
BDD-based automated reasoning in

propositional non-classical logics: progress

report

Rajeev Goré and Jimmy Thomson

Logic and Computation Group
Research School of Computer Science
The Australian National University
Canberra, ACT 0200, Australia

Abstract

Recent work has shown that a technique using Binary Decision Diagrams (BDDs) to
decide CTL and Int gives promising results. Based on this we explore how the method
can be extended to other non-classical logics. In particular, we describe a putative method
for deciding the modal µ-calculus using BDDs.

1 Introduction

For many logics, we can decide the validity of a given formula ϕ0 by constructing the set of
all subsets of some closure cl(ϕ0), and checking whether these subsets can support a (counter)
model that makes ϕ0 false. If no such model exists, then we can safely declare ϕ0 to be valid.
Typically, we proceed by first building a finite pseudo-model where each “world” is a member
of 2cl(ϕ), and then showing that the pseudo-model can be “unfolded” into a model.

At first sight, this “finite pseudo-model (fpm) method” seems impractical since the first step
requires us to “construct” the set of all (exponentially many) subsets of cl(ϕ0), thus giving a
procedure whose worst case and best case complexity is always of orderO(2|cl(ϕ0)|). However, for
K and CTL, Pan et al. [5] and Marrero [4] have shown that Binary Decision Diagrams (BDDs)
can be used to represent the required subsets efficiently, without actually “constructing” them
explicitly. We have recently shown how to extend this method to handle modal, tense and bi-
extensions of intuitionistic logic Int [3]. In particular, for CTL and Int the resulting reasoners
were highly competitive with the current state of the art [2, 3].

In light of this, we are exploring whether such BDD-based implementations can be extended
to handle a number of other non-classical logics, and if so, to see whether the practicality
remains. Here we concentrate on extending the method to many different classical modal
logics, and in particular, the modal mu-calculus. Practicality remains to be seen since we are
still implementing the various classical modal logics described here. We do have an initial
unoptimised implementation of the putative mu-calculus BDD-method which minimal testing
has shown to give the correct answers so far. We have not made it available since it is quite
possible that our soundness and completeness proofs for the mu-calculus may not pan out.

Since the focus of PAAR is on practicality, we have deliberately given our descriptions at a
lower level than for Int [3]. Thus while previously we elided explicit BDD aspects, here they
are included, so it may be beneficial to read the other paper first.

We assume that the reader is familiar with non-classical logics in general, in particular with
the notion of Kripke semantics and the fpm method for deciding satisfiability. Before discussing
extensions to our implementation of the fpm method, we begin by presenting the ideas behind
the fpm method in general as a guide for following its actual BDD-based implementation.

P. Fontaine, R.A. Schmidt, S. Schulz (eds.), PAAR-2012 (EPiC Series, vol. 21), pp. 43–57 43

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

1.1 An Abstract View of the fpm Method

Given a semantically formulated logic L, a naive way to determine satisfiability and validity is
to consider the set of all models for said logic and literally determine whether some world in
some model exists that makes a formula ϕ true, or if all worlds in all models make ϕ true. In
theory, the set of all models is infinite, and in some cases the set of worlds in one model may
also be infinite, so we need a way to explore this possibility in a finitary way.

Given a formula ϕ0, the intent of the fpm method is to find a finite filtration of the set of all
worlds, such that each member in the filtration represents an equivalence class in the original
worlds, and the denotation of the formula ϕ0 in the original model depends only on the truth
value of this formula at some representative of this equivalence class. This allows us to examine
all worlds in a finitary way. We will in general be referring to members of the filtration as
worlds or potential worlds, effectively taking any representative of the equivalence class.

The finite filtration itself is constructed by identifying a finite set of formulae cl(ϕ0), usually
called the “closure of ϕ0”, and transforming the given, possibly infinite, model M into a finite
pseudo-model Mcl(ϕ0) such that the truth value of members of cl(ϕ0) is preserved.

1.2 An operational view of the fpm method

With the space of all potential worlds restricted to a finite space 2cl(ϕ0) (initially), it remains
to identify which of these potential worlds correspond to worlds in actual models. The pseudo-
model method constructs a finite pseudo-model (Wf , R

f) which is canonical in the following
sense: if ϕ0 is satisfiable (falsifiable) then some world of Wf satisfies (falsifies) ϕ0. We find these
worlds Wf by defining a monotonic function on sets of potential worlds that removes worlds
from the argument set if they contradict the semantics of the logic. For example, a potential
world claiming to satisfy both �p and ¬�p goes against the semantics of most logics, and thus
must be removed if present. Thus we construct a chain W0,W1, · · ·Wf of refinements on the
set of an initial set W0, until Wf is immune to our monotonic function (a fixpoint).

Any (non-empty) fixpoint of this appropriately-constructed function corresponds to a set of
worlds which all agree with the semantics of the logic. The “completeness” of this approach
requires us to show that every world in any model must have a representative in Wf . Because
the function we construct satisfies the conditions of the Knaster-Tarski theorem [7] it has a
greatest fixpoint, and moreover the greatest fixpoint is a superset of all fixpoints. Thus the
greatest fixpoint contains representatives for all worlds in all models. For this reason we start
with W0 = 2cl(ϕ0), as repeated iteration from the top element will compute the greatest fixpoint.

The “soundness” of this approach requires showing that each world remaining in Wf can be
extended into a model using only other worlds in the fixpoint. In some logics this is immediate.
In others, like CTL, the set must be “unwound” or otherwise manipulated to construct a model.

Thus generating the set of all worlds modulo the closure cl(ϕ0) of some formula ϕ0 and
computing the greatest fixpoint of a sound and complete semantics-inspired function gives a
decision procedure where satisfiability and validity are determined by checking whether the
intersection of those worlds claiming to satisfy or falsify ϕ0 with the set of all worlds is empty.

We describe specifics of how BDDs are used and how the fixpoint construction works, using
K as an example, first described by Pan et al. [5].

2 Implementation in BDDs

We now describe the BDD implementation at a high level.

