

Multi-Agent Polygon Formation via Circle

Formation

Rui Yang, Azad Azadmanesh and Hassan Farhat

University of Nebraska, Omaha, USA

ryang@unomaha.edu, azad@unomaha.edu, hfarhat@unomaha.edu

Abstract

This study considers the convex formation of polygons via a two-phase procedure.

The approach infuses features from the behavioral and virtual structure methodologies.

In the first phase, the agents form a circle. In the second phase, the agents are reconfigured

into a polygon formation. Since the reconfiguration of virtual structures are often faced

with challenges, the circle formation is adopted as the regrouping feature of agents before

reconfiguration into a different polygon formation. No distinction is made among the

agents, which simplifies formations. In addition, the agents can avoid collision during the

formation process. Simulation results show precise formation of agents into different

polygons. The results further indicate that the proposed approach has the potential to

maintain the formation whilst the formation is rotating or changes location.

1 Introduction

Networked multi-agent systems (MASs) have been used in several disciplines to address various

research problems. Some examples are cooperative control of unmanned aerial vehicles (UAVs),

autonomous underwater vehicles (AUVs), and surveillance and reconnaissance missions to accomplish

a common goal [1, 5, 11, 13]. A mainstream of research in MASs is on the structure (formation) of

agents as the result of their collective interactions with the neighbors. In other words, each agent

following a control mechanism and allowing a distributed control in which each agent communicates

with its neighbors only, which is called local interaction, the agents can position themselves to form a

particular geometric formation.

The three common approaches to formation controls are: leader-follower, behavioral, and virtual

structure. These approaches may also be combined with artificial intelligence approaches for improving

flexibility and performance. In the leader-follower approach [1, 10], some agents act as leaders and the

rest as following the leaders. The leaders’ trajectories (e.g., a formation pattern) are transformed by the

followers into coordinates under local control laws (e.g., keeping a certain distance from the leaders).

Although the salient feature of this approach is its simplicity, the leader-follower approach suffers from

having single points of failures, e.g., if a leader fails, the formation becomes difficult if there are

EPiC Series in Computing

Volume 89, 2022, Pages 81–91

Proceedings of 35th International Conference on
Computer Applications in Industry and Engineering

Y. Shi, G. Hu, K. Kambhampaty and T. Goto (eds.), CAINE 2022 (EPiC Series in Computing, vol. 89),
pp. 81–91

mailto:ryang@unomaha.edu
mailto:azad@unomaha.edu
mailto:hfarhat@unomaha.edu

substantial number of agents. In addition, there are no feedback from the followers to the leaders, e.g.,

if a follower runs into an obstacle and is not able to inform the leader (s). In the behavioral approach [6,

13], the agents follow a set of predefined control laws to control their behavior in certain conditions

such as avoiding collision, avoiding obstacles, and keeping a certain distance from the neighbors. An

advantage of this approach is its flexibility in systems with a substantial number of agents. A

disadvantage is the complexity of mathematical analysis to create control laws to guarantee precise

formation.

In the virtual structure formation [7, 13], the structure is treated as a virtual rigid structure, e.g., a

circle. The agents’ positions are determined according to reference points on the rigid structure. If the

agents can track the reference points, the formation can be kept. In addition, if the agents can follow

their own specific reference points, the precise formation of the structure can be maintained. Several

studies have focused on the same formation since it becomes difficult to reconfigure the formation into

a different virtual structure if reconfiguration is needed often.

This study borrows elements from the behavioral and virtual structures to form polygons. The

behavioral approach is utilized to formulate control laws for traveling and avoiding collisions based on

local interaction with the neighbors. The virtual structures are embedded by points that are formed into

polygons. Agents travel to the coordinates of these points. The agents determine the coordinates on the

polygons individually and in a distributed manner.

To form a polygon, a two-phase approach is employed. In the first phase, the agents are randomly

distributed in a field. Using the local control laws, the agents will then form a circle. The agents will

also have the option to uniformly distribute themselves on the circle. In the second phase, each agent

determines the coordinates of its assigned point on the polygon. An agent’s assigned point on the

polygon is the shortest trajectory from its location on the circle to the polygon. Taking advantage of

linear function properties, the intersection of the trajectory and the polygon side will determine the

coordinates of the point.

The two-phase approach is adopted to make the reconfiguration into polygons and other non-

polygons simpler. The circle formation is used since it is the pre-requisite to a number of symmetric

formations, as will be seen later in the study. Noteworthy is that if the agents are uniformly distributed

on the circle, they will also be uniformly distributed on the polygons.

