
Reasoning with Triggers

Claire Dross12345, Sylvain Conchon1234, Johannes Kanig5 and
Andrei Paskevich1234

1 LRI, Université Paris-Sud 11
2 CNRS, Orsay F-91405

3 INRIA Saclay-̂Ile de France
4 ProVal, Orsay F-91893
5 AdaCore, Paris F-75009

Abstract

SMT solvers can decide the satisfiability of ground formulas modulo a combination of
built-in theories. Adding a built-in theory to a given SMT solver is a complex and time
consuming task that requires internal knowledge of the solver. However, many theories
(arrays [13], reachability [11]), can be easily expressed using first-order formulas. Unfor-
tunately, since universal quantifiers are not handled in a complete way by SMT solvers,
these axiomatics cannot be used as decision procedures.

In this paper, we show how to extend a generic SMT solver to accept a custom theory
description and behave as a decision procedure for that theory, provided that the described
theory is complete and terminating in a precise sense. The description language consists
of first-order axioms with triggers, an instantiation mechanism that is found in many SMT
solvers. This mechanism, which usually lacks a clear semantics in existing languages and
tools, is rigorously defined here; this definition can be used to prove completeness and
termination of the theory. We demonstrate using the theory of arrays, how such proofs
can be achieved in our formalism.

1 Introduction

SMT solvers are sound, complete, and efficient tools for deciding the satisfiability of ground
formulas modulo combinations of built-in theories such as linear arithmetic, arrays, bit-vectors
etc. Usually, they work on top of a SAT solver which handles propositional formulas. Assumed
literals are then handed to dedicated solvers for theory reasoning. These solvers are complete.
Adding a new theory to the framework is a complex and time consuming task that requires
internal knowledge of the solver. For some theories however, it is possible to give a first-order
axiomatization. Unfortunately, even if a few SMT solvers also handle first-order formulas, for
example, Simplify [6], CVC3 [9], Z3 [5] and Alt-Ergo [2], these axiomatizations cannot be used
as theories. Indeed, these solvers are not complete when quantifiers are involved, even in the
absence of theory reasoning.

SMT solvers handle universal quantifiers through an instantiation mechanism. They main-
tain a set of ground formulas (without quantifiers) on which theory reasoning is done. This set
is periodically augmented by heuristically chosen instances of universally quantified formulas.

The heuristics for choosing new instances differ between SMT solvers. Nevertheless, it is
commonly admitted that user guidance is useful in this matter [6, 12]. The choice of instances
can be influenced by manually adding instantiation patterns, also known as triggers. These
patterns are used to restrict instantiation to known terms that have a given form. Here is an
example of a universally quantified formula with a trigger in SMT-LIB [1] notation:

(forall ((x Int)) (! (= (f x) c) :pattern ((g x))))

22 P. Fontaine, A. Goel (eds.), SMT 2012 (EPiC Series, vol. 20), pp. 22–31

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

The syntax for triggers includes a bang (a general syntax for annotating formulas) before the
restricted formula (= (f x) c) and the keyword :pattern to introduce the trigger (g x). The
commonly agreed meaning of the above formula can be stated as follows:

Assume (= (f t) c) only for terms t such that (g t) is known.

Intuitively, a term is known when it appears in a ground fact assumed by the solver. However,
that rule is quite vague and does not include answers to the following questions: when does a
term become known? Is that notion to be considered modulo equality and modulo the built-
in theories, and finally, when is this rule applied exactly, and to which formulas? Different
provers have found different answers to these questions, consequence of the fact that triggers
are considered a heuristics and not a language feature with precise semantics.

We give a proper semantics for first-order formulas with triggers. In this semantics, instan-
tiation of universally quantified formulas is restricted to known terms. This makes it possible
to extend a generic SMT solver so that it behaves as a decision procedure on an axiomatization
representing a custom theory, provided the theory is complete in our framework. This enables
non-expert users to add their own decision procedure to SMT solvers. Unlike first-order axiom-
atization in SMT solvers handling quantifiers, a proof of completeness and termination of the
decision procedure can be attempted and, unlike manual implementation of decision procedures
inside SMT solvers, it does not require internal knowledge of the solver.