44

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

Constructing a Finite Set of Finite Worlds. As we have seen, given some finite closure
cl(ϕ0), the naive way to construct the finite set of all finite worlds is simply to use the set of all
subsets of cl(ϕ0). We instead use only the “sensible subsets” following Pan et al. and Marrero.
Specifically, we construct Atoms(ϕ0) as the base set of atoms whose truth values guarantee
that we can distinguish worlds. Typically this is the non-classical subset of the closure, from
which the truth values of the rest of the closure can be computed using classical conjunction,
disjunction and negation. We then define W = 2Atoms(ϕ0) to be the set of all subsets of these
atoms. Any potential world will either satisfy or falsify each of these atoms, so we can associate
a world w with exactly the set of atoms that it satisfies, and hence view w as a simple bi-valent
valuation on Atoms(ϕ0). The setW is smaller than 2cl(ϕ0), and does not contains worlds which
behave inappropriately with respect to classical conjunction and disjunction.

For the logic K, an acceptable closure cl(ϕ0) is the set of subformulae of ϕ0 and their
negations. The set of atoms however is defined as the smaller set:

Atoms(ϕ0) = {�ψ | �ψ ∈ cl(ϕ0)} ∪ (Prop ∩ cl(ϕ0))

For example, Atoms(�(p⇒ q)⇒ �p⇒ �q) = {p, q,�p,�q,�(p⇒ q)} and the set {p,�(p⇒
q)} corresponds to a world that makes p and �(p⇒ q) true, and makes q, �p and �q false.

BDDs as set of worlds. We need an efficient way to represent potential worlds and (deno-
tations of formulae as) sets of potential worlds.

A BDD over a set V = {v1, · · · , vk} of Boolean-valued variables represents a function
mapping each Boolean valuation on these variables to one of {t, f}. If we associate each atom
a ∈ Atoms(ϕ0) with a unique BDD variable va, then a BDD over these variables is a function
mapping each valuation on Atoms(ϕ0) to one of {t, f}. If we view the valuations which the
BDD maps to t as being “selected”, then a BDD represents a set of valuations, or a set of
potential worlds. Thus a BDD is a function f : 2V 7→ {t, f} that selects a subset from the
powerset 2V of V .

For example, in K with atoms as above, the set {p,�(p ⇒ q)} corresponds to a valuation
under which the BDD variables vp and v�(p⇒q) are true, while vq, v�p and v�q are all false.
The BDD which returns t whenever vp, vq, and v�p are true corresponds to the set of worlds
{{p, q,�p}, {p, q,�p,�q}, {p, q,�p,�(p⇒ q)}, {p, q,�p,�q,�(p⇒ q)}}.

In particular, the BDD >, which returns t for every valuation, represents the set W of all
worlds/subsets over Atoms(ϕ0) in constant space and time!

The fpm method is usually considered to be naive because it must “first construct the set
of all subsets of cl(ϕ0), whose cardinality is exponential in the size of cl(ϕ0)”. The main reason
why the fpm method can be implemented efficiently using BDDs is that they turn this “wisdom”
on its head. Specifically, by using reduced ordered BDDs the BDD only branches on variables
that would cause two valuations to give different results.

Defining denotations. For each a ∈ Atoms(ϕ0) we use JaK to refer to the BDD which is
true exactly when the variable corresponding to a is true. Equivalently, JaK is the set of worlds
that make a true. The denotations of non-atomic formulae in the closure cl(ϕ0) are computed
inductively, usually in an obvious way. For example for K, Jψ ∧ φK = JψK ∧ JφK, similarly for
disjunction and negation, and J♦ψK = ¬J�¬ψK.

Representing relations. All the logics we consider have relational Kripke semantics so we
must be able to represent and reason about these relations.

45

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

A BDD f : 2V 7→ {t, f} over a finite set of variables V corresponds to some subset (of worlds)
of 2V . Consider a BDD g(V ∪ V ′), corresponding to some subset S of 2V ∪V

′
. Any member of

S, such as {v1, . . . , vk} ∪ {v′1, . . . , v′k}, corresponds to a particular valuation on V ∪ V ′. If we
conceptually split the valuation into its two components over V and over V ′, as above, then we
can view the valuation as an ordered pair of sub-valuations. This allows us to think of g(V ∪V ′)
as a subset of 2V × 2V

′
since there is a bijection from 2V ∪V

′
onto 2V × 2V

′
whenever V and V ′

are disjoint. If Atoms(ϕ0), V and V ′ have the same cardinality then g(V ∪ V ′) can be viewed
as a subset of W ×W using any bijection of Atoms(ϕ0) onto V and V ′.

When discussing such BDDs representing pairs, we can think of g(V ∪ V ′) as g(V, V ′). We
will often construct such BDDs by combining BDDs using variables in V or V ′. When we write
JψK, it is constructed from variables in V and represents the first world of a pair, while when
we write JψK′ it is constructed from variables in V ′ and represents the second world in a pair.
There is some subtlety here: writing Jψ′K does not make any sense since ψ is from cl(ϕ0). Thus
JψK′ is a BDD defined over V ′, which is obtained by making a “photocopy” of the BDD over
V for JψK and replacing each vi ∈ V with its clone v′i ∈ V ′.

The case of K. Constraints on the specific relation vary by logic, but we present the reasoning
for K here. The semantics of K refer to a Kripke relation R. The relation itself is unrestricted,
but its interactions with the modal formulae provide constraints such as the following:

∀w.M, w �ψ ⇒ ∀v.R(w, v)⇒M, v ψ (1)

Dropping quantifiers, we can rearrange this formula to state a restriction on R:

R(w, v)⇒M, w �ψ ⇒M, v ψ (2)

We treat this formula as an upper bound on R, and take the intersection of all the right
hand sides given by all �-formulae in the closure Atoms(ϕ0) as the definition of a maximal R,
where maximal means that it links any two worlds that are “allowed to be linked”:

R(w, v) =
∧

�ψ∈Atoms(ϕ0)

M, w �ψ ⇒M, v ψ (3)

The semantics of �-formulae are captured by this maximal R: if two worlds can be related
by this R, and the first world w claims to satisfy a �ψ, then the second world v must satisfy ψ.

