
EPiC Series in Computing

Volume 55, 2018, Pages 41–53

GCAI-2018. 4th Global Conference on Artificial Intelligence

Computing Minimal Subsumption Modules of Ontologies

Jieying Chen1, Michel Ludwig2, and Dirk Walther3

1 Laboratoire de Recherche en Informatique, Université Paris-Sud, France
jieying.chen@lri.fr

2 Luxembourg, michel.ludwig@gmail.com
3 Fraunhofer IVI, Dresden, Germany
dirk.walther@ivi.fraunhofer.de

Abstract

In the paper we study algorithms for computing modules that are minimal w.r.t. set inclusion and
that preserve the entailment of all subsumptions over a signature of interest. We follow the black-box
approach for finding one or all justifications by replacing the entailment tests with logical difference
checks, obtaining modules that preserve not only a given consequence but all entailments over a
signature. Such minimal modules can serve to improve our understanding of the internal structure of
large and complex ontologies. Additionally, several optimisations for speeding up the computation
of minimal modules are investigated. We present an experimental evaluation of an implementation
of our algorithms for ELH r-terminologies by applying them on the prominent medical ontologies
Snomed CT and NCI Thesaurus.

1 Introduction
Module extraction from ontologies has been investigated for over 10 years. This area has received
considerable attention resulting in a formidable literature. A challenge that remains to date is the devel-
opment of practical algorithms for computing minimal modules. The difficulty is due to the inherently
high computational complexity of this task. Depending on the underlying module notion, there may be
exponentially many modules that are minimal.

A module is a subset of an ontology that can act as a substitute for the ontology in certain contexts.
A basic requirement on modules is to be indistinguishable from the original ontology w.r.t. an insepa-
rability relation. Such basic modules are also called ‘plain’ modules. Further module properties such
as self-containment and depletion have been proposed in the literature [10, 13] (also called weak and
strong in [9]) that place additional conditions on modules (regarding the knowledge that is contained in
the module and that is left in the ontology without the module). These properties together with a range
of different inseparability relations give rise to a family of module notions. Several inseparability no-
tions have been considered, e.g., model-theoretic inseparability w.r.t. a signature [10], or inseparability
w.r.t. answers to queries [15]. Popular query types are subsumption, instance and conjunctive queries.
We call modules based on model-theoretic inseparability semantic modules. This is a strong insepara-
bility notion as for ELH r-TBoxes model-theoretic inseparability w.r.t. a signature Σ coincides with
entailment of second-order logic sentences over Σ (cf. Theorem 4 in [10]). In this paper, however, we

D. Lee, A. Steen and T. Walsh (eds.), GCAI-2018 (EPiC Series in Computing, vol. 55), pp. 41–53



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

consider a weaker inseparability relation that is based on subsumption queries between EL -concepts
over a given signature for an ELH r terminology. We call the resulting modules ELH r-subsumption
modules.

An important requirement on modules is that they should be as small as possible, which is useful
not only in the ontology re-use scenario [5] but also for other tasks including ontology classification, de-
bugging, decomposition, matching and summarisation. As smallest modules are not necessarily unique,
we are interested in computing all basic ELH r-subsumption modules that are minimal w.r.t. set inclu-
sion. Computing minimal basic semantic modules of ELH r-terminologies that are additionally self-
contained and depleting has been investigated in [9,10]. Algorithms for computing minimal modules of
DL-Lite ontologies have been studied in [13]. However, to the best of our knowledge, no practical ap-
proach for computing one or all basic ELH r-subsumption modules of ELH r-terminologies has been
developed so far.

Minimal modules can serve as explanations of the entire set of entailments over a signature, similar
to the justifications for one consequence (i.e., minimal sets of axioms sufficient to entail the conse-
quence) [6]. In this sense, minimal modules can improve our understanding of the internal structure of
large and complex ontologies. Moreover, being able to compute all minimal modules allows us to select
the smallest minimal module.

In general, extracting minimal modules is intractable, which is the reason why efficiently extractable
approximations of the (union of all) minimal modules have been introduced. Among such approxima-
tions are the family of syntactic locality-based modules [5]. Such modules may contain more axioms
than necessary to ensure the preservation of entailments over a signature. For instance, the size of the
syntactic ⊥>∗-locality modules [18] of Snomed CT,1 the Systematized Nomenclature of Medicine –
Clinical Terms, (Version Jan 2016) for 100 signatures consisting of 50 concept names selected at ran-
dom together with all roles names ranges from 1 075 to 2 456 axioms. This is in contrast to the size
of the minimal basic subsumption modules for these signatures that range from around 50 to 118 ax-
ioms. Hence, such minimal modules of Snomed CT may be more than 20 times smaller than the cor-
responding syntactic ⊥>∗-locality modules. Implementations for extracting locality-based modules are
incorporated in the OWLAPI.2

The system MEX3 has been introduced to compute minimal depleting semantic modules (which
are unique for a given signature) from acyclic EL -terminologies (possibly extended with inverse roles)
such as Snomed CT [9]. The MEX-modules contain all minimal basic subsumption modules, which are
generally smaller. The size of the MEX-modules of Snomed CT for the same signatures as above ranges
from 401 to 720 axioms. However, the corresponding minimal basic subsumption modules are still at
least 6 times smaller. Moreover, MEX cannot handle cyclic EL -terminologies such as some recent
versions of the National Cancer Institute’s Thesaurus (NCIt).4 For instance, the size of the syntactic
⊥>∗-locality module of NCIt (Version 14.01d) for 100 random signatures selected from NCIt (as before
for Snomed CT just with 100 concept names) ranges from 679 to 3 895 axioms, whereas the size of the
corresponding minimal basic EL -subsumption modules ranges from around 0 to 64 axioms. Clearly,
the ratio of the size of the syntactic ⊥>∗-locality based modules compared to the size of the minimal
basic subsumption modules is even larger than 20 in this case. Another approach for extracting minimal
depleting modules from DL-Lite ontologies is based on using QBF-solvers [13].