This study is restricted to two-dimensional space and is the continuation of the work done in [12].

The study is mostly concerned with the second phase since the first phase has already been

accomplished in [12]. Thus, Section 2 addresses some background information about circle formation

in addition to some research works on polygon formations. Section 3, which is the focus of this study,

deals with the geometric calculations for determining various parameters and expressions needed in

forming polygons. Section 4 is about the simulation of the results in Section 3. The section provides

some formation examples along with reconfiguration of a polygon into other polygons. Section 5

concludes the study with a summary and some avenues for future studies.

2 Background

The subject of pattern formations and in general formation control has been investigated in

numerous studies. A number of these studies have been devoted to polygon formations. Among these,

[3] proposes an algorithm for a group of homogenous robots that gradually form into patterns such as

polygons and circles. Through local interactions and differentiating tasks that each robot plays, the

authors have shown that the robots can start making simple patterns such as a line that gradually turns

into more complex patterns like a circle and then into polygon patterns. Although the authors claim that

it is theoretically possible to generate more complex patterns, the approach is a time-consuming process,

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

82

e.g., allowing the robots to find each other and forming themselves into a line from randomly distributed

robots.

The focus of [8] is on pattern formation via machine learning, specifically using the Q-learning

algorithm. In this process, the agents are rewarded based on their actions. An agent is rewarded with

the highest reward once it reaches its final target, and it is penalized if it moves away from the target.

The authors use six agents to form the vertices of a hexagon. For polygons with lower sides such as a

square or a triangle, some agents are removed. So, the number of agents must represent the number of

vertex points, and not able to form polygons with the number of agents higher than the sides. The study

does not allude to any discussion on collision or obstacle avoidance.

The study in [2] proposes a distributed control strategy to form regular polygons with a specified

scale and with arbitrary number of agents. Polygon formations are achieved using local measurements.

These measurements are relative and cyclic in the sense that an agent 𝑘’s neighbors are agents 𝑘 − 1

and 𝑘 + 1. Under this sensing strategy, each agent moves toward the end point of a vector that is

perpendicular to the midpoint of the line segment that is connecting the agent with its neighbor. Like

[8], the agents forming the polygons are stationed only at the vertices of the polygons. So, if there are

𝑛 agents, the formation will be a 𝑛-sided polygon. Additionally, the agents are treated as point agents,

so collision avoidance is not considered.

In [4], a two-stage process for forming static polygons is presented. The approach is based on the

leader-follower principle. In the first stage, the leader agent provides the orientation and the distance

information for each agent with respect to itself (the leader). In the second stage, the robots are moved

in circulation motion until they are uniformly distributed. In this stage, the distance between any agent

and the leader, and the angle formed between any two neighbors with respect to the leader are updated

repeatedly until the formation stabilizes. Like the previous discussions, the agents’ final positions are

at vertices of the polygons.

Similar to the work in [2], the authors in [14] assume the sensing topology is cyclic, so that each

agent has only two neighbors. No discussion is made as to how the sensing topology is established or

can be established. In this study, some external control input is injected to specific agents (vertex agents)

in accordance with the desired formation. In their approach, since local measurements are used, the

agents only need to keep their orientations with respect to their nearest neighbors.

Contrary to these studies, this study does not assume any predefined relationship among the agents,

does not use any leader-follower strategy, does not assign any agents to the polygon corners (i.e.,

angles), and includes collision avoidance. In addition, the polygon formations are scalable as the agents

projected to any polygon side travel in parallel to the side. However, the overhead delay in the first

phase could increase as the number of agents increases since more agents translates into more collision

avoidance operations. As indicated, a two-phase process is conducted. In the first phase, the agents

form a circle[12]. In the second phase, they reconfigure themselves into a polygon. The Subsection 2.1

provides some background to form a circle based on the approach in [12].

2.1 Circle Formation

A number of studies exist for forming circles with various modeling assumptions such as global

observation versus limited observation and collision free versus collision avoidance. The approach in

[12] investigates the circle formation in a more formal fashion with realistic assumptions in mind. These

assumptions include limited visibility, fully distributed, and collision avoidance while traveling to the

final destinations. The only requirement, which is beyond the scope of this study, is to assume the agents

can compute their positions using a coordinate position system.