The specific BDD representation of this constraint is as follows, where we use R(V, V ′) to
represent a BDD parametrised by sets of variables V and V ′:

R(V, V ′) =
∧

�ψ∈Atoms(ϕ0)

J�ψK⇒ JψK′ (4)

We have now represented both W and R using BDDs over Atoms(ϕ0) and their copies.
Recall that the general procedure requires us to refine W to exclude those worlds that do not
obey the semantics of K. The remaining task is to construct and solve a fixpoint formula
corresponding to the remaining semantics of the logic. We will construct a greatest-fixpoint
formula which is monotonic decreasing, so by the Knaster-Tarski theorem we can repeatedly
iterate the formula starting with the top element W0 = W = > to compute the greatest
fixpoint Wf . Note that the set W, despite representing 2|Atoms(ϕ0)| worlds, is represented very
succinctly by the BDD >, and in general the size of a BDD (and time taken to perform BDD
operations) is not proportional to the size of the set it represents but instead depends upon the
dependencies between the variables in the characteristic function of the set.

46

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

For K, the choice of atoms and definition of J·K address the classical semantics of ∧,∨ and
¬, and the construction of R enforces the semantics of the �-formulae. The only semantic
conditions left to address are for ♦-formulae:

∀w.M, w ♦ψ ⇒ ∃v.R(w, v) ∧M, v ψ (5)

This equation can be used almost exactly to enforce the constraint. One thing to note is
that v must be in M, that is it must be in the set of “good” worlds being considered.

good(S) = S ∧
∧

♦ψ∈cl(ϕ0)

J♦ψK⇒ ∃V ′.R(V, V ′) ∧ S(V ′) ∧ JψK′ (6)

By S(V ′) here, we mean a “photocopy” of S, where each variable in V is replaced by the
variable in V ′ that corresponds to the same atom.

Given a set of potential good worlds S, this function retains the worlds that have candidate
R-successors in S to witness each diamond they claim to satisfy. That is, it removes from S all
potential worlds which cannot “satisfy” their diamonds in the set S.

The existential appearing in this formula is QBF-style quantification over a set of variables.
Intuitively, this is logically equivalent to the disjunction of all assignments to those variables.
In practice, the BDD package we used provides such a function. We have not looked into better
ways of doing it ourselves since this is beyond the scope of our research.

3 Potential Extensions to other Non-Classical Logics

We now show how the method for K [5] can be extended in various directions. Note that all
logics considered in this section are known to be decidable (via the “fpm method”), so the main
question is really just whether we can find an easy way to capture the method using BDDs.

3.1 Multimodal K, extra frame conditions and interacting relations

The huge diversity of propositional modal logics arises from the ability to modally characterise
numerous first-order frame conditions on the underlying binary Kripke relation (s).

Multimodal K. Pan et al. do not need to consider extra frame conditions on the reachability
relation since the modal logic K allows arbitrary frames. Extending from K to multimodal K
(aka ALC) is simple as the semantics of the modalities are independent of each other. Instead
of constructing a single R relation, there is now an Rπ relation for each action π. In the greatest
fixpoint computation, instead of referring to the relation R, the appropriate Rπ is used for the
〈π〉ψ formula at hand. Otherwise, everything follows as for K [5].

Extra frame conditions. Adding extra frame conditions is not quite so trivial. Marrero
handles seriality in CTL [4], while our work on Int [3] shows how to handle reflexivity and
transitivity. We revisit these conditions, and show how to handle euclideanness and symmetry.

Having computed a maximal base relation R0, how can we enforce reflexivity? A naive way
is to just take the reflexive closure of R0. However, the R0 we compute is maximally permissive,
so if (w,w) 6∈ R0 then this indicates that w cannot be part of a reflexive model. Thus it is not
sound to just add (w,w) back, instead we must remove w from the set of potential worlds by
considering only the reflexive worlds from the start:

47

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

W0 =Wrefl = R0(V, V) (7)

In a similar way, seriality can’t be enforced by modifying a base maximal relation R0. In
addition, as the fixpoint procedure refines the set of worlds and thus the domain of R, the
restricted relation may become non-serial, so seriality must be addressed as part of the fixpoint
function. Marrero enforces seriality by modifying the good function as follows:

good(S) = (∃V ′.R(V, V ′) ∧ S(V ′)) ∧ . . . (8)

Both seriality and reflexivity are modular in that adding these constraints work for any con-
text without knowledge of the maximal relation R0, while transitivity requires extra knowledge
of R0. The important thing about transitivity is the concept of preserving constraints forwards:
in the simple case of K4 this is equivalent to “boxes persist”, but with a more complicated
relation or logic this may need to be re-evaluated:

R(V, V ′) = R0(V, V ′) ∧
∧

�ψ∈Atoms(ϕ0)

J�ψK⇒ J�ψK′ (9)

Euclideanness can be treated in a very similar way to transitivity. Instead of constraints
persisting forwards, constraints must persist backwards: if some successor of w has a constraint
(�-formula) then w itself must have that constraint. For K5 this is encapsulated as follows:

R(V, V ′) = R0(V, V ′) ∧
∧

�ψ∈Atoms(ϕ0)

J�ψK′ ⇒ J�ψK (10)

Symmetry can be handled in a modular way given a maximal relation R0 by restricting it
to the maximal symmetric sub-relation as follows:

R(w, v) = R0(w, v) ∧R0(v, w) ≡ R(V, V ′) = R0(V, V ′) ∧R0(V ′, V) (11)

We can thus handle the basic modal logics KT,KD,K4,K5 and KB. The modularity of
most of these extensions, and the simplicity of transitivity and euclideanness means that we can
also handle combinations of these, allowing us to deal with the 15 basic normal modal logics.

Interacting relations. Another direction to consider is interactions between relations. We
showed that this approach extends to BiKt [3] which has two interacting modal relations.
In that case, we were able to sidestep the complications by showing that we could work in a
different frame without interaction conditions, and get equivalent answers.

