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Abstract 

Biomaterials and biomedical implants have revolutionized the way medicine is 

practiced. Technologies, such as 3D printing and electrospinning, are currently 

employed to create novel biomaterials. Most of the synthesis techniques are ad-hoc, 

time taking, and expensive. These shortcomings can be overcome greatly with the 

employment of computational techniques. In this paper we consider the problem of 

bone tissue engineering as an example and show the potentials of machine learning 

approaches in biomaterial construction, in which different models was built to predict 

the elastic modulus of the scaffold at given an arbitrary material composition. Likewise, 

the methodology was extended to cell-material interaction and prediction at an arbitrary 

process parameter. 

1 Introduction 

The advances of biomaterial discovery are changing almost every aspect of human lives, from 

drug design and thermal insulation to noise absorption and fuel cell. Several polymeric biomedical 

implants including surgical sutures, tissue substitutes (scaffolds), and drug-eluting devices have been 

currently in use to improve the quality of life for millions of people in the US and worldwide. 
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Biomaterials and their application in biomedical devices/implants have resulted in more than $300 

billion business worldwide and the field is rapidly growing. 

The major focus of tissue engineering is to create tissue substitutes to enable the repair and 

regeneration of damaged body parts. Scaffold-based tissue engineering creates three-dimensional 

porous structures to fill the tissue void, allowing cells to attach and promoting tissue ingrowth.  A 

wide range of biodegradable polymers and their scaffolds have been developed and are used clinically 

today. However, several new polymers and modifications to existing polymers, are constantly being 

developed and applied to meet ongoing and evolving challenges in biomedical applications. 

Biomaterial discovery, synthesis, and characterization to ensure biocompatibility is considered a 

grand challenge. Biomaterial processing techniques into implants and 3D scaffolds are dependent on 

the physicochemical properties of the polymer and intended end application. Scaffold fabrication 

techniques include salt-leaching, particle sintering, electrospinning, and 3D printing to name a few.   

Additionally, efforts are also made to employ micro and nanofabrication techniques to incorporate 

nanofeatures into the scaffold to positively influence cell-material interaction and tissue regeneration. 

Each varied component of the scaffold in terms of choice of polymer and fabrication methodology 

significantly influences the structure-property of the scaffold or device. Therefore, extensive 

characterization is essential to ensure functional performance. However, the current biomaterial 

discovery, synthesis, and characterization techniques are ad-hoc, time taking, and expensive. Ongoing 

efforts are looking at alternative ways to expedite biomaterial discovery by employing better 

analytical and computational techniques. 

Computational techniques with efficient machine learning-based prediction algorithms may 

accurately predict material properties and have the potential to dramatically shorten the biomaterials 

discovery process, reduce expensive and repetitive experimentation. 

This manuscript employs machine learning approaches to the bone tissue engineering scaffold to 

predict two parameters such as mechanical strength and cell attachment as examples [2]. The elastic 

modulus of the scaffold varied with varied material composition and results were generated by 

mechanical testing in controlled experiments. The model was built to predict the elastic modulus of 

the scaffold at given an arbitrary material composition. Likewise, the methodology was extended to 

cell-material interaction and prediction at an arbitrary process parameter. 

2  Materials and Methods 

2.1 Osteogenic cell survival 

Biomaterials play a crucial role in tissue engineering. For example, tissue engineering constructs 

have been developed and studied for bone tissue engineering. The success of such engineered 

constructs depend on their ability to allow homogeneous cell in growth and bone regeneration 

throughout the construct [2]. One of the challenges in ensuring homogeneity lies in the fact that cells 

tend to migrate towards areas of higher nutrient levels, resulting in significantly higher cell densities 

at the construct’s periphery compared to the interior. This will result in decreased oxygen tension and 

buildup of waste-products within the construct’s interior regions [6]. 

To overcome the above problem, the authors of [2] have developed novel oxygen tension-

controlled matrices that support more homogeneous oxygen levels throughout the constructs. These 

experimental studies resulted in the development of polylactic co-glycolic acid (PLGA) scaffolds with 

optimized pore distribution and the percent pore volumes. 