In this paper, in order to compute minimal basic ELH r-subsumption modules, we extend the black-
box approach for finding one or all justifications in [6], which is based on Reiter’s hitting set algo-
rithm [17]. Instead of ensuring that a given entailment is preserved, we introduce an oracle to determine

1https://www.snomed.org
2https://github.com/owlcs/owlapi
3https://cgi.csc.liv.ac.uk/~konev/software/
4https://ncit.nci.nih.gov/

42

https://www.snomed.org
https://github.com/owlcs/owlapi
https://cgi.csc.liv.ac.uk/~konev/software/
https://ncit.nci.nih.gov/


Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

the inseparability between the original ontology and the resulting module. As an oracle we use a variant
of the system CEX, which is a tool for deciding whether two ELH r-terminologies are logically dif-
ferent w.r.t. a signature [8, 11, 14]. Additionally, several optimisations to speed up the computation of
minimal modules are investigated. We present an experimental evaluation of our algorithms by applying
them on the prominent and large medical ontologies Snomed CT and NCIt. We note that our algorithms
are applicable to ontologies formulated in any ontology language provided that a tool is available that
can effectively decide the inseparability relation. As CEX works with variants of ELH r-terminologies,
we restrict the presentation of our algorithms to ELH r-terminologies.

An alternative to the black-box approach for computing minimal modules is to directly select the
relevant axioms from an ontology that preserve the desired entailments. Such a glass-box approach has
been investigated for acyclic ELH -terminologies (i.e. without domain and range restrictions of roles)
in [2]. Moreover, [2] introduces a technique for computing even smaller (but possibly incomplete)
modules called ontology excerpts.

We proceed as follows. We start by reviewing ELH r-terminologies together with the notion of
logical difference. In Section 3 we define the notion of basic EL -subsumption module and we introduce
algorithms for extracting one or all minimal such modules. In Section 4 we present the results of an
evaluation of our algorithms using Snomed CT and NCIt. We close the paper with a conclusion.

2 Preliminaries
Let NC and NR be mutually disjoint (countably infinite) sets of concept names and role names. In the
following we use upper-case letters A, B, X , Y , Z to denote concept names, and lower case letters r, s
stand for role names. The set of EL -concepts C and the set of ELH r-inclusions α are built according
to the following grammar rules: C ::= > | A | CuC | ∃r.C | dom(r) and α ::= C v C | ran(r) v C |
ran(r)uCvC |C≡C | rv s, where A∈NC and r,s∈NR. An ELH r-TBox T is a finite set of ELH r-
inclusions. We also refer to ELH r-inclusions as axioms when they are contained in an ELH r-TBox.

The semantics is defined using interpretations I = (∆I , ·I ), where the domain ∆I is a non-empty
set, and ·I is a function mapping each concept name A to a subset AI of ∆I and every role name
r to a binary relation rI over ∆I . The extension CI of a possibly complex concept C is defined
inductively as: (>)I := ∆I , (CuD)I := CI ∩DI , (∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x,y) ∈ rI },
(dom(r))I := {x ∈ ∆I | ∃y : (x,y) ∈ rI } and (ran(r))I := {y ∈ ∆I | ∃x : (x,y) ∈ rI }.

An interpretation I satisfies an EL -concept C, an EL -inclusion C v D, or C ≡ D if CI 6= /0,
CI ⊆ DI , or CI = DI , respectively. We write I |= α if I satisfies the axiom α . Note that every
EL -concept and ELH r-inclusion is satisfiable, but a particular interpretation does not necessarily
satisfy a concept or inclusion. An interpretation I is a model of T if I satisfies all axioms in T . An
ELH r-inclusion α follows from an ELH r-TBox T , written T |= α , if for all models I of T , we
have that I |= α .

A signature Σ is a finite set of symbols from NC and NR. The signature sig(ϕ) is the set of concept
and role names occurring in ϕ , where ϕ ranges over any syntactic object. We set sigNC(ϕ) := sig(ϕ)∩
NC. The symbol Σ is used as a subscript to a set of concepts or axioms to denote that the elements only
use symbols from Σ, e.g., EL Σ, etc.

An ELH r-terminology T is an ELH r-TBox consisting of axioms of the forms X vC or X ≡C,
where X is a concept name in NC and C is an EL -concept, and no concept name X occurs more than
once on the left-hand side of an axiom. A terminology is said to be acyclic if it can be unfolded (i.e.,
the process of substituting concept names by the right-hand sides of their defining axioms terminates).
Formally, we define the relation ≺T : sigNC(T )× sigNC(T ) by setting (X ,Y ) ∈ ≺T iff there exists an
axiom of the form X ≡ C or X v C in T such that Y ∈ sig(C). Then, a terminology T is acyclic
iff the transitive closure (≺T )+ of ≺T is irreflexive. For instance, the prominent medical ontology

43



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

Snomed CT (version Jan 2016) is an acyclic ELH r-terminology, whereas the ontology NCI (version
14.01d) is a cyclic ELH r-terminology.