Some interaction conditions are plausibly able to be handled directly however. Statements
such as one relation R1 contains R2 result in constraints like so:

R1
2(V, V ′) = R0

2(V, V ′) ∧R0
1(V, V ′) (12)

Thus, if wR1
2v, then wR0

1v. If there are multiple conditions, then these restrictions may have
to be chained together. Also, such restrictions do not preserve transitivity. If R2 is transitive
and R1 is not, then R1

2 may not be transitive after this restriction even if R0
2 is transitive.

Finally, one of the strengths of this method is its versatility. For example, there are two
ways to obtain tense logic Kt. The first is to start with two modal relations R� and R�, and
enforce R� = R−1� by requiring that each relation is a subset of the other. The other is to use a
single relation R which is defined from semantics referring to both �-formulae and �-formulae.

48

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

3.2 Description Logic

Lite description logics are deliberately weakened fragments of multimodal logics, which can of
course be solved using the approaches described here. However, constructing formulae from
BDDs is potentially an exponential operation in the number of atoms, and the fixpoints poten-
tially take an exponential number of iterations to compute, so the decision procedure would be
inherently exponential, not benefiting from the low computational complexity of Lite logics.

Additionally, a common use-case of description logics is in situations where constraints are
relatively simple, but the number of concepts and individuals becomes very large. In these
situations this method may not work well, as the number of atoms becomes large.

However, there are ways in which this approach may benefit the types of reasoning done in
description logics. Specifically, classifying a TBox reduces to calculating the greatest fixpoint
using the denotation of the TBox as an initial value instead of W, then multiple simple queries
can be made of the final set to determine whether C v D for each C and D.

Not all the features of the more expressive description logics are feasible either, specifically
it is not obvious to us how to handle cardinality constraints.

Functional properties may be possible by treating both ∃R.C and ∀R.C in the same way, as
they must both refer to the single successor that an individual must have. The constructed R
relation may not itself be functional, but by choosing exactly one of the options at each world,
a model where it is functional can be generated.

3.3 Hybrid logic

A fixed finite set of nominals is plausible, but binder causes problems both because the logic
becomes undecidable, and it is not obvious how to allow arbitrary worlds to be named.

K-with-nominals can be represented by requiring that that if a nominal i is true at some
world, any other world in the same model claiming to be i must be equivalent to that world.

To represent this, the set of atoms is not just those of K with additional atoms for each
nominal ik, but an additional m× |Atoms(ϕ0)| new atoms for m nominals ik. For each of the
“base” atoms a, the “additional” atom @ia is read as “In this model, the world i makes a true”.
These new atoms must be invariant over the modal relation as shown below at the left, and
must interact with the base nominal atoms as shown below at the right:

R(V, V ′)⇒ J@iaK⇔ J@iaK′ JiK⇒ J@iaK⇔ JaK

Now if there is a path along R and its converse between two worlds (that is, they appear in
the same model) that both claim to make i true, they must be represented by the same set of
atoms. Without complications such as irreflexivity or antisymmetry, we are able to treat the
equivalence classes as worlds themselves, and thus we can construct a model where the nominal
is true at exactly one world.

This choice of atoms works with non-atomic @iψ as well by deconstructing ψ into atoms,
using J@i(ψ ∧ ϕ)K = J@iψK ∧ J@iϕK, similarly for ∨ and ¬, and J@i@jψK = J@jψK.

Although the number of atoms is significantly larger than for K and thus performance may
well suffer, the procedure remains exptime . But because the ika atoms essentially partition
the set of worlds into non-interacting components, the impact on performance may be reduced.

49

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

4 Using BDDs to decide the µ-calculus

The µ-calculus is infamously tricky to work with, both understanding what a particular for-
mula “means” and deciding whether or not a given formula is satisfiable. The primary difficulty
arises from the almost arbitrary fixpoint computations that can be expressed, and the complex
interactions between nested fixpoints. Since Marrero [4] described a decision procedure making
use of BDDs which involved explicitly calculating least-fixpoints for the temporal “until” even-
tualities, we consider whether this can be extended to the µ-calculus. We present a procedure
which we believe decides the µ-calculus in exptime.

One point to note in particular from Marrero is the way that A(ϕUψ) was treated: not only
did each EX-formula have to have a successor (like diamonds in K), but they had to have a
successor which was consistent with the �-like nature of the least fixpoint being computed. This
concept of considering otherwise-unrelated formulae together is also required for the µ-calculus.

Another thing to note is that the traditional fpm-method does not work for the µ-calculus,
and instead automata are traditionally used. Unlike the other logics considered here, we attempt
to give a more rigorous explanation, and also give the proofs we currently have. Specifically we
believe that we have termination and soundness, but not yet completeness.

4.1 Syntax and semantics of the µ-calculus

Formulae of the µ-calculus are built from mutually disjoint sets of atomic formulae Prop, atomic
actions Act and atomic variables V ar, where p ∈ Prop, X ∈ V ar and π ∈ Act via:

ϕ ::= p | ¬p | X | ϕ ∧ ϕ | ϕ ∨ ϕ | µX.ϕ | νX.ϕ | [π]ϕ | 〈π〉ϕ
Models of µ-calculus formulae are structures M = (W, {Ri}, ρ). Given a valuation ϑ :

V ar → 2W on variables, denotations with respect to a model (W, {Ri}, ρ) are defined via [1]:

JpKϑ = ρ(p) J¬pKϑ = W \ ρ(p) JXKϑ = ϑ(X)

Jϕ ∧ ψKϑ = JϕKϑ ∩ JψKϑ Jϕ ∨ ψKϑ = JϕKϑ ∪ JψKϑ

JµX.ϕKϑ =
⋂
{S ⊆W | S ⊇ JϕKϑ[X:=S]} JνX.ϕKϑ =

⋃
{S ⊆W | S ⊆ JϕKϑ[X:=S]}

J[π]ϕKϑ = {w ∈W | ∀v.wRπv ⇒ v ∈ JϕKϑ} J〈π〉ϕKϑ = {w ∈W | ∃v.wRπv ∧ v ∈ JϕKϑ}

Note that JµX.ϕKϑ (JνX.ϕKϑ) can be expressed as least (greatest) fixpoints of λA.JϕKϑ[X:=A].
We will work with closed formulae, and variables are required to be uniquely bound, so for

X ∈ V ar ∩ cl(ϕ0) there is exactly one ξX.ψ ∈ cl(ϕ0) where ξ ∈ {µ, ν}. Thus a variable is
uniquely associated with a single fixpoint expression.