Amini, et al.’s in vitro experimental results show that their approach results in significantly 

decreased oxygen and pH gradient from the exterior of the construct to the interior [2]. The study also 

tested the ability of the constructs to support the maintenance of two clinically relevant progenitor cell 
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populations for bone tissue engineering and vascularization, namely mesenchymal stem cells (MSCs) 

and endothelial progenitor cells (EPCs). The expression of key bone and vascular markers have been 

confirmed via immunofluorescence. 

In addition to homogeneous tissue formation, the scaffolds developed for bone also need to show 

bone compatible mechanical characteristics.  Therefore, the study has identified an optimal pore size 

range that will ensure the constructs to have compressive modulus and strength in the range of human 

cancellous bone. Once developed, the scaffolds were investigated by seeding with bone and blood-

vessel forming cell populations that are clinically relevant for bone tissue engineering and 

vascularization, namely mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). 

This study was done over a period of around three years at the cost of more than $300K. In this paper 

we show that Machine Learning techniques can be employed fruitfully to speedup the discovery of 

scaffolds at a much reduced cost. 

2.2 The complexity of the problem 

In this study [2], the role of pore size and volume in improving oxygen tension and pH gradients 

was studied experimentally. The variables here are, pore size, pore volume and cell proliferation. For 

each combination of parameter values, an experiment can be performed to see how good this 

combination is. However, even a single experiment could take days to complete and can be expensive. 

The number of combinations for the parameter values could be very huge. For instance, if there are n 

parameters, and if each parameter is binary, then the total number of possible combinations is 2n. 

Even if n = 20, this number is more than a million! Various techniques are currently in use to evaluate 

scaffold architectures, including scanning electron microscopy (SEM) analysis, flow and mercury 

porosimetry, gas pycnometry and adsorption. Unfortunately, these techniques have crucial drawbacks 

such as being destructive or toxic, time consuming and not resulting in highly accurate measurements. 

For example, for every single set of values for the control variables, an experiment was conducted 

by Amini, et al. [2]. A summary of an experiment follows. 1) PLGA microspheres were prepared by 

an oil-in-water method that took several hours; 2) Scaffold porosity measurements (n=3/scaffold 

group) were carried out using cone-beam micro-focus X-ray computed tomography (CT) analysis, 

Specifically, two-dimensional density profile images were obtained at every 6 micron depth of the 

scaffold and these images were analyzed using a software; 3) Bone marrow derived mesenchymal 

stem cells (MSCs) were isolated from New Zealand White rabbits; 4) Needle-type fiber optic oxygen 

microsensors and pH microsensors were utilized to analyze oxygen levels and pH levels in the interior 

of MSC-seeded control and macro-porous scaffolds; 5) Live-dead cell viability assay was used to 

analyze cell survival in the interior of cell-seed constructs; and 6) To assess the ability of the oxygen 

tension controlled matrices to support osteogenic and vasculogenic stem cell growth, MSCs and EPCs 

were seeded on the scaffolds and cultured for 2 days in vitro. Clearly, this entire process spans several 

days and is expensive. 

2.3 Machine learning backgrounds 

In simple terms, machine learning can be defined as follows: Consider a case where we are 

interested in guessing a function f(x1,x2,...,xn) where x1,x2,...,xn are variables (i.e., parameters) that 

we can control. For instance, in the case of a degradable polymer, the variables could be the 

chemistry, hydrolytic group chemistry, monomer composition and the molecular weight. The function 

f could be a specific property of the polymer. In practice, when a materials scientist wants to 

synthesize a material with a specific desired value for f, (s)he will identify values for the control 

variables (using intuition or otherwise), fabricate a material using these values, and experimentally 

measure the property f. If the fabricated material indeed has the desired value for f, the scientist stops. 

Otherwise, (s)he will change the values of the control variables and repeat this process. Clearly, this is 
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a very time consuming and costly exercise. Machine learning can come to the rescue. A machine 

learning algorithm has to be supplied with training data in order for it to come up with a guess for f. 

Training data, typically, will be a series of examples. An example takes the form: 

(a1,a2,...,an,f(a1,a2,...,an)), where a1,a2,...,an are specific values for the control variables. 

