approaches, e.g., a bank of residual generators, ARRs, etc. A classical
approach for fault isolation is to use a bank of residual generators, one for each fault to be diagnosed

3We assume that the observation matrix remains the same.
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[8]. This approach can be easily accommodated in our framework; however, it does not scale well to
the large number of possible multiple-fault combinations.4 As a consequence, it is computationally
prohibitive to search the entire space, and and using a bank of residual generators typically is limited to
single-fault scenarios.

In the following we address the most-likely multiple-fault scenarios. In particular, we use the fault-
transition probabilities to focus inference on the most-likely fault trajectories.

We need to introduce a few definitions to clarify our fault isolation procedure. We are interested in
multiple-fault diagnoses, where we allow each failure mode γ ∈ Γf to take on a discrete set of values.

Definition 6 (Trajectory). A trajectory is a sequence of events and states.

Definition 7 (Observation sequence). An observation sequence is a sequence of observable events.

For a stochastic transition, we compute the probability of a future state.

Definition 8 (Stochastic State Estimation Task). Given a sequence Y of k observable events and initial
state x(0), the stochastic state estimation task is to identify P (x(k)), the probability of state x at time
k.

We can use the switching probability matrix PS to compute P (γ(k)|P (γ(0))), where γ(0) is the
initial mode. P kS denotes the probability distribution over arriving at any mode after k steps. More
precisely, the ijth entry denotes the probability of moving from mode i to mode j after k steps. We can
use this matrix to compute the probability P (γ(k)|P (γ(0))) for any mode γ ∈ Γ.

We adopt as our baseline diagnostic approach the use of multiple observers, where we compute with
each observer a residual tuned to a particular fault. We assume that we compute just the single-fault
diagnoses with each residual. We will then compare this approach with a multiple-fault approach.

In this article we adopt an approximation-based approach for multiple-fault fault isolation, where
we investigate the most-likely sub-space of the diagnosis space. To do this, we must compute the
most-likely trajectories. Fortunately, these are easily computed using algebraic techniques. Assume
that we identify an anomaly at k steps. Using a (max, ∗)-algebra where ∗ is standard multiplication,
we can compute the probability of a fault occurring at k steps using P kS using the (max, ∗)-algebra,
which computes the probability of paths of length k [27]. The entry πij in P kS denotes the maximum
probability of the k-step path from mode i to mode j. We use a threshold δπ such that we consider fault
occurrence for fault j only if πij ≥ δπ . We consider the set Γf of faults.

We identify the fault that minimizes the loss function J (ŷ, y):

γ∗f = arg min
γf∈Γf

J (ŷ, y) (13)

In this article, we use a probabilistic loss function, so we compute the highest-probability fault.

7 Computational Complexity
The complexity of diagnostic inference in a switching max-plus system (definition 3) depends on two
factors:

Fault detection To identify an anomaly, we must solve our system to compute r, which requires solving
a matrix relation of the form given by equations 6 and 7.

Fault Isolation This phase of inference requires us to identify the failure mode that “explains" the
anomaly, i.e., that minimizes our diagnostics cost function.

We now define the complexity of each factor in turn.
4The diagnosis space is exponentially-growing in Γf , the number of fault modes.
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7.1 Fault Detection

Given an observation y(k) at time k, computing a residual r(k) = |y(k) − ŷ(k)| involves estimating
the output using ŷ(k), which we can calculate from equations 6 and 7 as

ŷ(k) = C ⊗ x̂(k) for k = 1, 2, ...

= C ⊗

[
A⊗

k

⊗ x(0)⊕
k⊕
i=1

A⊗
k−i

⊗B ⊗ u(i)

]

Computing the kth power of a matrix, for k ∈ N0, takes the form

(A⊗
k

)ij = max
i1,i2,...,ik−1

(aii1 + ai1i2 + ...+ aik−1j
) ∀i, j.

This is clearly linear in the size of the matrix. From this, we can see that computing the residual is linear
in the size of the matrices involved. This contrasts with traditional matrix operations, which are O(n3)
for n× n matrices.

7.2 Fault Isolation

Isolating faults is the computationally taxing part of the problem. Below, we outline the worst-case
complexity of this problem, and then show the approximation technique that we adopt.

We can define our diagnostic problem as follows:

Definition 9 (SMPL diagnosis). Given an SMPL system with initial condition x(0) and anomalous
observation y, compute a switching sequence ending with a persistent fault that generates an output ŷ
such that J (ŷ,y) is minimized over all permutations of switching sequences.

We can use this problem formulation to prove a decision version of our diagnostics task.

Proposition 1 (SMPL diagnosis complexity). Given an integer SMPL system with initial condition
x(0) and anomalous observation y(k) at time k, it is NP-complete to compute if there exists a switching
sequence ending with a persistent fault that generates an output ŷ(k) = y(k) at time k.

We prove this result in [28]. The full diagnosis problem (definition 9) is an optimization version of
the decision problem, so is NP-hard. The problem is the exponential number of switching sequences
that must be analyzed.

7.3 Approximation Algorithm

We use an approximation technique to explore a polynomial number of switching sequences (trajecto-
ries), rather than the (worst-case) exponential number of switching sequences. We use the stochastic
function governing fault transitions to assign probabilities to the trajectories, and explore only the tra-
jectories whose probability is higher than a threshold ϕ. By controlling the value of ϕ we can limit the
number of trajectories to be polynomial in |x|. This gives us a principle way to trade off inference speed
with fault isolation accuracy.