The questions we seek to answer are whether there exists a model M with a world w such
that w ∈ JϕK∅ (satisfiability), and whether there exists a model and world such that w 6∈ JϕK∅
(falsifiability/validity). We solve both questions simultaneously by determining the set of all
worlds “relevant to ϕ0” in any model M.

4.2 Defining denotations

In addition to the atoms used in multimodal K, we create atoms for fixpoints/variables of the
µ-calculus. That is, given the set cl(ϕ0) of all subformulae of ϕ0 and their negations (ensuring
to rename variables as necessary to maintain unique bindings), we define:

50

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

Atoms(ϕ0) = {[π]ψ | [π]ψ ∈ cl(ϕ0)} ∪ (Prop ∩ cl(ϕ0)) ∪ {µX.ψ | µX.ψ ∈ cl(ϕ0)}

Because least and greatest fixpoints are negation duals, we only add one to the set of atoms
similarly to how only �-formulae are made atoms and ♦-formulae are computed. Because each
variable is uniquely bound by exactly one fixpoint formula, we consider the worlds where X
holds to be equivalent to the worlds where ξX.ψ holds. If computing Jϕ0Kϑ0

eventually requires
computing JXKϑn , then at some intermediate point it must be computing JξX.ψKϑi . The value
of JξX.ψKϑi is a fixed point Z such that Z = JψKϑi[X:=Z]. Thus JXKϑn = Z, so X and ξX.ψ
have the same denotation, and we refer to the atom as X or ξX.ψ interchangeably.

Thus, we define the following:

JaK = {w ∈ W | w ∈ JaKϑ} where a ∈ Atoms(ϕ0) and ϑ(X) = JξX.ψKϑ
JXK = JξX.ψK where X is uniquely bound by ξX.ψ

JνX.ψK = ¬JµY.φK where µY.φ is the negation dual

J¬pK = ¬JpK
J〈π〉ψK = ¬J[π]¬ψK

Jψ1 ∧ ψ2K = Jψ1K ∧ Jψ2K
Jψ1 ∨ ψ2K = Jψ1K ∨ Jψ2K

It is important to note that JψK and JψKϑ have different meanings: JψK is something that
we construct, and we eventually want it to correspond to the semantic notion of JψKϑ, but this
is not the case yet.

The Rπ relations are constructed in the same manner as for multimodal K, but it is much
more important to note that Rπ is an over-approximation here. Because we now have variables,
the denotation for [π]X is not fixed, so while the Rπ we construct here will be useful, it does
not capture the entire semantics of �-formulae now.

4.3 Enforcing semantics

As with the other logics, we now want to construct a fixpoint formula that enforces the model-
theoretic semantics. The component of the fixpoint formula dealing with 〈π〉ψ formula is the
same as for multimodal K, so the remaining consideration is the fixpoints.

Instead of a shallow “local” evaluation, such as used for the limited eventualities in CTL,
because the fixpoint formulae expressible in the µ-calculus are almost arbitrary, we inspect the
formula deeply to compute the appropriate denotation.

For each least (greatest) fixpoint ξX.ψ in the closure we use the fixpoint semantics of the
logic, rather than the infinite intersection / union, by calculating λA.JψK[X:=A]: the denotation
of ψ given that the denotation of X is A. This involves computing nested fixpoints and dealing
with modalities as well. Diamond-formulae are simple, as the pre-image of the denotation of
the successor world can be computed.

However, box-formulae in the fixpoint are not as simple as negating and treating as dia-
monds. A world w satisfying 〈π〉ψ at some intermediate fixpoint valuation is interpreted as
“w can have a successor satisfying ψ”, which means that the negation or complement of this
set is interpreted as “w cannot have a successor satisfying ψ”. At intermediate stages this

51

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

interpretation can be overly restrictive, and we should instead consider “it is possible for w to
have 0 or more successors, all of which falsify ψ”.

For example, consider the fixpoint µX.[π]X in a closure {X, [π]X, 〈π〉q, q}. At some stage
when computing worlds where this least fixpoint X holds, we might consider worlds w =
{X, [π]X, 〈π〉q}, u = {X, [π]X, [π]¬q, q}, v = {X, [π]X, 〈π〉q, q}. According to Rπ, we have
Rπ(w, u), Rπ(w, v), Rπ(w,w), Rπ(u,w), Rπ(v, w), Rπ(v, u) and Rπ(v, v). Suppose that at some
iteration of the least fixpoint, u is found to be in the fixpoint, but w and v are not. If we
compute ¬∃V ′.Rπ(V, V ′)∧S(V ′)∧¬X(V ′), as [π]X ≡ ¬〈π〉¬X, then w and v will be excluded,
because Rπ(w, v) and Rπ(v, w). However, it is possible to construct a model with a world w
and without the edge Rπ(w, v), so this result is incorrect.

In order to correct this, we use something like the following formula:

J[π]ψK ∧
∧

〈π〉χ∈cl(ϕ0)

J〈π〉χK⇒ ∃V ′.Rπ(V, V ′) ∧ V(χ)′ ∧G([π]ψ)

Here V(χ) deeply expands χ according to the intuitions here and above, and G([π]ψ) is a term
to account for boxes being true simultaneously.

The intuition behind this formula is that if [π]ψ holds at a world, for that world to be
acceptable then all its existentials must be satisfiable in a way that is consistent with the box:
If 〈π〉χ is true, then there is an Rπ successor where χ is true (the ♦-formula is satisfied) and
this is consistent with the boxes that are true (the G term).