We now recall basic notions related to the logical difference between two ELH r-terminologies for
ELH r-inclusions over a given signature as query language [7, 11].

Definition 1 (Logical Difference). Let T1 and T2 be two ELH r-terminologies, and let Σ be a sig-
nature. The ELH r-inclusion difference between T1 and T2 w.r.t. Σ is the set lDiffΣ(T1,T2) of all
ELH r-inclusions α of the form C v D for EL -concepts C and D such that sig(α) ⊆ Σ, T1 |= α , and
T2 6|= α .

Two ELH r-terminologies T1 and T2 are also called inseparable w.r.t. ELH r-inclusions over Σ

iff lDiffΣ(T1,T2) = /0 and lDiffΣ(T2,T1) = /0 [15]. If there exists an ELH r-inclusion α such that
sig(α) ⊆ Σ, T1 |= α , and T2 6|= α , then the set lDiffΣ(T1,T2) is non-empty and it contains α; in fact,
in this case lDiffΣ(T1,T2) consists of infinitely many concept inclusions.

For acyclic ELH r-terminologies T1 and T2, the Version 2.5 of the system CEX [8, 11] can decide
whether the set lDiffΣ(T1,T2) is empty. In this paper, however, we use Version 3 of CEX5 that works
with cyclic ELH r-terminologies, implementing a proof-theoretic approach to the logical difference
problem. Here CEX determines the absence of a logical difference by checking for the existence of cer-
tain simulations between hypergraph representations of ontologies. This technique was introduced for
EL -terminologies in [3], and further extended to ELH r-terminologies with additional role inclusions,
and domain and range restrictions of roles in [14]. Another extension of the hypergraph-based approach
to general EL -TBoxes was introduced in [4].

3 Minimal Modules
We now give a formal definition of the module notion that we consider in this paper.

Definition 2 (Basic ELH r-Subsumption Module). Let T be an ELH r-terminology, and let Σ be a
signature. A subset M ⊆ T is called a basic ELH r-subsumption module of T w.r.t. Σ iff for all
ELH r-inclusions α with sig(α)⊆ Σ it holds that T |= α iff M |= α .

Every subset M of a terminology T that preserves the entailment of all ELH r-subsumptions over
a given signature Σ is a basic ELH r-subsumption module of T w.r.t. Σ. In particular, T itself is a
basic ELH r-subsumption module of T w.r.t. any signature. It can readily be seen that M is a basic
ELH r-subsumption module of T w.r.t. Σ iff lDiffΣ(T ,M ) = /0 (cf. Definition 1). We have that M
and T are inseparable w.r.t. ELH r-inclusions over Σ. More precisely, as M ⊆ T , it holds that T is
a conservative extension of M w.r.t. ELH r-inclusions over Σ [15]. There may be exponentially many
(in the size of T ) subsets of T that satisfy that criterion (see Example 6). For the use-case of ontology
re-use, however, we are most interested in modules that are as small as possible [5]. Note that smallest
modules (regarding the number of axioms) are also minimal w.r.t.⊆, whereas the converse does not hold
in general, i.e., there may be minimal modules w.r.t. ⊆ that contain more axioms than other minimal
modules w.r.t. ⊆.

Example 3. Let T = {Av X uY, X v B, Y v Z, Z v B} be an ELH r-terminology, and Σ = {A,B} be
a signature. It holds that both sets, M1 = {AvXuY, X vB} and M2 = {AvXuY, Y v Z, ZvB}, are
minimal basic ELH r-subsumption modules of T w.r.t. Σ, whereas M1 is the smallest minimal basic
ELH r-subsumption module of T w.r.t. Σ as |M1|< |M2|.

5https://github.com/michel-ludwig/cex3

44

https://github.com/michel-ludwig/cex3


Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

The notion of a justification for a concept inclusion α has been introduced as a minimal subset of a
TBox that entails a given concept inclusion [1]. We can understand a minimal module as a more general
notion of justification: a minimal basic ELH r-subsumption module of T w.r.t. Σ is a justification for
all the concept inclusions over Σ entailed by T .

Semantic modules of ELH r-terminologies that are self-contained or depleting (in fact, such mod-
ules have both properties [10]) can be larger than basic ELH r-subsumption modules as introduced in
Definition 2.

Example 4. Let T = {Av ∃r.B} be an ELH r-terminology, and Σ = {A,B} be a signature. It is easy
to verify that T itself is a basic, self-contained, and depleting semantic module of T w.r.t. Σ [9, 10],
whereas the empty set is the minimal basic ELH r-subsumption module of T w.r.t. Σ.

The following example extends Example 3 to show that the modules computed by the system
MEX [9] as well as the modules based on syntactic locality can be larger than minimal basic ELH r-
subsumption modules as introduced in Definition 2. Note that MEX-modules are semantic modules that
are self-contained as well as depleting [10] (equivalently, weak and strong [9]).

Example 5. Let T = {A v X uY uU, X v B, Y v Z, Z v B,U ≡ V uW} be an ELH r-terminology,
and Σ = {A,B} be a signature. It holds that both sets, M1 = {A v X uY, X v B} and M2 = {A v
X uY, Y v Z, Z v B}, are minimal basic ELH r-subsumption modules of T w.r.t. Σ. Moreover, MEX
outputs M3 = M1∪M2 = {Av X uY uU, X v B, Y v Z, Z v B} as module of T w.r.t. Σ. Finally, T
itself is the ⊥>∗-local module of T w.r.t. Σ.