In Sect. 2, we introduce a formal semantics for first-order logic with a notation for instanti-
ation patterns that restrict instantiation. It formalizes both the notion of trigger and the dual
notion of known term. We show that this extension of first-order logic is conservative: formulas
without triggers preserve their satisfiability under this semantics. We present in Sect. 3 a the-
oretical way of extending a generic ground SMT solver so that it can turn an axiomatization T
with triggers into a decision procedure, provided that T has some additional properties. Finally,
in Sect. 4, we demonstrate on the non-extensional theory of arrays how our framework can be
used to demonstrate that an axiomatization with triggers indeed fulfills its requirements.

Related Work. Triggers are a commonly used heuristic in SMT solvers that handle quan-
tifiers. User manuals usually explain how they should be used to achieve the best perfor-
mance [6, 12, 9]. Triggers can be automatically computed by the solvers. A lot of work has
also been done on defining an efficient mechanism for finding the instances allowed by a trig-
ger. These techniques, called E-matching, are described in [6, 13] for Simplify, in [4] for Z3,
and in [9] for CVC3. Other heuristics for generating instances include model-based quantifier
instantiation [8] and saturation processes closed to the superposition calculus [3].

In this paper, triggers are not handled in the usual manner. On the one hand, since SMT
solvers are not complete in general when quantifiers are involved, they favor efficiency over
completeness in the treatment of triggers. For example, they usually do not attempt to match
triggers modulo underlying theories. On the other hand, in our framework, triggers are used to
define theories, and they need therefore to be handled in a complete way.

Triggers can also be used in complete first-order theorem provers to guide the proof search
and improve the solver’s efficiency. This is done on a complete solver for a subset of first-order
logic with linear arithmetics based on a sequent calculus in [14].

As for using an SMT solver as a decision procedure, the related idea that a set of first-order
formulas can be saturated with a finite set of ground instances has been explored previously. For
example, in [10], decision procedures for universally quantified properties of functional programs
are designed using local model reasoning. In the same way, Ge and de Moura describe fragments
of first-order logic that can be decided modulo theory by saturation [8]. Both of these works

23

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

JF1 ∧ F2K± , JF1K± ∧ JF2K± J〈t〉 F K± , known(T (t)) ∧ JF K±

JF1 ∨ F2K± , JF1K± ∨ JF2K± J[t] F K± , known(T (t))→ JF K±

J∀x. F K± , ∀x. known(x)→ JF K± J∃x. F K± , ∃x. known(x) ∧ JF K±

J¬F K+ , ¬JF K− J¬F K− , ¬JF K+

JAK+ , known(T (A))→ A JAK− , known(T (A)) ∧A

Figure 1: Semantics of FOL?-formulas (J K± denotes either J K+ or J K−)

define a restricted class of universally quantified formulas that can be finitely instantiated. We
do not impose such restrictions a priori but rather require a dedicated proof of completeness.

2 First-Order Logic with Triggers and Witnesses

In this section, we extend classical first-order logic, denoted FOL, with constructions to specify
instantiation patterns and known terms. The semantics of this extension, denoted FOL?, is
defined through an encoding into usual first-order logic. In the rest of the article, we write
formulas in standard mathematical notation.

2.1 Syntax

Informally, a trigger is a guard that prevents the usage of a formula until the requested term
is known. We write it [t]F , which should be read if the term t and all its sub-terms are known
then assume F . Note that we do not require a trigger to be tied to a quantifier. We separate
the actual instantiation of a universal formula from the decision to use its result.

A dual construct for [t] F , which we call witness, is written 〈t〉 F and is read assume that the
term t and all its sub-terms are known and assume F . This new construction explicitly updates
the set of known terms, something for which there is no proper syntax in existing languages.