The multi-agent system is a dynamic network in which the changes in the topology are caused by

the mobility of the agents noted as {𝐴0, 𝐴1, … , 𝐴𝑛}, where 𝐴0 is the virtual agent representing the center

of the circle and 𝑛 is the number of real agents. Two agents 𝐴𝑖 and 𝐴𝑗 are neighbors if they are within

the sensing range of each other. The distance between the two agents is denoted as 𝐷𝑖𝑗 . Any pair of

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

83

agents needs to keep a minimum distance from each other to avoid collisions, which is called the

collision distance (𝐶𝐷).

A two-dimensional coordinate system is used, in which the location of an agent 𝑖 is (𝑥𝑎𝑖
, 𝑦𝑎𝑖

). An

agent 𝑖’s mobility is considered continuous and its coordinates at any time 𝑡 are 𝑥𝑎𝑖
(𝑡) and 𝑦𝑎𝑖

(𝑡). For

simplicity, when there is no confusion, the coordinates are often shown as 𝑥𝑖 and 𝑦𝑖 .

The location of the circle center, as (𝑥0, 𝑦0), is not fixed and is agreed upon by a consensus protocol

among agents, by repeatedly exchanging and voting on the collected estimated circle centers from their

immediate neighbors. Once decided on a circle center, no message communication to form a circle takes

place. An agent 𝐴𝑖 continuously travels toward the circle on the shortest path if it is not in the collision

path with any of its neighbors. An agent 𝑖 moves toward the circle by changing its coordinates according

to the following:

𝑥𝑎𝑖
(𝑡 + 𝑑𝑡) = 𝑥𝑎𝑖

(𝑡) + Δ(𝑟 − 𝐷𝑖0) cos 𝜙𝑖

𝑦𝑎𝑖
(𝑡 + 𝑑𝑡) = 𝑦𝑎𝑖

(𝑡) + Δ(𝑟 − 𝐷𝑖0) sin 𝜙𝑖

where 𝑑𝑡 is a small-time value, Δ is a small positive value, 𝑟 is the circle radius, and 𝜙𝑖 is the angle at

the circle center formed by the agent with respect to 0°. If an agent 𝑖 is in collision with some neighbors

𝑗 as it moves toward the circle, it repels from those agents by changing its coordinates according to the

following:

𝑥𝑎𝑖
(𝑡 + 𝑑𝑡) = 𝑥𝑎𝑖

(𝑡) − 𝑥𝑎𝑖

𝑑𝑖𝑓(𝑡)

𝑦𝑎𝑖
(𝑡 + 𝑑𝑡) = 𝑦𝑎𝑖

(𝑡) − 𝑦𝑎𝑖

𝑑𝑖𝑓
(𝑡)

where 𝑥𝑎𝑖

𝑑𝑖𝑓
 is the sum of (𝑥𝑎𝑗

− 𝑥𝑎𝑖
) /𝐷𝑖𝑗 with respect to each agent 𝑗 that is in collision course with.

The 𝑦𝑎𝑖

𝑑𝑖𝑓
is defined similarly.

Once the agents are on the circle, they move counterclockwise on the circle keeping a distance called

segment distance (𝑆𝐷) from each other. The 𝑆𝐷 is the size of the circle perimeter divided by the number

of agents. Thus, the agents will be uniformly distributed on the circle. The 𝑆𝐷 can also be manually set

if one wishes to form a larger circle. For further detail, the reader is referred to [12].

2.2 Polygon Formation

A polygon has a number of line segments that are connected to form a closed region. Polygons can

be regular or irregular. In a regular polygon, every internal angle is of the same degree and every side

is of the same length. Otherwise, the polygon is irregular. On the other hand, a polygon can be concave

or convex. A concave polygon has at least one vertex pointed inward. In other words, it has an internal

angle with a degree larger than 180°. Otherwise, the polygon is convex. Figure 1 shows an example of

a five-sided (pentagon) polygon. Figure 1a and Figure 1b are convex, whereas Figure 1c is a concave

polygon because one of its internal degrees is greater than 180°.

a) Convex regular b) Convex irregular c) Concave

Figure 1: Examples of polygon structures.

3 Regular Convex Formation

To have a firm understanding of how regular polygon formations with different number of sides can

be formed, this section starts with the polygons that have the least number of sides. These are equilateral

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

84

triangles, herein referred to as triangles for ease of reference. To generalize the approach for forming

polygons with different sides, a pentagon will then be discussed as an example. Toward the end of the

section, the discussion will turn to quadrilateral (or tetragon) polygons, which are polygons with four

sides but are irregular. Specifically, the rectangle formation as a non-regular polygon will be discussed.

This is to illustrate that the approach in this study has the potential to be applied to some non-regular

polygons as well. Additionally, it will be shown that the rectangle formation can easily be reformed into

a square, which is a special case of a rectangle formation, but it is a regular polygon.