In general, there can be several minimal basic ELH r-subsumption modules of an acyclic ELH r-
terminology for a signature, and even the smallest of such modules are not necessarily unique. The next
example shows a sequence of acyclic ELH r-terminologies whose number of minimal basic ELH r-
subsumption modules for a given signature is exponentially increasing.

Example 6. Let Tn = {AvX0}∪{Xi−1vYiuZi | 1≤ i≤ n}∪{YivXi, ZivXi | 1≤ i≤ n}∪{Xn vB}
with n≥ 0 be ELH r-terminologies, and let Σ = {A,B} be a signature.

It holds that the set {A v X0, X0 v B} is the minimal basic ELH r-subsumption module of T0
w.r.t. Σ. The sets {Av X0, X0 vY1uZ1, Y1 v X1, X1 v B} and {Av X0, X0 vY1uZ1, Z1 v X1, X1 v B}
are the two minimal basic ELH r-subsumption modules of T1. Moreover, the four sets {A v X0, X0 v
Y1uZ1, Y1 v X1, X1 vY2uZ2, Y2 v X2, X2 v B} and {Av X0, X0 vY1uZ1, Y1 v X1, X1 vY2uZ2, Z2 v
X2, X2 v B} as well as {A v X0, X0 v Y1 u Z1, Z1 v X1, X1 v Y2 u Z2, Y2 v X2, X2 v B} and {A v
X0, X0 v Y1 uZ1, Z1 v X1, X1 v Y2 uZ2, Z2 v X2, X2 v B} are the minimal basic ELH r-subsumption
modules of T2, etc. In general, it can readily be verified that Tn has 2n many distinct minimal basic
ELH r-subsumption modules w.r.t. Σ.

In the remainder of this section, we present algorithms for computing minimal basic ELH r-sub-
sumption modules. In Section 4 we analyse the number of minimal basic ELH r-subsumption modules
in large medical ontologies for certain signatures. We will simply write module instead of ‘basic ELH r-
subsumption module’.

3.1 Computing a Single Minimal Module
A first straightforward procedure SINGLE-MINIMAL-MODULE for computing a minimal module of
an ELH r-terminology T w.r.t. a signature Σ is given in Algorithm 1.6 The procedure operates as
follows. First, the variable M is initialised with T . Subsequently, the procedure iterates over every

6The algorithm has already been described in Theorem 67 of [13].

45



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

axiom α ∈ T and checks whether lDiffΣ(T ,M \ {α}) = /0, in which case the axiom α is removed
from M . During the execution of the for-loop the set M is hence shrunk by removing axioms that do
not lead to a logical difference until a minimal module of T for Σ remains.

Algorithm 1 Computing a Single Minimal Module w.r.t. a Signature
INPUT: ELH r-terminology T , signature Σ

1: function SINGLE-MINIMAL-MODULE(T ,Σ)
2: M := T

3: for every axiom α ∈T do
4: if lDiffΣ(T ,M \{α}) = /0 then
5: M := M \{α}
6: end if
7: end for
8: return M

9: end function

Note that the minimal module that is extracted by Algorithm 1 depends on the order in which axioms
were chosen during the iteration (Line 3), i.e. by iterating over the axioms in a different order one can
potentially obtain a different minimal module. Moreover, one can show that all minimal modules can
be computed by using all possible orderings on the axioms α ∈T in the for-loop in Line 3.

It is easy to see that Algorithm 1 always terminates and that it runs in polynomial time in the size
of T and Σ since deciding the existence of a logical difference between ELH r-terminologies can be
performed in polynomial time in the size of T and Σ.

Regarding correctness, consider the following simple proof by contradiction. If we assume that a
set Mmin ⊆ T computed by Algorithm 1 applied on T and Σ is not a minimal module of T w.r.t. Σ,
then there would exist an axiom α ∈M such that lDiffΣ(T ,Mmin \{α}) = /0. However, when α was
analysed in the for-loop in Line 3, lDiffΣ(T ,M ′ \{α}) must have been empty as well by monotonicity
of |=, where M ′ with Mmin ⊆M ′ represents the value of the variable M in Algorithm 1 at the time α

was inspected. Consequently, it would hold that α 6∈Mmin and we have derived a contradiction. We
hence obtain the following property.

Theorem 7. Let T be an ELH r-terminology and let Σ be a signature. Then Algorithm 1 applied on T
and Σ computes a minimal module of T for Σ.

As checking the existence of a logical difference can be costly in practice, we now introduce a
refinement of the previous algorithm that potentially allows it to reduce the number of logical difference
checks that are required for computing a minimal module. The refined procedure SINGLE-MINIMAL-
MODULE-BUBBLE is shown in Algorithm 2.7

Intuitively, instead of checking whether the removal of a single axiom leads to a logical difference,
the refined procedure removes a set B of axioms from T at once. Such a set B is also called a
bubble. As an additional optimisation we introduce the notion of logical difference core, which will
become relevant in the context of computing all minimal modules when the algorithm for computing
one minimal module has to be executed frequently.

Definition 8 (Logical Difference Core). Let T be an ELH r-terminology and let Σ be a signature. A
subset C ⊆ T is said to be a logical difference core of T w.r.t. Σ iff for every α ∈ C it holds that
lDiffΣ(T ,T \{α}) 6= /0.

7A similar idea for a refined procedure is mentioned in Section 4 of [12] in the context of DL-Lite.