The extended syntax of formulas can be summarized as follows:

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ∀x. F | ∃x. F | 〈t〉 F | [t] F | ¬F

We treat implication (→) and equivalence (↔) as abbreviations, in a standard fashion.

2.2 Denotational Semantics

We define the semantics of our language via two encodings J K+ and J K− into first-order language,
given in Fig. 1. The notation J K± is used when the rule is the same for both polarities and
the polarity of the sub-formulas does not change. We introduce a fresh unary predicate symbol
known which denotes the fact that a term is known. Given a term t or an atomic formula A, we
denote with T (t) (respectively, T (A)) the set of all the non-variable sub-terms of t (resp. A).
The expression known(T (t)) stands for the conjunction

∧
t′∈T (t) known(t′).

We require universally quantified formulas to be instantiated with known terms. This is
consistent with the standard use of triggers: indeed, SMT solvers require (or compute) a trigger
containing each quantified variable for every universal quantifier. Then every term that replaces
a universally quantified variable is necessarily known, since sub-terms of a known term are

24

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

known, too. Dually, every existentially quantified variable is assumed to be known. This is
necessary in order to allow instantiation with a witness from an existential formula.

To maintain the invariant that the sub-terms of a known term are also known, our inter-
pretation of 〈t〉 F implies the presence of every non-variable sub-term of t (the presence of
variables is assured by interpretation of the quantifiers). Dually, [t] F requires the presence of
every non-variable sub-term of t; due to the mentioned invariant, this is not a restriction.

Finally, whenever we encounter an atomic formula, regardless of its polarity, we assume the
presence of its sub-terms. This is also in agreement with the standard use of triggers.

We define entailment in FOL? as follows:

F `? G , known(ω), JF K− ` JGK+

where ω is an arbitrary fresh constant supposed to be known a priori, and ` stands for entail-
ment in FOL.

A peculiar aspect of FOL? is the cut rule is not admissible in it. Indeed, one cannot prove
∀x . [f(x)] P (f(x)), ∀x . [f(g(x))] (P (f(g(x))) → Q(x)) `? Q(c), since the term f(g(c)) is not
known and neither of the premises can be instantiated. However, Q(c) is provable via an
intermediate lemma P (f(g(c)))→ Q(c).

2.3 Example

Consider the following set of formulas R from the previous section:

R = { f(0) ≈ 0, f(1) 6≈ 1, ∀x.[f(x + 1)] f(x + 1) ≈ f(x) + 1 }

We want to show that R is unsatisfiable in FOL?, that is to say, R `? ⊥. By definition, we
have to prove that known(ω), JRK− ` ⊥.

JRK− =


known(T (f(0) ≈ 0)) ∧ f(0) ≈ 0,

known(T (f(1) 6≈ 1)) ∧ f(1) 6≈ 1,

∀x. known(x)→ known(T (f(x + 1)))→
known(T (f(x + 1) ≈ f(x) + 1)) ∧ f(x + 1) ≈ f(x) + 1


The set of formulas JRK− is unsatisfiable in first-order logic with arithmetic. Therefore, in

our framework, the initial set R is unsatisfiable.

2.4 The Extension of First-Order Logic is Conservative

Even if a formula does not contain triggers or witnesses, our encoding modifies it to restrict
instantiation of universal formulas. However, it preserves satisfiability of formulas in classical
first-order logic with equality.

Theorem 2.1 (Soundness). For every first-order formula F , if we have F `? ⊥, then we also
have F ` ⊥.

Proof. Since known is a fresh predicate symbol, for every model M of F , there is a model M ′

of F such that M ′ only differs from M in the interpretation of known and M ′ ` ∀x.known(x).
By immediate induction, (∀x.known(x))∧F ` JF K−. As a consequence, M ′ is a model of JF K−
and F 6`? ⊥. Thus, by contra-position, if F `? ⊥ then there is no model of F and F ` ⊥.