The triangle formation lays out the groundwork for determining other regular formations. As

indicated, to form a polygon formation, it is assumed that the agents have already formed a circle. In

other words, a triangle formation is a two-step process. In the first step, the agents form a circle. The

second step is about reconfiguration in which an agent, let’s say with the coordinates (𝑥𝑎 , 𝑦𝑎), obtains

its reconfigured location (𝑥?, 𝑦?) on the shortest path to the triangle. Once (𝑥?, 𝑦?) is determined, the

agent moves to its new reconfigured location by assuming (𝑥?, 𝑦?) is the center of a circle with radius

set to 0. This allows the agent to follow the same procedure for forming a circle, discussed in [12], but

the agents end up forming a triangle without the need to perform any redistribution once they reach

their specified locations (𝑥?, 𝑦?).

In the reconfiguration step, for the sake of simplicity, it is always assumed that the polygon

formation is anchored at its lowest 𝑦 coordinate, aligned with 𝑥𝑐 coordinate value of the circle center,

when rotated at its centroid. Figure 2 displays the structure of a triangle embedded in a circle with radius

𝑟. One of the agents with the coordinates (𝑥𝑎, 𝑦𝑎) is shown on the circle. The lowest point (𝑥𝑎𝑛𝑐ℎ , 𝑦𝑎𝑛𝑐ℎ)

is the anchor point, which is at 270°. However, it will be shown shortly that the choice of the anchor

coordinates (𝑥𝑎𝑛𝑐ℎ , 𝑦𝑎𝑛𝑐ℎ) will have no bearing on the approach in acquiring (𝑥?, 𝑦?). In reality, the

choice of the anchor is application dependent.

Figure 2: Structure of triangle formation.

For an equilateral triangle, once the coordinates or the angle for one of the vertices is determined,

the coordinates for the other two vertices can be obtained. Since the angle of the anchor point is assumed

at 270° and the vertices are 360°/ 3 = 120° apart from each other,

 𝑥𝑟𝑖𝑔ℎ𝑡 = 𝑥𝑐 + 𝑟 cos(𝑥𝑎𝑛𝑐ℎ + 120°) = 𝑥𝑐 + 𝑟𝑐𝑜𝑠(30°) = 𝑥𝑐 + 0.5𝑟√3 (1)

 𝑦𝑟𝑖𝑔ℎ𝑡 = 𝑦𝑐 + 𝑟 sin(𝑦𝑎𝑛𝑐ℎ + 120°) = yc + 𝑟 sin(30°) = 𝑦𝑐 + 0.5𝑟 (2)

Similarly,

 𝑥𝑙𝑒𝑓𝑡 = 𝑥𝑐 + 𝑟 cos(𝑥𝑎𝑛𝑐ℎ + 240°) = 𝑥𝑐 + 𝑟 cos(150°) = 𝑥𝑐 − 0.5𝑟√3 (3)

 𝑦𝑙𝑒𝑓𝑡 = 𝑦𝑐 + 𝑟 sin(𝑦𝑎𝑛𝑐ℎ + 240°) = yc + 𝑟 sin(150°) = 𝑦𝑐 + 0.5𝑟 (4)

At this point, it should be clear from (1) – (4) that regardless of where the anchor point is

(𝑥𝑟𝑖𝑔ℎ𝑡 , 𝑦𝑟𝑖𝑔ℎ𝑡) and (𝑥𝑙𝑒𝑓𝑡 , 𝑦𝑙𝑒𝑓𝑡) can be determined easily.

To show the general approach in obtaining (𝑥?, 𝑦?), as shown in Figure 2, assume the agent is located

on the circle between the left and the bottom vertices and let the equation for the triangle line formed

between these two vertices be: 𝑦𝑡 = 𝑚𝑡𝑥𝑡 + 𝑏𝑡 . Similarly, let the equation for the line ℎ on which the

agent travels to reach (𝑥?, 𝑦?) be: 𝑦ℎ = 𝑚ℎ + 𝑏ℎ. The slope of 𝑦𝑡 is:

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

85

 𝑚𝑡 =
𝑦𝑙𝑒𝑓𝑡−𝑦𝑎𝑛𝑐ℎ

𝑥𝑙𝑒𝑓𝑡−𝑥𝑎𝑛𝑐ℎ
 (5)

On the other hand, the y-intercept of 𝑦𝑡 is 𝑏𝑡, which can be obtained as:

 𝑦𝑙𝑒𝑓𝑡 = 𝑚𝑡 𝑥𝑙𝑒𝑓𝑡 + 𝑏𝑡 ⇒ 𝑏𝑡 = 𝑦𝑙𝑒𝑓𝑡 −
𝑦𝑙𝑒𝑓𝑡−𝑦𝑎𝑛𝑐ℎ

𝑥𝑙𝑒𝑓𝑡−𝑥𝑎𝑛𝑐ℎ
𝑥𝑙𝑒𝑓𝑡 (6)

Since the slope of 𝑦ℎ is the negative inverse of 𝑚𝑡,

 𝑚ℎ = −𝑚𝑡
−1 = −

𝑥𝑙𝑒𝑓𝑡−𝑥𝑎𝑛𝑐ℎ

𝑦𝑙𝑒𝑓𝑡−𝑦𝑎𝑛𝑐ℎ
 (7)

Since the location of the agent is known as (𝑥𝑎 , 𝑦𝑎),

 𝑦ℎ = 𝑚ℎ𝑥ℎ + 𝑏ℎ ⇒ 𝑦𝑎 = −𝑚𝑡
−1𝑥𝑎 + 𝑏ℎ ⇒ 𝑏ℎ = 𝑦𝑎 + 𝑚𝑡

−1𝑥𝑎 (8)

Thus,

 𝑦ℎ = −𝑚𝑡
−1𝑥ℎ + (𝑦𝑎 + 𝑚𝑡

−1𝑥𝑎) (9)

Since (𝑥?, 𝑦?) is at the intersection of both lines 𝑦𝑡 and 𝑦ℎ, (𝑥?, 𝑦?) should be valid for both lines.

Thus, two equations with two unknowns are formed that can be solved to obtain (𝑥?, 𝑦?):

 𝑦𝑡 = 𝑚𝑡𝑥𝑡 + 𝑏𝑡 ⇒ 𝑦? = 𝑚𝑡𝑥? + 𝑏𝑡 (10)

 𝑦ℎ = 𝑚ℎ𝑥ℎ + 𝑏ℎ ⇒ 𝑦? = 𝑚ℎ𝑥? + 𝑏ℎ (11)

This leads to:

 𝑥? =
𝑏ℎ−𝑏𝑡

𝑚𝑡−𝑚ℎ
 (12)

 𝑦? = 𝑚𝑡
𝑏ℎ−𝑏𝑡

𝑚𝑡−𝑚ℎ
+ 𝑏𝑡 (13)

Since 𝑏𝑡, 𝑏ℎ, 𝑚𝑡, and 𝑚ℎ are all known, 𝑥? and 𝑦? can be easily calculated. However, there are two

special cases for when a line segment happens to be horizontal or vertical. The line is horizontal if

𝑦𝑙𝑒𝑓𝑡 = 𝑦𝑎𝑛𝑐ℎ . In that case, the travel path ℎ for the agent is vertical, so the 𝑥 coordinate of the agent

stays the same. Therefore,

𝑥? = 𝑥𝑎

𝑦? = 𝑦𝑙𝑒𝑓𝑡

If the line segment is vertical, i.e., 𝑥𝑙𝑒𝑓𝑡 = 𝑥𝑎𝑛𝑐ℎ , the 𝑦 coordinate does not change as the agent

travels since the travel is horizontal. Thus,

𝑥? = 𝑥𝑙𝑒𝑓𝑡

𝑦? = 𝑦𝑎

From Figure 2, depending on where (𝑥𝑎 , 𝑦𝑎) is located, three cases are differentiated. Once it is

determined on which side of the triangle the agent is located, equations (5)-(13) can be applied to obtain

the reconfiguration point (𝑥?, 𝑦?). With this discussion, the following section generalizes the approach

for any regular convex polygon.

3.1 Pentagon Formation

The process for forming a polygon is similar to what has been discussed for triangles. What follows

shows an example for 5-sided polygons called regular pentagon (herein referred to as pentagon). The

example will be used to generalize the approach to other regular, convex polygons with lower sides

(e.g., triangles) or higher sides (e.g., octagon).

Like the discussion in the triangle formation, since there are five vertices, there are five 𝑥𝑦

coordinates that need to be determined. However, depending on where an agent is located on the circle,

the agent evaluates and uses a pair of adjacent coordinates only.

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

86

Figure 3: Structure of pentagon formation.