46



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

Algorithm 2 Computing a Single Minimal Module w.r.t. a Signature using Axiom Bubbles
INPUT: ELH r-terminology T , signature Σ, n≥ 1, logical difference core C ⊆T w.r.t. Σ

1: function SINGLE-MINIMAL-MODULE-BUBBLE(T ,Σ,n,C )
2: M := T

3: Q := SPLIT(T \C ,n)
4: while Q 6= [] do
5: B := HEAD(Q)

6: Q := TAIL(Q)

7: if lDiffΣ(T ,M \B) = /0 then
8: M := M \B
9: else

10: if |B|> 1 then
11: (Bl ,Br) := SPLITHALF(B)

12: Q := Bl :: Br :: Q
13: end if
14: end if
15: end while
16: return M

17: end function

Given a logical difference core C of T w.r.t. Σ and a minimal module M of T w.r.t. Σ, it is easy to
see that C ⊆M must hold. The maximal logical difference core can be computed by collecting all the
axioms α ∈T for which lDiffΣ(T ,T \{α}) 6= /0.

Now, the procedure SINGLE-MINIMAL-MODULE-BUBBLE applied on a terminology T , a signa-
ture Σ, an initial size parameter n for the bubbles, and a logical difference core C of T w.r.t. Σ operates
as follows. First, the variable M is set to contain all the axioms of T and the bubble queue Q is ini-
tialised by partitioning the axioms contained in T \C into bubbles of size n. Note that the size of one
bubble may be different from n if n is not a divisor of |T |, or if n > |T |. The resulting bubbles are
then stored in the queue Q. As long as Q is not empty, the first bubble B is extracted from the queue
(lines 5 and 6). Note that the empty queue is denoted with [ ]. Subsequently, it is verified in Line 7
whether the removal of the axioms in B from the minimal module candidate M leads to a logical dif-
ference. If not, all the axioms in B can safely be removed from M in Line 8. Otherwise, if the bubble
contained more than one axiom (Line 10), we have to identify the subsets of B whose removal does
not yield a logical difference. To that end, B is split into two bubbles Bl and Br (Line 11) such that
Bl ,Br ⊆B, |Bl |=

⌈ 1
2 · |B|

⌉
, and |Br|=

⌊ 1
2 · |B|

⌋
. The bubbles Bl and Br are then prepended to the

queue (Line 12), and the algorithm continues with the next iteration.
The correctness of Algorithm 2 can be shown as before with Algorithm 1. Termination on any input

follows from the fact that every axiom in T appears in at most one bubble in Q and that in each iteration
either the overall number of bubbles is reduced, or one bubble that contains more than one axiom is split
into two smaller bubbles. Note that once a bubble B of size 1 has been selected in Line 5, it will not be
contained in Q in subsequent iterations. We obtain the following result.

Theorem 9. Let T be an ELH r-terminology and let Σ be a signature. Additionally, let C ⊆ T be a
logical difference core of T w.r.t. Σ.

Then Algorithm 2 applied on T , Σ, and C computes a minimal module of T for Σ.

Regarding computational complexity, we observe that the decomposition of every bubble B induces

47



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

a binary tree in which the nodes are labelled with the bubbles resulting from splitting the parent bubble.
In our algorithm, given a bubble B, such a decomposition tree has a depth of at most blog2 |B|c and
the number of nodes in a decomposition tree corresponds to the number of logical difference checks.
As the number of nodes in a binary tree of depth h is bounded by 2h+1−1, we hence obtain that every
initial bubble B results in at most 2 · |B|− 1 logical difference checks. Overall, we can infer that the
procedure SINGLE-MINIMAL-MODULE-BUBBLE runs in polynomial time in the size of T , Σ, and n.

3.2 Computing All Minimal Modules
A naı̈ve way to compute all minimal modules is to enumerate all subsets of the input TBox T and
to check their logical difference w.r.t. T and a given signature. For ELH r-terminologies the logical
difference problem can be decided in polynomial time [7]. Example 6 shows that there are ELH r-
terminologies with exponentially many minimal modules. Consequently, computing all minimal mod-
ules of an ELH r-terminology can only be achieved in time exponential in the size of the terminology
in the worst case.

For that reason, upper approximations of (the union of) all minimal modules such as the syntactic
locality-based module notions that can be extracted more efficiently have been introduced [5]. In our
algorithm for computing all minimal modules (and in our experiments for extracting one minimal mod-
ule) we will make use of syntactic ⊥>∗-locality modules to speed up computations. These modules are
among the smallest modules based on syntactic locality notions [18]. They can be obtained by iterating
the process of extracting a syntactic ⊥-local module followed by extracting a syntactic >-local module
until a fixpoint is reached. We will extract syntactic ⊥>∗-locality modules using the OWLAPI. Note
that any syntactic ⊥>∗-locality module Ms of an ELH r-terminology T w.r.t. a signature Σ contains
all the minimal modules of T w.r.t. Σ.

In our algorithm for computing all minimal modules, we make use of a technique developed for
computing all minimal hitting sets [17]. Our algorithm is based on the following observation: given a
minimal module M of T w.r.t. a signature Σ, then for any other minimal module M ′ of T w.r.t. Σ

there must exist α ∈M ′ such that α 6∈M , i.e. M must be contained in T \{α} for some α ∈M ′.
Similarly to [17], our algorithm organises the search space using a labelled, directed tree τ , called

module search tree for T , that is extended during the run of the algorithm. Formally, τ is a tuple
(V ,E ,L ,ρ), where V is a non-empty, finite set of nodes, E ⊆ V ×V is a set of edges, L is an edge
labelling function, mapping every edge e ∈ E to an axiom α ∈T , and ρ ∈ V is the root node of τ . The
procedure ALL-MINIMAL-MODULES shown in Algorithm 38 operates on a queue Q that contains the
nodes of τ that still have to be expanded. Intuitively, the labels of the edges on the unique path from the
root node to a node v ∈ V are the axioms that should be excluded from the search for minimal modules.
In each iteration a node v is extracted from Q and the set Tex ⊆ T of exclusion axioms is computed
by analysing the path from the root node to v. The procedure SINGLE-MINIMAL-MODULE-BUBBLE
is then used to find a minimal module M of T \Tex w.r.t. Σ. Subsequently, the tree τ is extended by
adding a child vα of v for every α ∈M and the search for all minimal modules continues in the next
iteration on the newly added nodes vα .