Theorem 2.2 (Completeness). For any first-order formula F , if F ` ⊥ then F `? ⊥.

The proof, based on inference trees in a certain paramodulation calculus, can be found in
the technical report [7].

25

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

3 Adding a Customizable Theory to a SMT Solver for
Ground Formulas

In this section, we define a wrapper over a generic SMT solver for ground formulas that accepts
a theory written as a set of formulas with triggers. This solver is a theoretical model and it is
not meant to be efficient. We prove it sound with respect to our framework.

It is easy to show that conversion to NNF does not change the semantics of a FOL?-formula.

Definition 3.1. We define a skolemization transformation SkoT for FOL?-formulas in negative
normal form. Given a formula F = ∃x.G, we have SkoT (F) , 〈c(y)〉 SkoT (G[x ← c(y)]),
where y is the set of free variables of F , and c is a fresh function symbol.

We put the witness 〈c(y)〉 to preserve satisfiability. Indeed, Sko(∃x. [x]⊥) is [c]⊥ which
is satisfiable, while ∃x. [x]⊥ is not. In the following, we work with FOL?-formulas in Skolem
negative normal form.

3.1 A Solver for Ground Formulas

To reason about FOL?-formulas, we use a solver S for ground formulas.

Definition 3.2. We denote implication over ground formulas with theories `o to distinguish it
from implication in first-order logic with theories `.

We make a few assumptions about the interface of the ground solver S:

• It returns Unsat(U) when called on an unsatisfiable set of ground formulas R where U is
an unsatisfiable core of R. We assume that U is a set of formulas that occur in R such
that R `o U and U `o ⊥.

• It returns Sat(M) when called on a satisfiable set of ground formulas R where M is a
model of R. We assume that M is a set of literals of R such that M `o R.

We write R S Unsat(U) (resp. R S Sat(M)) to express that the solver S returns Unsat(U)
(resp. Sat(M)) when launched on a set of ground formulas R.

3.2 Deduction Rules for First-Order Formulas with Triggers

The solver Lift(S) takes a set of formulas with triggers T and a set of ground formulas S as
input and decides whether S is satisfiable modulo T . It is constructed on top of a solver for
ground formulas S and works on a set of ground formulas R that is augmented incrementally.
While the solver S returns a model M of R, new facts are deduced from M and added to R.

The set R initially contains the formulas from the input S as well as those from the theory
T where literals, quantified formulas, and formulas with triggers or witnesses are replaced by

fresh atoms. The atom replacing a formula F is written F and is called a protected formula.

Definition 3.3. We say that a model M produces a pair F, t of a formula F and a term t if
either F is the atom > and there is a literal L in M from S such that t ∈ T (L), F is a protected

witness 〈s〉 G ∈M and t ∈ T (s), or F a protected literal L ∈M and t ∈ T (L). We write it

M ↑ F, t.

26

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

The following deduction rules are used to retrieve information from the protected formulas
of a model M :

Pos Unfold

〈t〉 F ∈M

〈t〉 F → F

Lit Unfold

L ∈M

L → L

Neg Unfold

[t] F ∈M M ↑ G, t′ M ∪ {t 6≈ t′} S Unsat(U ∪ {t 6≈ t′})

[t] F ∧G ∧ U → F

Inst

∀x. F ∈M M ↑ G, t M ∪ {¬F [x← t]} S Sat(M ′)

∀x. F ∧G→ F [x← t]

Rule Inst adds to R an instantiation of a universal formula with a known term. It is
restricted by the premise M ∪{¬F [x← t]} S Sat(M ′) so that it does not instantiate a quan-
tified formula if the result of the instantiation is already known. Rule Pos Unfold (resp. Lit
Unfold) unfolds formulas with witnesses (resp. literals). Rule Neg Unfold removes a trigger
when it is equal to a known term. Note that every deduction rule returns an implication: in a
model where, say, 〈t〉 F is not true, F does not need to be true either.