A number of machine learning models and algorithms have been proposed in the literature. 

Examples include regression, support vector machines, random forests, neural networks, and probably 

approximately correct (PAC) learning. Deep learning refers to large neural networks (i.e., networks 

with a large number of layers). In the past decade neural networks have been extensively used in 

many domains. 

Several papers have been published that focus on applying machine learning to solve problems in 

biomedicine and biomaterials (to a small extent). For instance, Mamoshina, et al. [8] review different 

applications of deep learning in biomedicine. Applications included the identification of biomarkers 

from biological data, metagenomics classification, transcriptomics, drug discovery and repurposing, 

and multiomics. In [7], Li, et al. study the link between chemical structures of peptides and their 

corresponding hydrogel properties using ML. They have generated a structurally diverse hydrogel 

library with more than 2,000 peptides and evaluated their corresponding properties. The ML approach 

they have developed was able to link the chemical structures with their self-assembly behavior and 

hence can accelerate the design of novel peptide structures for biomedical use. 

In [3], Chen, et al. have developed a shape phenotyping framework to associate cell morphology 

with cell-material interactions. This framework is based on support vector machines (SVMs). They 

have first employed a feature selection algorithm to select the most significant combination of cell 

shape metrics before applying the SVM model. Tuning cell shape by altering the biophysical 

properties of biomaterial substrates on which cells operate is the subject of [13]. The authors train a 

machine learning model to classify cell shape phenotypes. This work has potential applications in 

fundamental mechanobiology studies and 3D bioprinting of tissue constructs. 

Accumulation of biofilms on biomaterial surfaces is a major health problem. Vyas, et al. offer an 

ML based approach for removing biofilms [14]. ML is used here to segment biofilm from scanning 

electron microscopy images. Ren, et al. focus on the problem of identifying a new system of metallic 

glasses in the Co-V-Zr ternary [12]. With the help of ML and high throughput experiments they have 

discovered three new glass-forming systems. 

2.4 Different machine learning models 

Computational techniques could indeed help to cope with the above problems. Specifically, 

machine learning can be fruitfully employed. A simple approach could be to perform experiments for 

a small set of possible combinations for the parameter values, use the resulting data to train a model, 

and then employ the model to predict the performance for any possible combination of parameter 

values. 

Gaussian process regression is a popular machine learning model which has been frequently used 

in material related machine learning tasks [5,15]. Gaussian process is a nonparametric, Bayesian-type 

of approach, mainly designed for regression. Gaussian process can work well with comparatively 

small datasets. Due to its Bayesian nature, Gaussian process can provide meaningful predictions 

together with uncertainty measurements [10]. 

Neural network models or artificial neural network models are receiving growing research and 

industrial application interests in recent decades due to their ability of estimation complex non-linear 

distributions. Neural network models are inspired by the functioning of real neural network in brain 

which processes information through layers of neurons. Each artificial neuron is combined with an 

activation function which introduces nonlinearity into the estimation [4]. 

Kernel ridge regression employs kernel trick in ridge regression, in which a linear function is 

learned by minimizing the linear least squares with l2norm regularization in a non-linear transformed 
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space induced by the kernel. The kernel trick enables the model to learn corresponding nonlinear 

relations between the attributes and the target and the least square objective makes the model fitting 

efficient. 

Support vector regression also naturally supports kernel trick to learn non-linear distributions by 

mapping inputs into high-dimensional feature space. Different from kernel ridge regression, the 

support vector regression uses epsilon-insensitive loss as the main loss function. This loss function 

enables the model to construct a hyperplane through an acceptable error margin which provides 

flexibility of defining the degree of error acceptance. 

3 Results 

We employ the four machine learning models above on bone tissue engineering [2] to show the 

potentials of machine learning approaches in biomaterial construction. Scaffolds for bone tissue 

engineering require higher mechanical strength to withstand the load and ambulatory forces.  The 

compressive modulus of the cellulose acetate (CA) scaffold was measured at varied compositions 

with cellulose acetate phthalate (CAP). Elastic modulus of the CA:CAP scaffold changed as a 

function of CA ratio.   We collect four groups of controlled experiment results based on four different 

CA proportion values. We build our model to predict the elastic modulus given an arbitrary CA 

proportion. 