We now describe the ALL-MINIMAL-MODULES procedure in detail, together with the optimisations
that we implemented. Some of the improvements to prune the search space were already proposed
in [17].

Given an ELH r-terminology T , a signature Σ, a bubble size n ≥ 1, and a logical difference core
C ⊆ T of T w.r.t. Σ as input, in the lines 2 and 3 a syntactic ⊥>∗-locality module TΣ of T w.r.t. Σ is
extracted from T , the variable τ is initialised to represent a module search tree for T having only one
node ρ . Moreover, the variables M⊆ 2TΣ , containing the minimal modules that have been computed so

8The command ‘continue’ causes a re-execution of the innermost enclosing while-loop.

48



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

Algorithm 3 Computing All Minimal Modules w.r.t. a Signature
INPUT: ELH r-terminology T , signature Σ, n≥ 1, logical difference core C ⊆T w.r.t. Σ

1: function ALL-MINIMAL-MODULES(T ,Σ,n,C )
2: TΣ := SYNTACTICLOCALITYMODULE(T ,Σ)
3: M := /0; τ := ({ρ}, /0, /0,ρ); Q := [ρ]; W := /0
4: while Q 6= [] do
5: v := HEAD(Q)

6: Q := TAIL(Q)

7: W :=W∪{v}
8: Tex := LABELS(PATH(τ,ρ,v))
9: if IS-PATH-REDUNDANT(τ,ρ,Tex,W) then

10: continue
11: end if
12: if lDiffΣ(TΣ,TΣ \Tex) 6= /0 then
13: continue
14: end if
15: M := /0
16: if there exists M ′ ∈M such that Tex∩M ′ = /0 then
17: M := M ′

18: else
19: M := SINGLE-MINIMAL-MODULE-BUBBLE(TΣ \Tex,Σ,n,C )

20: if M = C then
21: return {C }
22: end if
23: M :=M∪{M }
24: end if
25: for every α ∈M \C do
26: vα := ADDCHILD(τ,v,α)

27: Q := vα :: Q
28: end for
29: end while
30: return M
31: end function

far, and W⊆ V , containing the already explored nodes of τ , are both initialised with the empty set. The
queue Q of nodes in τ that still have to be explored is also set to contain the node ρ as its only element.

The algorithm then enters a while-loop in the lines 4 to 29 in which it remains as long as Q is not
empty. In each iteration the first element v is extracted from Q and v is added to W (lines 5 to 7).
Subsequently, the axioms labelling the edges of the path πv from ρ to v in τ are collected in the set Tex
(Line 8). The algorithm then checks whether πv is redundant, in which case the next iteration of the
while-loop starts.

The path πv is redundant iff there exists an already explored node w ∈W such that (a) the axioms in
Tex are exactly the axioms labelling the edges of the path πw from ρ to w in τ , or (b) w is a leaf node of τ

and the edges of πw are only labelled with axioms from Tex. Condition (a) corresponds to early path

49



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

termination in [6, 17]: the existence of πw implies that all possible extensions of πv have already been
considered. Condition (b) implies that the axioms labelling the edges of πw lead to a logical difference
when removed from TΣ. Consequently, removing Tex from TΣ also induces a logical difference by
monotonicity of |=, implying that πv and all its extensions do not have to be explored. Moreover, the
current iteration can also be terminated immediately if lDiffΣ(TΣ,TΣ \Tex) 6= /0 (lines 12 to 14) as no
subset of TΣ \Tex can be a module of TΣ (and therefore of T ) w.r.t. Σ.

Subsequently, in Line 15 the variable M that will hold a minimal module of TΣ \Tex is initialised
with /0. At this point we can check if a minimal module M ′ ∈M has already been computed for which
Tex∩M ′ = /0 (lines 16 and 17) holds, in which case we set M to M ′. This optimisation step can also
be found in [6, 17] and it allows us to avoid a costly call to the SINGLE-MINIMAL-MODULE-BUBBLE
procedure. Otherwise, in the lines 18 to 24 we have to apply SINGLE-MINIMAL-MODULE-BUBBLE
on TΣ \Tex to obtain a minimal module of TΣ \Tex w.r.t. Σ. The algorithm then checks whether M is
equal to C (lines 20 to 22), in which case the search for additional modules can be aborted. If the logical
difference core C is a minimal module itself, we can infer that no other minimal module exists since C
is a subset of all the minimal modules. Otherwise, the module M is added to M in Line 23. Finally, in
the lines 25 to 28 the tree τ is extended by adding a child vα to v for every α ∈M \C , connected by
an edge labelled with α . Note that it is sufficient to take α 6∈ C as a set M with C 6⊆M cannot be a
minimal module of T w.r.t. Σ. The procedure finishes by returning the set M in Line 30.