Figure 3 captures the structure of the pentagon along with the anchor point at 270°. Given a polygon

with 𝑠 sides, the adjacent vertices are 360°/𝑠 degrees apart from each other. So, in the case of the

pentagon, the adjacent vertices are apart from each other by 72°. By considering the anchor point as

vertex 𝑣1with coordinates (𝑥1, 𝑦1) and numbering the other vertices counterclockwise, it follows that:

 𝑣1: (𝑥1, 𝑦1) = (𝑥𝑎𝑛𝑐ℎ𝑜𝑟 , 𝑦𝑎𝑛𝑐ℎ𝑜𝑟) = (𝑥𝑐 + 𝑟 cos(270°) , 𝑦𝑐 + 𝑟 sin(270°))

 𝑣2: (𝑥2, 𝑦2) = (𝑥𝑐 + 𝑟 cos(270° + 72°) , 𝑦𝑐 + 𝑟 sin(270° + 72°))

 𝑣3: (𝑥3, 𝑦3) = (𝑥𝑐 + 𝑟 cos(270° + 2 × 72°) , 𝑦𝑐 + 𝑟 sin(270° + 2 × 72°))

 𝑣4: (𝑥4, 𝑦4) = (𝑥𝑐 + 𝑟 cos(270° + 3 × 72°) , 𝑦𝑐 + 𝑟 sin(270° + 3 × 72°))

 𝑣5: (𝑥5, 𝑦5) = (𝑥𝑐 + 𝑟 cos(270° + 4 × 72°) , 𝑦𝑐 + 𝑟 sin(270° + 4 × 72°))

Consequently, the vertex 𝑣𝑖 for any polygon with 𝛼 as the degree of the anchor point has the

coordinates:
(𝑥𝑖 , 𝑦𝑖) = (𝑥𝑐 + 𝑟 cos(𝛼 + (𝑖 − 1) × 360°/s) , 𝑦𝑐 + 𝑟 sin(𝛼 + (𝑖 − 1) × 360°/s)

The coordinates can then be converted into their corresponding angle degrees using the inverse of

cosine function:

𝑑𝑒𝑔𝑎 = arccos(𝑥𝑎)

 𝑑𝑒𝑔𝑣𝑖
= arccos (𝑥𝑖)

To use (1) - (13), the agent needs to attain the coordinates of the end vertices of the polygon side

that the agent will travel to. This is done by comparing the agent’s degree against the degree of each

pair of adjacent vertices until a match is found that satisfies 𝑑𝑒𝑔𝑣𝑖
≤ 𝑑𝑒𝑔𝑎 ≤ 𝑑𝑒𝑔𝑣𝑖+1

, 𝑑𝑒𝑔𝑣𝑖
≤ 𝑑𝑒𝑔𝑎 ≥

𝑑𝑒𝑔𝑣𝑖+1
, or 𝑑𝑒𝑔𝑣𝑖

≥ 𝑑𝑒𝑔𝑎 ≤ 𝑑𝑒𝑔𝑣𝑖+1
, where 𝑖 + 1 is done in modulo 𝑠. The latter two cases might

happen because of the rotation from 360° back to 0°. Once a match is found on 𝑑𝑒𝑔𝑣𝑖
 and 𝑑𝑒𝑔𝑣𝑖+1

, the

agent will use the corresponding coordinates and apply them to (1)-(13).

3.2 Rectangle Formation

A rectangle is not a regular polygon because not all its sides are of the same length. But the

discussion of it will lead us to the procedure for forming squares. Similar to the previous discussion, it

is assumed that the reconfigured formation is anchored at its lowest point with the coordinates
(𝑥𝑎𝑐𝑛ℎ , 𝑦𝑎𝑛𝑐ℎ) when rotated at its centroid that is aligned with (𝑥𝑐 , 𝑦𝑐), as shown in Figure 4.

 a) Up-Left b) Up-Right

Figure 4: Rectangle formation cases.

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

87

There are two possibilities of rectangle formation as shown in Figure 4: Up-Left and Up-Right. In

addition to the known parameters such as (𝑥𝑎 , 𝑦𝑎), (𝑥𝑐 , 𝑦𝑐), 𝛼, and 𝑟, 𝛽 needs to be input as well,

which can vary between 0° and 90°. This degree determines how wide or how narrow the formation

will be. In the case of Up-Left, the larger 𝛽 becomes, the narrower the rectangle will be. In the case of

Up-Right, the larger 𝛽 causes the rectangle to become wider. At 𝛽 = 0° (Up-Right) or 𝛽 = 90° (Up-

Left), the rectangle becomes a vertical line passing through the circle center with its length equal to 2𝑟.