The solver for FOL?-formulas Lift(S) returns Unsat on R, as soon as S returns Unsat on
the current set of formulas. It returns Sat on R if the ground solver S returns a model M from
which nothing new can be deduced by the above deduction rules.

Here is an example of execution of the solver Lift(S) on the set of ground formulas S modulo
the theory T :

S = {f(0) ≈ 0, f(1) 6≈ 1}
T = {∀x.[f(x + 1)] f(x + 1) ≈ f(x) + 1}

Let us show how the solver Lift(S) can deduce that

R0 =

{
f(0) ≈ 0, f(1) 6≈ 1,

∀x.[f(x + 1)] f(x + 1) ≈ f(x) + 1

}
is unsatisfiable.

1. The ground solver returns the only possible model M0 of R0, namely R0 itself. Since
f(0) ≈ 0 ∈M0, M0 produces the pair>, 0. As a consequence, the rule Inst can instantiate
x with 0 in the universal formula:

R1 = R0 ∪

 ∀x. [f(x + 1)] f(x + 1) ≈ f(x) + 1 ∧ > →
[f(0 + 1)] f(0 + 1) ≈ f(0) + 1


2. The solver returns the model M1 = M0 ∪ { [f(0 + 1)] f(0 + 1) ≈ f(0) + 1 } of R1. Since

f(1) 6≈ 1 ∈ M1, M1 produces the pair >, f(1). Based on results from the theory of
arithmetics, the ground solver can deduce that f(0 + 1) 6≈ f(1) is unsatisfiable. Thus the
rule Neg Unfold can add another formula to R1:

R2 = R1 ∪

 [f(0 + 1)] f(0 + 1) ≈ f(0) + 1 ∧ > →
f(0 + 1) ≈ f(0) + 1


27

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

3. The ground solver returns the model M2 = M1 ∪ { f(0 + 1) ≈ f(0) + 1 } of R2. The rule

Lit Unfold can now unfold the protected literal f(0 + 1) ≈ f(0) + 1 :

R3 = R2 ∪ { f(0 + 1) ≈ f(0) + 1 → f(0 + 1) ≈ f(0) + 1}

4. Any model of R3 contains f(0 + 1) ≈ f(0) + 1, f(0) ≈ 0 and f(1) 6≈ 1. The ground solver
returns Unsat() on R3. As expected, the initial set S is reported to be unsatisfiable
modulo T .

3.3 Properties

In this section, we prove that our solver is sound and complete on a particular class of axiomatics.
In the following section, we demonstrate on an example how our framework can be used to check
that a given axiomatics is in this class.

Completeness We say that a set of formulas with triggers T is complete if, for every finite set
of literals G, JG ∪ T K− and G ∪ T , triggers being ignored, are equisatisfiable in FOL.

Termination We say that a set of formulas with triggers T is terminating if, from every finite
set of literals G, there can only be a finite number of instances of formulas of T . In our
framework, we enforce three rules to enable reasoning about termination:

• instantiation is always done with known terms

• new known terms cannot be deduced if they are protected by a trigger

• an instance of a formula F with a term t is not generated if an instance of F has
already been generated with t′ equal to t.

Our solver is sound and complete if it works modulo a complete and terminating theory T :

Theorem 3.1. If Lift(S) returns Unsat on a set of ground formulas S modulo a theory T then
S ∪ T , triggers being ignored, is unsatisfiable in FOL.

Theorem 3.2. If Lift(S) returns Sat on a set of ground formulas S modulo a complete theory
T then S ∪ T , triggers being ignored, is satisfiable in FOL.

Theorem 3.3. If the theory T is terminating, then the solver Lift(S) will terminate on any
set of ground literal S.

The proofs of these three theorems may be found in the technical report [7].