Regarding correctness of Algorithm 3, we note that only minimal modules are added to M. For
completeness, one can show that the locality-based module TΣ of T w.r.t. Σ contains all the minimal
modules of T w.r.t. Σ. Moreover, it is easy to see that the proposed optimisations do not lead to a
minimal module not being computed. Overall, we obtain the following result.

Theorem 10. Let T be an ELH r-terminology and let Σ be a signature. Additionally, let n ≥ 1, and
let C ⊆T be a logical difference core of T w.r.t. Σ.

Then the procedure ALL-MINIMAL-MODULES shown in Algorithm 3 and applied on T , Σ, n,
and C , exactly computes all the minimal modules of T for Σ.

Algorithm 3 terminates on any input as the paths in the module search tree τ for T that is constructed
during the execution represent all the permutations of the axioms in T that are relevant for finding all
minimal modules. It is easy to see that the procedure ALL-MINIMAL-MODULES runs in exponential
time in size of T (and polynomially in Σ, n, and C ) in the worst case.

4 Evaluation
To demonstrate the practical applicability of our approach, we have implemented Algorithms 2 and 3
in a Java prototype to compute one and all minimal basic ELH r-subsumption modules of biomedical
ontologies: Snomed CT (version Jan 2016), an acyclic EL -terminology consisting of 317 891 axioms,
and NCIt (version 18.04e), a cyclic ELH r-terminology containing 139 748 axioms. The experiments
have been carried out on machines equipped with an Intel Xeon Core 4 Duo CPU running at 2.50GHz
and with 64 GiB of RAM.

Tables 1 and 2 show the results for computing one minimal basic ELH r-subsumption module of
Snomed CT and NCIt for 100 random signatures of different sizes. When the size of the signature
increases, it takes more time in general to compute one minimal module and the size of their minimal
module is also increasing. Moreover, in our experiments the median computation times were decreasing
with an increasing bubble size for signatures with 200 concept names.

Table 3 shows that there exist several minimal basic subsumption modules of Snomed CT for the
selected signatures (which contain concept names connected to at most 8 other axioms). Similarly,
Table 4 also shows that there also exist several minimal basic subsumption modules of NCIt for the

50



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

|Σ∩NC| 50
Bubble Size 10 25 50 100

Time (s) 67 / 523 / 200 / 87.2 68 / 483 / 197 / 82.5 70 / 505 / 202 / 85.3 71 / 507 / 204 / 86.4
Sizes 50 / 118 / 77 / 14.6 50 / 118 / 77 / 14.5 50 / 118 / 77 / 14.6 50 / 118 / 77 / 14.6
Size MEX-Mod 401 / 720 / 587 / 60.7
Size ⊥>∗-Mod 1075 / 2456 / 1803 / 300.2

|Σ∩NC| 75
Bubble Size 10 25 50 100

Time (s) 225 / 584 / 434 / 102.0 216 / 1359 / 531 / 209.8 226 / 575 / 447 / 101.0 231 / 586 / 450 / 101.8
Sizes 78 / 177 / 110 / 16.4 75 / 216 / 113 / 20.8 78 / 177 / 110 / 15.8 78 / 178 / 110 / 15.9
Size MEX-Mod 679 / 971 / 825 / 72.0
Size ⊥>∗-Mod 1939 / 3779 / 2641 / 373.2

Table 1: Computation of one minimal basic subsumption module of Snomed CT for 100 random sig-
natures containing 50/75 concept names and all role names (minimal / maximal / median / standard
deviation)

|Σ∩NC| 50
Bubble Size 10 25 50 100

Time (s) 13 / 319 / 53.5 / 93.1 13 / 318 / 55.0 / 96.5 14 / 328 / 54.5 / 101.0 13 / 325 / 64.0 / 97.29
Sizes 45 / 240 / 119.5 / 55.6 49 / 240 / 119.5 / 55.4 49 / 240 / 119.5 / 55.3 47 / 242 / 119.5 / 55.6
Size ⊥>∗-Mod 116 / 597 / 250.0 / 146.2

|Σ∩NC| 100
Bubble Size 10 25 50 100

Time (s) 81 / 513 / 230.0 / 133.8 92 / 555 / 238.0 / 145.2 82 / 530 / 245.0 / 141.3 94 / 526 / 242.0 / 143.5
Sizes 145 / 307 / 222.0 / 53.1 145 / 307 / 222.0 / 53.2 145 / 307 / 221.0 / 53.0 145 / 308 / 224.0 / 52.5
Size ⊥>∗-Mod 328 / 1284 / 590.0 / 241.4

Table 2: Computation of one minimal basic subsumption module of NCIt for 100 random signatures
containing 50/100 concept names and all role names (minimal / maximal / median / standard deviation)

random signatures. In our experiments the number of minimal modules rose up to 32, and the size of
the minimal modules varied from one signature to another.

Although a precomputation of the maximal logical difference core has the potential of narrowing
down the search space, it requires extra computational effort, which can be potentially very time-
consuming. In order to check whether the use of the logical difference core can help to speed up
the process of searching for all minimal modules, we computed all the minimal modules of Snomed CT
and NCIt with and without precomputing the maximal logical difference core for the same signatures.
It turns out that in our experiments the precomputation of the maximal core was beneficial to the overall
performance: the overall computation process was sped up by more than three times for Snomed CT.