Alternatively, we could solve this problem as a mixed-integer linear programming problem [29], for
which a number of efficient solvers exist.
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8 Fault Isolation Example

8.1 Types of Faults
We consider three fault types and evaluate the performance of the diagnosis algorithm:

1. A transition fires earlier than expected. Such an observation occurs when, e.g., the time to empty
a tank is decreased by a leak.

2. A transition fires later than expected. This behaviour can be observed when, e.g., the flow through
a valve is reduced by a partial clogging.

3. An event no longer occurs. This may be due to a complete breakdown of a particular process
component, e.g. a complete clogging of a valve. The firing time xi(k + N) of this particular
transition will equal ∞, i.e. the events generated by the considered component never occur. In
addition, all successor transitions of qi can not be enabled any more. Their firing time therefore
also equals ∞. Obviously, a measurement of infinite firing times is not feasible. We therefore
introduce a threshold T with the convention

xi(k + 1) =∞ if t− xi(k) ≥ T,

where t denotes the absolute time. The threshold T is set based on the process operators expert
knowledge. Consider a component corresponding to a predecessor place of transition qi. A fault
in this component, which occurs in the (k + N)th cycle, will disable transition qi, such that
xi(k +N) =∞ after the passage of time T .

The three scenarios discussed above, early events, delayed events and disabled events, represent the
possible behaviour modes a discrete event system can generate when a fault occurs, even for faults that
change the event sequence structure.

8.2 Stochastic Filtering
We now show how we can focus diagnostics on a subset of faults using our stochastic switching frame-
work. Consider the space of faults:

Name Description Probability
f1 R1 leak 0.05
f2 R2 leak 0.01
f3 V1 clogging 0.01
f4 V6 clogging 0.05
f5 V4 blocked 0.03

Table 3: Examples of faults with associated probabilities

For each fault we can define a transition matrix. For example, for persistent fault f1 the matrix is

Pf1 =

[
.95 .05
0 1

]
By taking powers of this matrix we can calculate path probabilities for failures, and use these for ranking
which possible failures to consider. For example, the second power is:

P 2
f1 =

[
.9025 .0975

0 1

]
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We can generalize this approach to compute multiple-fault conditions, intermittent faults, etc.
We use the trajectory probabilities to avoid searching over all possible trajectories. At each time

step, we select the subset S of system trajectories that cumulatively sum to a threshold κ. In our ex-
ample, trajectories with fault combinations (2 or more faults) containing faults other then f1 and f4 are
extremely unlikely, and get filtered, leading to the fault scenarios of the single-faults plus {f1, f4}.

Given the subset of failure modes we consider, for each trajectory si ∈ S we run a simulation and
compute residual ri. Our diagnosis is the fault mode γj that minimizes this residual function.

8.3 Diagnosis of Valve Faults

We now show an example where we induce as a fault the partial clogging of valves {f3, f4}. We assume
that the process reaction time can be neglected, such that τ3, τ6 represent only the outflow time from
R1, R2 and the filtering time is determined by the flow through valve V7. The relevant parameters are
therefore the parameters τi, i = 1, · · · , 6, with the corresponding residuals ri = τi − τ̂i.

Figure 3: Simulation results for fault in valve V6, with the nominal simulation shown as a solid line and
the fault simulation as a dashed line.

Consider a fault consisting of partial blockage of valve V6, which causes the reactorR2 to drain more
slowly than expected. Figure 3 shows the nominal simulation (as a solid line) versus the simulation of
a fault (dashed line), together with the residual r6 computed from the fault scenario. In both situations
the reactor first fills with chemical and solvent, and then drains when V6 is opened. The timings k, k +
1, k + 2 indicate the nominal events when reactor R2 is empty. At time step k reactor R2 still have not
emptied fully in the faulty case, creating a non-zero residual. The residual increases at the k + 1st time
step since we have a full cycle of delay, as opposed to the incomplete cycle with less delay at the kth

step.
We introduce a probability threshold ϕ that limits the fault scenarios that we consider. For this

example, we can define ϕ such that we consider only behaviours that result in a single persistent fault
occurring.

Given our non-zero residual we run our set of possible fault scenarios, and compute a partial block-
age of valve V6 as the most likely fault at the k + 1st time step.
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8.4 Discussion
This diagnostics approach provides a computationally tractable method, using only discrete-time ob-
servations of event timings. The discrete models are based on timing information, and abstract the
continuous dynamics in terms on timing information.

The benefits of this approach include simplicity of modelling and inference. The required level of
abstraction may not suit all problems, although further research is necessary to determine that.

9 Summary
This article has proposed a max-plus algebraic approach for solving a class of PWA hybrid systems. For
this class of system the max-plus algebraic approach is computationally faster than traditional methods.
We have described an approximation technique that is of complexity polynomial in the problem size,
even though the general diagnostic inference task is NP-hard. We have illustrated our approach on a
process-control example.

This approach provides a novel computational framework for diagnosing hybrid systems. We build
on a significant base of work on modeling and controlling systems using the max-plus algebra. There
are many avenues for future work, including applying this approach to large systems to test scaling
properties, studying the impact of switching probabilities on fault isolation accuracy, and comparing
our approach to state-of-the-art methods.
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