Before going into specifics of what G is, note that as-is the formula can have an infinite loop:
when considering the formula 〈π〉[π]X, the �-formula will recurse on the ♦-formula which will
refer once again to the �-formula. We resolve this by introducing another fixpoint formula,
such that any fixpoint of the formula gives a consistent denotation for [π]ψ. Then the greatest
fixpoint of this formula contains all fixpoints, and thus the greatest fixpoint of the formula gives
a maximal denotation for [π]ψ. This requires some changes elsewhere, which we address after
presenting the expansion as a whole.

The G term in the formula is intended to capture the restriction of boxes, in much the same
way as the constructed Rπ relation. The difference is that it once again deeply expands the
formulae and considers the current set of assumed denotations, both for fixpoint variables and
additionally for �-formulae.

To bring this all together, we define a function V(ψ, S, σvar, σ�) which performs the deep-
analysis of ψ given that all worlds must be in S, some variables have denotations given by σvar,
and some �-formulae have denotations given by σ�, shown in Figure 1.

Note that when a new fixpoint is encountered, the assignments to �-formulae are forgotten
during that calculation, since the assignments to variables changing can potentially change the
denotation of a �. For example [π]X may have some current denotation including worlds with
successors satisfying X, but then X is assigned the empty denotation, meaning that [π]X can
only be true at worlds with no π-successors.

Finally, we bring this all together for the greatest fixpoint formula as follows:

good(S) = S ∧
∧

〈π〉ψ∈cl(ϕ0)

J〈π〉ψK⇒ V(〈π〉ψ, S, ∅, ∅)

∧
∧

µZ.ψ∈cl(ϕ0)

JµZ.ψK⇒ V(µZ.ψ, S, ∅, ∅)

∧
∧

νZ.ψ∈cl(ϕ0)

JνZ.ψK⇒ V(νZ.ψ, S, ∅, ∅)

52

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

V(p, S, σvar, σ�) = JpK ∧ S
V(¬p, S, σvar, σ�) = ¬JpK ∧ S

V(X,S, σvar, σ�) =

{
σvar(X) ∧ S if X ∈ σvar
JXK ∧ S otherwise

V(ψ1 ∧ ψ2, S, σvar, σ�) = V(ψ1, S, σvar, σ�) ∧ V(ψ2, S, σvar, σ�)

V(ψ1 ∨ ψ2, S, σvar, σ�) = V(ψ1, S, σvar, σ�) ∨ V(ψ2, S, σvar, σ�)

V(µX.ψ, S, σvar, σ�) =

{
σvar(X) ∧ S if X ∈ σvar
LFP (λA.V(ψ, S, σvar[X := A], ∅)) otherwise

V(νX.ψ, S, σvar, σ�) =

{
σvar(X) ∧ S if X ∈ σvar
GFP (λA.V(ψ, S, σvar[X := A], ∅)) otherwise

V(〈π〉ψ, S, σvar, σ�) = S ∧ ∃V ′.Rπ(V, V ′) ∧ V(ψ, S, σvar, σ�)′

V([π]ψ, S, σvar, σ�) =

σ�([π]ψ) ∧ S if [π]ψ ∈ σ�
GFP (λA.S ∧ J[π]ψK ∧

∧
〈π〉χ∈cl(ϕ0)

J〈π〉χK⇒ ∃V ′.Rπ(V, V ′) ∧G(A) otherwise

∧V(χ, S, σvar, σ�[[π]ψ := A]))

where

G(A) =
∧

[π]φ∈Atoms(ϕ0)

J[π]φK⇒ V(φ, S, σvar, σ�[[π]ψ := A])′

Figure 1: The function to compute the denotation of a µ-calculus formula by deep-inspection.

In fact, the component dealing with ♦-formulae can also be written in the same manner as
for K, but this more general statement is easier on the proofs.

4.4 Proofs

First we note that all fixpoints can be computed accurately by repeated iteration. This is a
consequence of all the fixpoint formulae being monotone, and the Knaster-Tarski theorem.

We present a proof that the procedure described above is sound: If a formula is falsifiable,
then the procedure will find a witness.

We aim to prove that given a subset S of the filtration, any model M = (W, {Ri}, ρ) such
that the filtration of W is a subset of S, and a world w ∈W , if w ∈ JψK∅ then the representative
of w in the filtration is in V(ψ, S, ∅, ∅).

We do this by proving a stronger theorem:

Theorem 1. Given a model M = (W, {Ri}, ρ), a subset S of W, a partial map σvar from
fixpoint formulae to denotations, and a partial map σ� from �-formulae to denotations, if

1. the worlds of W are all represented in S; and

2. for each fixpoint variable Z ∈ dom(σvar), JξZ.ϕKσvar
= σvar(Z);

53

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

3. for each fixpoint variable Z 6∈ dom(σvar), when σvar is used as a valuation then JZKσvar =
σvar(Z) = JξZ.ϕKσvar

; and

4. for each formula [π]ϕ ∈ dom(σ�), J[π]ϕKσvar
= σ�([π]ϕ)

then for all w ∈W , if w ∈ JψKσvar
then w ∈ V(ψ, S, σvar, σ�).

We define an ordering on (ψ, σvar, σ�) ∈ cl(ϕ0)×((V ar∩cl(ϕ0))×W)×({[π]ψ | cl(ϕ0)}×W)
as follows:

Definition 2. (ψ1, σ1
var, σ

1
�) < (ψ2, σ2

var, σ
2
�) iff σ1

var ⊃ σ2
var or (σ1

var = σ2
var and (σ1

� ⊃ σ2
� or

(σ1
� = σ2

� and ψ1 is a strict subformula of ψ2.)))

This ordering is well-founded because ⊂ and strict subformulae are well-founded. The
ordering also corresponds to the definition of the V function.

Proof. We make use of well-founded induction over this ordering

• V(p, S, σvar, σ�). From the definition of J·K for atoms, if w ∈ JpKσvar then w ∈ JpK. Also
by assumption w ∈ S, so w ∈ JpK ∩ S.