5 Conclusion

We have reused the black-box approach for computing justifications in order to devise two algorithms
for computing one or all basic ELH r-subsumption modules. We have deployed a version of CEX as an
oracle for determining whether two possibly cyclic ELH r-terminologies are logically different (i.e. not

51



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

Optimisation Core C = /0 Core C 6= /0

Time (s) 5 / 709 / 24 / 238.7 2 / 118 / 7 / 36.0
Number of Modules 1 / 32 / 6 / 9.2
Size of Modules 81 / 265 / 126 / 46.5

Table 3: Computation of all minimal basic subsumption modules of Snomed CT for 20 selected
signatures consisting of 30 concept names and all role names using a bubble size of 50 (min /
max / med / std dev)

Optimisation Core C = /0 Core C 6= /0

Time (s) 1 / 454 / 44 / 142.5 1 / 173 / 24 / 54.8
Number of Modules 1 / 30 / 3.5 / 8.2
Size of Modules 8 / 73 / 52 / 10.4

Table 4: Computation of all minimal basic subsumption modules of NCIt for 20 random signatures
consisting of 30 concept names and all role names using a bubble size of 10 (min / max / med / std dev)

logically inseparable). Our algorithms are applicable to ontologies formulated in any ontology language
provided that a tool is available that can effectively decide the inseparability notion of interest.

Our algorithms may require many costly calls to a logical difference tool. One way to reduce the
overall computation time would be to use a tool that allows for an iterative computation of the logical
difference (i.e., a tool that utilises previous computations on similar input to determine the existence of a
logical difference faster). Another possible optimisation is refining the single module search algorithm
by deploying a strategy for selecting the sets of axioms (bubbles) that are to be removed next from the
minimal module candidate. Moreover, when creating bubbles (Algorithm 2) or selecting axioms that
are to be excluded from minimal modules (Algorithm 3) one can ensure that axioms that always co-
occur in minimal basic ELH r-subsumption modules are not separated. Finally, instead of searching
for minimal modules in the entire ontology, our algorithm first extracts modules that are based on the
notion of syntactic locality. A further optimisation might be achieved by exploring ways to compute
such modules faster [16].

References
[1] F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description logic EL. In Proceedings of

KI’07, volume 4667 of LNAI, pages 52–67, Osnabrück, Germany, 2007. Springer-Verlag.
[2] J. Chen, M. Ludwig, Y. Ma, and D. Walther. Zooming in on ontologies: Minimal modules and best excerpts.

In The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October
21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes in Computer Science, pages 173–189.
Springer, 2017.

[3] A. Ecke, M. Ludwig, and D. Walther. The concept difference for EL-terminologies using hypergraphs. In
Proceedings of the International workshop on (Document) Changes: modeling, detection, storage and visu-
alization (DChanges 2013), volume 1008 of CEUR-WS, 2013.

[4] S. Feng, M. Ludwig, and D. Walther. Foundations for the logical difference of EL-TBoxes. In Proceedings
of GCAI 2015: Global Conference on Artificial Intelligence, volume 36 of EPiC Series in Computing, pages
93–112. EasyChair, 2015.

[5] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies: Theory and practice.
Journal of Artificial Intelligence Research (JAIR), 31(1):273–318, 2008.

52



Computing Minimal Subsumption Modules of Ontologies Chen, Ludwig, Walther

[6] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of OWL DL entailments. In
Proceedings of ISWC 2007 & ASWC 2007, volume 4825 of LNCS, pages 267–280. Springer, 2007.

[7] B. Konev, M. Ludwig, D. Walther, and F. Wolter. The logical difference for the lightweight description logic
EL. Journal of Artificial Intelligence Research (JAIR), 44:633–708, 2012.

[8] B. Konev, M. Ludwig, and F. Wolter. Logical difference computation with CEX2.5. In Proceedings of
IJCAR’12, pages 371–377, Berlin, Heidelberg, 2012. Springer-Verlag.

[9] B. Konev, C. Lutz, D. Walther, and F. Wolter. Semantic modularity and module extraction in description
logics. In Proceedings of ECAI’08, pages 55–59, Amsterdam, The Netherlands, 2008. IOS Press.

[10] B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and modularity of description
logic ontologies. Artificial Intelligence, 203:66–103, 2013.

[11] B. Konev, D. Walther, and F. Wolter. The logical difference problem for description logic terminologies. In
Proceedings of IJCAR’08, pages 259–274, Berlin, Heidelberg, 2008. Springer-Verlag.

[12] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and M. Zakharyaschev. Minimal
module extraction from DL-Lite ontologies using QBF solvers. In Proceedings of IJCAI’09, pages 836–841.
AAAI Press, 2009.

[13] R. Kontchakov, F. Wolter, and M. Zakharyaschev. Logic-based ontology comparison and module extraction,
with an application to DL-Lite. Artificial Intelligence, 174(15):1093–1141, 2010.

[14] M. Ludwig and D. Walther. The logical difference for ELHr-terminologies using hypergraphs. In Proceedings
of ECAI’14, volume 263 of Frontiers in Artificial Intelligence and Applications, pages 555–560. IOS Press,
2014.

[15] C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the description logic EL. Journal
of Symbolic Computation, 45(2):194–228, Feb. 2010.

[16] F. Martin-Recuerda and D. Walther. Fast modularisation and atomic decomposition of ontologies using axiom
dependency hypergraphs. In Proceedings of ISWC’14, Part II, volume 8797 of LNCS, pages 49–64. Springer-
Verlag, 2014.

[17] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95, 1987.
[18] U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I extract? In Proceedings of

DL’09, volume 477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

53


	Introduction
	Preliminaries
	Minimal Modules
	Computing a Single Minimal Module
	Computing All Minimal Modules

	Evaluation
	Conclusion