Consequently, one could argue that the rectangle formation can be used to form a straight-line formation

vertically as well. However, if 𝛽 = 0° or 𝛽 = 90°, there can be collisions on the line as the agents from

both sides of the line approach the line. Therefore, the value of 𝛽 should be such that the rectangle width

stays at a value not smaller than the collision distance (CD). Furthermore, the value of 𝛽 should never

be set at either 0° or 90°.

On the other hand, if 𝛽 = 45°, the rectangle turns into a square, which is a special case of a rectangle,

with its four corners aligned at 0°, 90°, 180°, and 270°. Thus, UpLeft = UpRight. It should be noted

that 45° ≤ 𝛽 ≤ 90° makes the formation an Up-Left formation, whereas 0° ≤ 𝛽 ≤ 45° leads to an Up-

Right formation.

Because a rectangle is a four-sided polygon, there are four vertices to consider. Unlike the regular

polygons discussed, 𝛽 needs to be incorporated into the calculation since it controls the intended shape

of the rectangle formation:

𝑣1: (𝑥𝑎𝑛𝑐ℎ𝑜𝑟 , 𝑦𝑎𝑛𝑐ℎ𝑜𝑟) = (𝑥1, 𝑦1) = (𝑥𝑐 + 𝑟 cos 𝛼 , 𝑦𝑐 + sin 𝛼)

𝑣2: (𝑥2, 𝑦2) = (𝑥𝑐 + 𝑟 cos(𝛼 + 2𝛽) , 𝑦𝑐 + sin(𝛼 + 2𝛽))

𝑣3: (𝑥3, 𝑦3) = (𝑥𝑐 + 𝑟 cos(𝛼 + 180) , 𝑦𝑐 + sin(𝛼 + 180°))

𝑣4: (𝑥4, 𝑦4) = (𝑥𝑐 + 𝑟 cos(𝛼 + 2𝛽 + 180°) , 𝑦𝑐 + sin(𝛼 + 2𝛽 + 180°))

As mentioned in Section 3.2, 𝑑𝑒𝑔𝑣𝑖
 and 𝑑𝑒𝑔𝑣𝑖+1

 control which vertices 𝑣𝑖 and 𝑣𝑖+1 to use. Once the

two vertices are obtained, the process in (1)-(13) can be followed to acquire (𝑥?, 𝑦?).

4 Simulation

Polygon and circle formation can be used in a number of applications such as unmanned aerial

vehicles (UAV) for surveillance and data collection. This section provides some simulation experiments

in Python for the two steps of circle formation followed by the reconfiguration process to achieve a

triangle formation, a rectangle, and then a polygon. Figure 5 displays four snapshots for achieving a

circle formation. Figure 5a shows the initial, random distribution of the agents. Figure 5b shows the

agents moving toward the circle while avoiding collisions. In Figure 5c, the agents have almost reached

the circle. In Figure 5d, the agents have formed the circle and repositioned themselves into a uniformly

distributed formation, while avoiding collisions.

During the entire process of formation, the agents are entirely distributed with no assistance from

any external entity. The only external input received is the number of agents and the minimum collision

distance for avoiding collision with their neighbors. The agents are optionally able to receive input as

to how large the circle formations should be. It should be mentioned that the drawing of the circle in

the figure is not necessary. It is merely drawn to assist in better observation.

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

88

a) Initial distribution b) Reaching the circle

c) Circle formation d) Uniformly distributed

Figure 5: Snapshots of circle formation: a) Initial distribution.

Figure 6 shows the snapshots of agents reconfiguring themselves into a triangle immediately

following Figure 5d circle formation. In Figure 6a, the agents have determined their reconfigured

locations (𝑥?, 𝑦?) and about to move toward those locations. In Figure 6b, triangle formation is clearly

visible. Figure 6c illustrates the complete formation of agents into a triangle. The agents on the

reconfigured formation are still uniformly distributed because they were distributed uniformly on the

circle. If they were not, then their distribution on the triangle would not be uniform either.

a) Starting to move b) Close to completion c) Triangle formed

Figure 6: Snapshots of triangle reconfiguration.

Figure 7 shows the continuation of Figure 6c, where the agents continuously reconfigure themselves

to a rectangle, to a square, and finally to an octagon.

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

89

a) Rectangle b) Square c) Octagon

Figure 7: Snapshots of changing reconfiguration.