4 Completeness and Termination of a theory

Within our framework, we can reason about a theory T written as a set of formulas with
triggers and demonstrate that it has the requested properties for our solver Lift(S) to be sound
and complete. This section demonstrates how it can be done on an axiomatization of the
non-extensional theory of arrays.

We show that Greg Nelson’s proof of completeness for his decision procedure for arrays [13]
can be turned into a proof of completeness of our solver on an axiomatization with carefully
chosen triggers. Another example is given in the technical report [7]. For terms a, x and v,

28

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

we write access(a, x) the access in the array a at the index x and update(a, x, v) the update of
the array a by the element v at the index x. The following set of first-order formulas T is an
axiomatization of the classical theory from McCarthy:

∀a, x, v. [update(a, x, v)] access(update(a, x, v), x) ≈ v (1)

∀a, x1, x2, v. [access(update(a, x1, v), x2)] x1 6≈ x2 →
access(update(a, x1, v), x2) ≈ access(a, x2) (2)

∀a, x1, x2, v. [access(a, x2)] [update(a, x1, v)] x1 6≈ x2 →
access(update(a, x1, v), x2) ≈ access(a, x2) (3)

Note that (2) and (3) are in fact duplications of the same first order formula with different
triggers1. Both of them are needed for completeness. For example, without (2) (resp. (3)), the
set of formulas {y 6≈ x, access(update(a, y, v1), x) 6≈ access(update(a, y, v2), x)} (resp. the set
of formulas {y 6≈ x, access(a1, x) 6≈ access(a2, x), update(a1, y, v) = update(a2, y, v)}) cannot
be proven unsatisfiable.

We prove that this axiomatics is complete and terminating.

Termination: If G is a set of ground literals, there can only be a finite number of instances
from G and T . From (1), at most one access term access(update(a, x, v), x) can be created per
update term update(a, x, v) of G. No new update term can be created, so there will be only
one instantiation of (1) per update term of G. Equations (2) and (3) can create at most one
access term per couple comprising an index term (sub-term of an access term at the rightmost
position) and an update term. We deduce that at most one term per couple comprising the
equality classes of an index term and an update term of G can be deduced.

Completeness: The set of formulas T gives a complete axiomatics. We prove that for every
set of ground formulas G such that JG ∪ T K− is satisfiable, JG ∪ T K− ∪ ∀t.known(t) is also
satisfiable. Since assuming known(t) for every term t removes triggers and witnesses, this
shows that G ∪ T is satisfiable, triggers being ignored.

The proof is similar to the proof of Greg Nelson’s decision procedure for arrays [13]. We
first define the set of every array term a′ such that access(a′, x) is equated to a given term
access(a, x) by (2) or (3):

Definition 4.1. For a set of formulas S and two terms a and x known in S, we define the set
Sa,x to be the smallest set of terms containing a and closed by

(i) if a′ ∈ Sa,x then every known term update(a′, y, v) such that S 0 y ≈ x is in Sa,x and

(ii) for every term update(a′, y,) ∈ Sa,x, if S 0 y ≈ x then a′ is in Sa,x.

We now prove that, for every access or update term t, if S is a satisfiable set of ground
formulas saturated by T then it can be extended to another satisfiable set S′ saturated by T
that contains t = t. Since, by definition of J K−, Jt = tK− is equivalent to

∧
t′∈T (t) known(t), this

is enough to have the completeness of T .
This proof is an induction over the size of t. We assume that every sub-term of t has already

been added. If known(t) is already implied by JSK−, then we are done. If t is neither an access
nor an update term, then assuming the presence of t does not allow any new deduction.

1Most provers have a dedicated syntax for using several triggers for the same axiom.