• V(¬p, S, σvar, σ�). From the semantics, if w ∈ J¬pKσvar
then w ∈ M \ JpKσvar

⊆ ¬JpK.
Also by assumption w ∈ S, so w ∈ ¬JpK ∩ S.

• V(Z, S, σvar[Z := X], σ�). By definition, JZKσvar[Z:=X] must be X. Thus w ∈ X, and
w ∈ S by assumption, therefore w ∈ X ∩ S.

• V([π]ψ, S, σvar, σ�[[π]ψ := X]). By assumption 4, w ∈ X, and by assumption 1, w ∈ S.
Thus w ∈ X ∩ S.

• V(µZ.ψ, S, σvar[Z := X], σ�). By assumption 2, w ∈ X, and by assumption 1, w ∈ S.
Thus w ∈ X ∩ S

• V(νZ.ψ, S, σvar[Z := X], σ�). As above.

• V(X,S, σvar, σ�) when X 6∈ dom(σvar). By assumption 3, since w ∈ JXKσvar we have
that w ∈ JξX.ψKσvar . By the definition of J·K, this means that w ∈ JξX.ψK or equivalently
w ∈ JXK. Since w ∈ S by assumption, we therefore have w ∈ JXK ∧ S as required.

• V(ψ1 ∧ ψ2, S, σvar, σ�). If w ∈ Jψ1 ∧ ψ2Kσvar
then w ∈ Jψ1Kσvar

and w ∈ Jψ2Kσvar
. By

induction we therefore have w ∈ V(ψ1, S, σvar, σ�) and w ∈ V(ψ2, S, σvar, σ�), and thus
w is in the intersection as required.

• V(ψ1 ∨ ψ2, S, σvar, σ�). As for ψ1 ∧ ψ2.

• V(〈π〉ψ, S, σvar, σ�). If w ∈ J〈π〉ψKσvar
then there exists a v ∈ M such that wRπv, and

v ∈ JψKσvar
. By induction, such a v must be in V(ψ, S, σvar, σ�).

Consider one component of the constructed Rπ, say J[π]ϕK ⇒ JϕK′. If w ∈ J[π]ϕKσvar

then w ∈ J[π]ϕK by the definition of J·K. Additionally v ∈ JϕKσvar
due to the semantics of

�-formulae, so v ∈ JϕK. Thus (w, v) is in that component. If w 6∈ J[π]ϕKϑ then we have
w ∈ ¬J[π]ϕK and thus (w, v) is in the component. Thus (w, v) is in each component of
Rπ, so it is in their intersection and (w, v) ∈ Rπ.

Together with the assumed w ∈ S, this means that
w ∈ S ∧ ∃V ′.Rπ(V, V ′) ∧ V(ψ, S, σvar, σ�)′ as required.

54

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

• V(νX.ψ, S, σvar, σ�). Given that w ∈ JνX.ψKϑ, the semantics require that w ∈ JψKϑ[X:=A]

for some A ⊆ JψKϑ[X:=A]. For such A, each v ∈ A, must of course satisfy v ∈ JψKϑ[X:=A].
Since formulae are restricted to being monotone with respect to variable assignments,
A is a subset of some fixpoint, and the greatest fixpoint Z contains all fixpoints. Thus
w ∈ Jψϑ[X:=Z]K.

By induction, for each v ∈ Z we therefore have v ∈ V(ψ, S, σvar[X := Z], ∅), and so Z
is a fixed point of λA.V(ψ, S, σvar[X := A], ∅). Since the greatest fixpoints contains all
fixpoints, w is in the greatest fixpoint, and thus w ∈ V(νX.ψ, S, σvar, σ�).

• V(µX.ψ, S, σvar, σ�). Given that w ∈ JµX.ψKσvar , the semantics require that w ∈
⋂
{A ⊆

M | JψKσvar[X:=A] ⊆ A}.
Take Z = LFP (λA.A ∨ V(ψ, S, σvar[X := A], ∅)). Because Z is a fixed point, Z =
V(ψ, S, σvar[X := Z], ∅). Consider any v ∈ JψKσvar[X:=Z]. By induction,
v ∈ V(ψ, S, σvar[X := Z], ∅). This means that JψKσvar[X:=Z] ⊆ Z holds, and thus w ∈ Z,
and thus w ∈ V(µX.ψ, S, σvar, σ�) as required.

• V([π]ψ, S, σvar, σ�). when [π]ψ 6∈ dom(σ�).

We first show that

w ∈ (J〈π〉χK⇒ ∃V ′.Rπ(V, V ′) ∧G(J[π]ψKσvar
) ∧ V(χ, S, σvar, σ�[[π]ψ := J[π]ψKσvar

]))

for each 〈π〉χ. If w 6∈ J〈π〉χKσvar
then w ∈ J[π]¬ψ1Kσvar

and so w ∈ J[π]¬ψ1K = ¬J〈π〉ψ1K.

Otherwise, there must be some v ∈ M such that wRπv and v ∈ JχKσvar
. By induction,

v ∈ V)(χ, S, σvar, σ�[[π]ψ := J[π]ψKσvar]) since condition 4 holds by definition. Using the
same method as we did for 〈π〉ψ we have that (w, v) ∈ Rπ.

We must show that (w, v) satisfies each of the conjuncts of G(J[π]ψKσvar). If w 6∈ J[π]φKσvar

then w ∈ ¬J[π]φK, and thus the pair satisfies the conjunct. Otherwise v ∈ JφKσvar
, so by

induction v ∈ V(φ, S, σvar, σ�[[π]ψ := J[π]ψKσvar
]), so (w, v) satisfies the conjunct.

Thus we have shown that (w, v) must satisfy the existentially quantified formula, and
thus w satisfies the existential quantification for each 〈π〉χ in the closure.