These simulations followed the process shown in Section 3. However, the study revealed other

alternatives for obtaining (𝑥?, 𝑦?). Although the calculations are more involved, one approach that we

have developed and simulated with success is taking advantage of the triangulation process. More

specifically, once the coordinates 𝑣𝑖 and 𝑣𝑖+1 are determined, Heron’s formula [9] is applied to find the

distance ℎ (e.g., see Figure 3). The location (𝑥?, 𝑦?) is then triangulated using the three circles centered

at the agent, 𝑣𝑖 and 𝑣𝑖+1.

5 Conclusion

This study has demonstrated a simple but practical approach for accomplishing polygon formations

from randomly distributed agents in a field. The proposed methodology involves elements from the

behavioral and virtual structures principles. The formation follows a two-phase process, which has

played a fundamental role in improving performance and mitigating impractical assumptions. For

example, once the circle formation is accomplished, the chances for collisions during the

reconfiguration process to form a polygon is virtually non-existent since the agents allocated to each

segment line move in parallel to their new locations on the polygon. The approach taken is flexible

enough to form any regular convex polygon by retracting the agents from their current polygon

formation to the circle before forming a different polygon. As illustrated, the approach can also be

applied to some irregular polygons such as rectangles.

In contrast to a number of studies, the number of polygon sides does not depend on the number of

agents deployed. Furthermore, no distinction is made between agents for conducting special tasks or

allocating some agents to form the polygon vertices.

Several future studies are anticipated. These include adding more flexibility to the current work,

such as the ability to form asymmetric polygon and irregular polygons. Another avenue is to turn a

static polygon into a dynamic one by allowing each agent on a polygon to change position relative to

the movement of the polygon centroid.

References

[1] Chen X., A. Serrani, H. Ozboy, “Control of leader-follower formation of terrestrial UAVs”, IEEE

Conf. on Decision and Control, pp. 498-503, 2003.

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

90

[2] Fathian K., N.R. Gans, W. Krawcewics, D. Rachinskii, “Regular polygon formations with fixed

size and cyclic sensing constraint”, IEEE Transactions on Automatic Control, 64(12), pp. 5156-

5163, 2019

[3] Ikemoto Y. Y. Hasegawa, T. Fukuda, K. Matsuda, “Gradual spatial pattern formation of

homogenous robot group”, Information Sciences: An Int’l J., 17(14), pp. 431-445, 2005

[4] Issa B.A., A.T. Rashid, M.T. Rashid, “Leader-neighbor algorithm for polygon static formation

control”, Int’l Conf. on Electrical Communication, and Computer Eng., 2020.

[5] Kopfstedt T., M Mukai, M. Fuita, C. Ament, “Control of formations of UAVs for surveillance and

reconnaissance missions”, IFAC Proceedings Volumes, 41(2), pp. 5161-5166, 2008.

[6] Lawton J.R. Beard R.W., B. Young, “A decentralized approach to formation control maneuvers”,

IEEE Transactions on Robotics and Automation, 19(6), pp. 933-941, 2004.

[7] Low C.B., “A dynamic virtual structure formation control for fixed wing UAVs”, IEEE Int’l Conf.

on Control and automation, 2011.

[8] Prasad B.K.S., A.G. Manjunath, H. Ramasangu, “Multi-agent polygon formation using

reinforcement learning”, Int’l Conf. on Agents and Artificial Intelligence, 2017.

[9] Raifaizen C.H., “A simple proof of Heron’s formula”, Mathematics Magazine, 44(1), pp. 27-28,

1971.

[10] Ren W., “Consensus strategies for cooperative control of vehicle formation”, Control Theory and

Applications, 1(2), pp. 505-512, 2015.

[11] Tan Y.H., S. Lai, K. Wang, B.M. Chen, “Cooperative control of multiple unmanned aerial systems

for heavy duty carrying”, Annual Reviews in Control, 46, pp. 44-57, 2018.

[12] Yang R., A. Azadmanesh, H. Farhat, “A new approach to circle formation in multi-agent systems”,

Int'l Conference on Wireless Networks, 2019.

[13] Yu Ziquan, Y. Zhang, B. Jiang, J. Fu, Y. Jin, “A review on fault-tolerant cooperative control of

multiple unmanned aerial vehicles”, Chinese J. of Aeronautics, 35(1) pp. 1-18, 2022.

[14] Zhou B., Q. Yang, L. Dou, H. Fang, J. Chen, “An attempt to self-organized polygon formation

control of swarm robots under cyclic topologies”, IFAC-PapersOnLine, 53(2), pp. 11000-11005,

2020.

Multi-Agent Polygon Formation via Circle Formation R. Yang et al.

91