29

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

Assume t is an update term update(a, x, v). With the presence of t, (1) deduces the literal
access(t, x) ≈ v. This cannot lead to an inconsistency since nothing can be known about t
otherwise t would be known in JSK−. Equations (2) and (3) deduce access(t, y) = access(a′, y)
for all terms a′ and y such that JSK− ` known(access(a′, y)) and t ∈ Sa′,y. Like the first one,
this deductions cannot cause an inconsistency. The new set S′ obtained by adding these literals
to S is saturated by T . Indeed, if it is not, one of the formulas of T can deduce something that
is not in S′. It cannot be (1) since we have applied it to the only new update term of S′. If it
is (2) or (3) then it comes from a term access(a′, y) ∈ S′ and S′t,y = S′a′,y. By construction of
S′, the result is in S′.

Assume t is an access term access(a, x). With the presence of t, (2) and (3) deduce t =
access(a′, x) for every a′ ∈ Sa,x. This deduction cannot cause an inconsistency. Indeed, nothing
can be known about access(a′, x) otherwise t would have been known in S by (2) and (3). The
new set S′ obtained by adding these literals to S is saturated by T . Indeed, if it is not, one
of the formulas of R can deduce something that is not in S′. It cannot be (1) since there is
no new update term in S′. If it is (2) or (3) then it comes from a term access(a′, y) ∈ S′ and
S′a,y = S′a′,y. By construction of S′, the result is in S′.

5 Conclusion

We have presented a new first-order logic with a syntax for triggers and given it a clear semantics.
We have shown that a solver accepting a theory written as a set of formulas with triggers T
can be implemented on top of an off-the-shelf SMT solver, and we have identified properties
requested from T for the resulting solver to be sound and complete on ground formulas. Finally,
we have demonstrated, on the non-extensional theory of arrays, that our framework can be used
to prove that a theory expressed as a set of first-order formulas with triggers indeed has the
requested properties.

In future work, we would like to integrate our technique of quantifier handling directly inside
a DPLL(T)-based solver. Once a solver implementing our semantics exists, a static analysis
could be done to detect too restrictive or too permissive axiomatizations, and matching loops.
We believe that such an analysis will help theory designers avoid common pitfalls when writing
axiomatizations.

References

[1] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard version 2.0. Technical
report, University of Iowa, december 2010.

[2] François Bobot, Sylvain Conchon, Évelyne Contejean, and Stéphane Lescuyer. Implementing
polymorphism in SMT solvers. In SMT’08, volume 367 of ACM ICPS, pages 1–5, 2008.

[3] L. de Moura and N. Bjørner. Engineering dpll (t)+ saturation. Automated Reasoning, pages
475–490, 2008.

[4] Leonardo de Moura and Nikolaj Bjørner. Efficient E-matching for SMT solvers. CADE’07, 2007.

[5] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. TACAS, 2008.

[6] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
J. ACM, 52(3):365–473, 2005.

[7] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Reasoning with triggers.
Research Report RR-7986, INRIA, June 2012.

30

Reasoning with Triggers C. Dross, S. Conchon, J. Kanig, A. Paskevich

[8] Y. Ge and L. De Moura. Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In Computer Aided Verification, pages 306–320. Springer, 2009.

[9] Yelting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification conditions using
satisfiability modulo theories. CADE, 2007.

[10] Swen Jacobs and Viktor Kuncak. Towards complete reasoning about axiomatic specifications. In
Proceedings of VMCAI, pages 278–293. Springer, 2011.

[11] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using smt
solvers. In ACM SIGPLAN Notices, volume 43, pages 171–182. ACM, 2008.

[12] Michal Moskal. Programming with triggers. Proceedings of the 7th International Workshop on
Satisfiability Modulo Theories, pages 20–29, 2009.

[13] Greg Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo Alto
Research Center, 1981.

[14] P. Rümmer. E-matching with free variables. 2012.

31

	Introduction
	First-Order Logic with Triggers and Witnesses
	 Syntax
	Denotational Semantics
	 Example
	The Extension of First-Order Logic is Conservative

	Adding a Customizable Theory to a SMT Solver for Ground Formulas
	A Solver for Ground Formulas
	Deduction Rules for First-Order Formulas with Triggers
	Properties

	Completeness and Termination of a theory
	Conclusion