As shown in Fig. 1, we employ four different machine learning models to predict elastic modulus, 

including Gaussian process regression (GPR), neural network (NN), kernel ridge regression (KRR) 

and support vector regression (SVR). For each individual machine learning model, we divide the data 

into four folds according to the four groups of experiments of distinct CA proportion values. For each 

model, we leave one fold out for testing and the rest three folds for training. 

For the Gaussian process regression model, we use default Constant Kernels. For neural network, 

we design the network with one hidden layer of size 100. The activation function for the hidden layer 

is sigmoid and the activation functions for the output layer is linear. We use Adam optimizer with 

learning rate 5e−2 and we conduct training for 1000 epochs. For kernel ridge regression, we use 

sigmoid kernel with no weight penalization. For support vector regression, we use RBF kernels with 

default regularization parameter as 1.0. We specify the epsilon-tube with no penalty as 0.2. 

Models GPR NN KRR SVR 

Mean Absolute Error 37.92 24.46 6.26 43.73 

Table 1: Elastic Modulus Prediction Accuracy Comparison 

We see that the KRR model can predict the elastic modulus with a high accuracy. The mean 

absolute error (MAE) we achieved is 6.26 and the mean percentage absolute error is 4.53%. Machine 

learning models have the potential to accelerate the discovery of ideal experimental settings and to 

speed up the whole biomaterial discovery process. 

Models GPR NN KRR SVR 

Mean Absolute Error 2.82 0.96 2.90 0.99 

Table 2: MSC Prediction Accuracy Comparison 

Besides elastic modulus, MSC is another key property in bone tissue engineering [2]. 

Concentration is an important feature that influences the MSC. We also employ the four machine 

learning models to predict the MSC with different given concentration values. Since the experiments 
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are conducted in groups with five concentration values, we train our models and evaluate their 

prediction performance with 5-fold cross validation. We show the results in Fig. 2. Among the four 

models, neural network can predict the MSC with the highest accuracy as shown in Fig. 2(b), with the 

MAE 0.96 and support vector regressor can also achieve a relatively low MAE as 0.99. It is 

meaningful to predict that MSC and concentration follow a complex non-linear relation that neural 

network and support vector regressor can nicely estimate. 

Besides the prediction accuracy comparison, we also summarize the computational cost of the 

machine learning models with respect to time usage during model training/prediction and hardware 

expense. The GPR, KRR and SVR are implemented in scikit-learn toolbox [9] and the NN model is 

implemented with Tensorflow 2.3.0 [1]. We run our experiments with Python 3.7.4 on Ubuntu 18.04 

with AMD Threadripper 2950X CPU and single NVIDIA Titan RTX with 24 GB GPU memory. 

 

 

(a) Gaussian Process Regression 

 

 

(b) Neural Network 

 

(c) Kernel Ridge Regression 
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(d) Support Vector Regression 

Figure 1: Elastic Modulus Prediction Using Different Machine Learning Models 

 

(a) Gaussian Process Regression 

 

(b) Neural Network 

 

(c) Kernel Ridge Regression 

 

(d) Support Vector Regression 

Figure 2: MSC Prediction Using Different Machine Learning Models 

 

Models GPR NN KRR SVR 

Average Training Time (ms) 1.34 2415 0.59 0.38 

Average Prediction Time (ms) 0.15 28.2 0.16 0.07 
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Table 3: Elastic Modulus Computational Efficiency Comparison 

 

 

Models GPR NN KRR SVR 

Average Training Time (ms) 1.67 2774 1.01 0.29 

Average Prediction Time (ms) 0.25 29.8 0.13 0.06 

Table 4: MSC Computational Efficiency Comparison 
 

As shown in the tables above, all of the machine learning models can learn and predict the data 

distribution very efficiently. For GPR, KRR and SVR model, the processing is in millisecond level. 

For NN model, the processing time is within several seconds. Compared with the human experiment 

time which is usually months or even years, the machine learning models are 7-9 orders more 

efficient. The computational resources such as the computer desktop are within 5K US dollars and 

highly reusable. Compared with real experiments like 300K US dollars, the machine learning based 

prediction is much more cost-effective. Moreover, the machine learning models can provide highly 

accurate predictions with arbitrary attribute values which can nicely guide the high-potential attribute 

settings for real experiments. We believe machine learning approaches can greatly improve the 

efficiency and effectiveness of real experiments and bring a more environmentally friendly bio-

material study ecosystem. 

4 Conclusions 

In this paper, we have developed machine learning algorithms to predict the elastic modulus of the 

scaffold at an orbitrary material composition. Likewise we have also predicted cell-material 

interaction and cell permeation within the scaffold at the chosen arbitrary cell culture parameters. 

These studies present the utility of this tool as an alternative to significantly reduce the cost and time 

to expedite the biomaterial and process optimization. Specifically, we have illustrated the use of ML 

in optimizing bone tissue engineering scaffold parameters. The experimental data Amini, et al. [2] 

was used to train four different ML models and predicted the performance values accurately. 

References 

1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, 
M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. 
arXiv preprint arXiv:1603.04467, 2016. 

2. A. Amini and S.Nukavarapu. Oxygen-tension controlled matrices for enhanced osteogenic cell 
survival and performance. Annals of Biomedical Engineering, 42:1261–1270, 2014. 

3. D. Chen, S. Sarkar, J. Candia, S.J. Florczyk, S. Bodhak, M.K. Driscoll, C.G. Simon Jr., J.P. 
Dunkers, and W. Losert. Machine learning based methodology to identify cell shape phenotypes 
associated with microenvironmental cues. Biomaterials, 104:104–118, 2016. 

4. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press 
Cambridge, 2016. 

5. C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, and R. Ramprasad. Polymer genome: a data-
powered polymer informatics platform for property predictions. The Journal of Physical 
Chemistry C, 122(31):17575–17585, 2018. 

ML Techniques in Structure-Property Optimization of Polymeric Scaffolds ... Wang, et al.

153



6. M.C. Lewis, B.D. Macarthur, J. Malda, G. Pettet, and C.P. Please. Heterogeneous proliferation 
within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol Bioeng., 
91(5):607–615, 2005. 

7. F. Lia, J. Hana, T. Caob, W. Lamc, B. Fand, W. Tangd, S. Chena, K.L. Fokc, and L. Lia. Design 
of self-assembly dipeptide hydrogels and machine learning via their chemical features. PNAS, 
116(23):11259– 11264, 2019. 

8. P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov. Applications of deep learning in 
biomedicine. Molecular Pharmaceutics, 13:1445–1454, 2016. 

9. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. 
Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning 
Research, 12:2825–2830, 2011. 

10. C. Rasmussen. Gaussian processes in machine learning. In Summer school on machine learning, 
pages 63–71. Springer, 2003. 

11. B.D. Ratner. Biomaterials: Been there, done that, and evolving into the future. Annual Review of 
Biomedical Engineering, pages 171–191, 2019. 

12. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. HattrickSimpers, and A. Mehta. 
Accelerated discovery of metallic glasses through iteration of machine learning and high-
throughput experiments. Science Advances, 4, 2018. 

13. F. Tourlomousis, C. Jia, T. Karydis1, A. Mershin, H. Wang, D.M. Kalyon, and R.C. Chang. 
Machine learning metrology of cell confinement in melt electrowritten threedimensional 
biomaterial substrates. Microsystems & Nanoengineering, 5(15), 2019. 

14. N. Vyas, R.L. Sammons, O. Addison, H. Dehghani, and A.D. Walmsley. A quantitative method 
to measure biofilm removal efficiency from complex biomaterial surfaces using sem and image 
analysis. Scientific Reports, 2016. 

15. Z. Wang, X. Xiao, and S. Rajasekaran. Novel and efficient randomized algorithms for feature 
selection. Big Data Mining and Analytics, 3(3):208–224, 2020. 

 

 

ML Techniques in Structure-Property Optimization of Polymeric Scaffolds ... Wang, et al.

154