Because w ∈ J[π]ψKσvar
we have w ∈ J[π]ψK, and by assumption we have w ∈ S. By

generalising, we have J[π]ψKσvar ⊆ f(J[π]ψKσvar) for the fixpoint expression we define, and
thus it is a subset of the greatest fixpoint. Thus w ∈ V([π]ψ, S, σvar, σ�) as required.

a

We can then apply this theorem to show that for any world w of any model M using
only worlds in S, if w ∈ JψK∅, then w ∈ V(ψ, S, ∅, ∅). Condition 1 of Theorem 1 is explicitly
enforced, and conditions 2 and 4 hold vacuously. Condition 3 potentially restricts the valuations
we consider, but this has no impact on closed formulae.

To show that this method is complete, an additional step is required: If w ∈ S, then
w ∈ good(S) for any world w in any model M.

Proof. Given that w ∈ S, the first conjunct is trivially satisfied. For the remaining conjuncts,
Suppose that w ∈ JψK∅ for ψ ∈ {〈π〉ψ1, µX.ψ1, νX.ψ1}. By Theorem 1 we have w ∈ V(ψ, S, ∅, ∅)
as required. Thus w is in each of the conjuncts, and so w ∈ good(S) as required. a

We now show that this procedure remains in exptime.

55

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

Theorem 3. The procedure described above can be computed in O(2O(n)) time.

Proof. Computing a BDD over a set of variables V takes time proportional to 2|V |. Since we
have two variables per atom, and we have O(N) atoms, each BDD formula can be computed in
O(2O(N)) time. Each fixpoint is computed by repeated iteration until the answer is unchanged.
The result space of each fixpoint is W of size 2|Atoms(ϕ0)|, so each fixpoint is computed in
O(2O(n)) iterations.

Consider the V function. Since S is fixed, we can associate each instance of the function with
a tuple of formula, fixpoint denotations, and �-formula denotations. The number of formulae
is polynomial in the size of the initial formula, and there are O(N2|Atoms(ϕ0)|) possible ways of
assigning fixpoint denotations and �-formula denotations. This means that there are O(2O(N))
different calls to V given S. There is the possibility that V may be called with the same
arguments multiple times. However, since it is pure functional, if this is the case then the
results can be cached and the exponential bound retained.

To complete the proof, observe that each call to V does at most an exponential amount
of work, computing a BDD or calling V at most exponentially many times, and the outer-
most greatest fixpoint formula calls interpret a linear number of times each iteration, thus the
procedure takes at most O(2N) time. a

5 Further work

µ-calculus. We have yet to prove that the method we describe for the µ-calculus is sound:
in theory the fixpoint computed may contain representatives for potential worlds which do not
appear in any model, and thus may find false counterexamples. One solution is to construct a
model for each representative in the final fixpoint, and we are currently working on this.

Methodology for semantic constraints. Another area worth considering is whether it is
possible to algorithmically construct BDDs to represent certain classes of first-order-definable
conditions. Currently we have tried to explain our insights for particular frame conditions
of interest (Section 3), but we do not have a mechanical translation from semantics to BDD
conditions. This kind of construction is possible in tableau methods [6], so similar methods
may allow for less human intuition in these BDD-based methods as well.

Substructural logics. When moving to substructural logics, instead of a binary Kripke
relation, there is often a ternary relation of some sort. In much the same way as we represented
a binary relation by having a single copy a′ of each atom a, we can represent a ternary relation
by having 2 copies a′ and a′′ of each atom a. The question then is whether we construct maximal
ternary relations and use them in the same way that we used the maximal binary relations.

Many substructural logics are undecidable, and thus we won’t be able to make a decision
procedure. Nonetheless we do believe that some decidable substructural are amenable to this
approach. We have started looking at a decidable fragment of separation logic, and believe it
to be feasible, but do not have any results yet.

First order logic. One area that we have yet to consider is extending to first order logics.
Once again many such logics are undecidable, but perhaps we can construct a semidecison
procedure, or perhaps this approach could work for a decidable fragment of first order logic.

56

BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

One of the first issues to consider is what set of atoms should be used. As soon as function
symbols are introduced, there are potentially an infinite number of distinct objects, distinguish-
able by how many times the function symbol is applied. If we cannot set a fixed finite space to
care about in the first place, then significant changes must follow. So far we have yet to find a
way of handling this without essentially using a different automated reasoning technique.

BernaysSchönfinkel class. This class of first order logic requires that in prenex normal
form, all existential quantifiers occur before any universal quantifier, and there are no function
symbols. Equivalently, the skolem form of the formulae contains only nullary functors/con-
stants. This restricted setting is known to be decidable.

We considered treating the constants as nominals, and predicates as relations or propositions
true of a world. However what should the closure be? If the closure includes the negation of
the input formula, then the closure includes formulae which are not in the Bernays-Schönfinkel
class, and will in general include existential statements.

BDDs for other methods. Given that the BDD-based decision procedures for CTL and
Int were competitive, we are also considering whether other automated reasoning methods
could benefit from using BDDs. In particular, we are implementing a tableau procedure using
BDDs. Potential benefits include fast equality checks; simple unsat caching by constructing a
BDD of known-bad formulae and restricting the tableau nodes considered to the complement
of that; and fast saturation phases.

References

[1] Julian Bradfield and Colin Stirling. Modal mu-calculi. In The Handbook of Modal Logic,
pages 721–756. Elsevier, 2006.

[2] R. Goré, J. Thomson, and F. Widmann. An experimental comparison of theorem provers for
CTL. In Temporal Representation and Reasoning (TIME), 2011 Eighteenth International
Symposium on, pages 49 –56, sept. 2011. doi: 10.1109/TIME.2011.16.

[3] Rajeev Goré and Jimmy Thomson. BDD-based automated reasoning for propositional bi-
intuitionistic tense logics. In IJCAR, 2012, to appear.

[4] Will Marrero. Using BDDs to decide CTL. Lecture Notes in Computer Science, 3440/2005:
222–236, 2005.

[5] Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi. BDD-based decision procedures for the
modal logic K. Journal of Applied Non-classical Logics, 49, 2005.

[6] R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. Logical Methods
in Computer Science, 7(2):1–32, 2011. doi: http://dx.doi.org/10.2168/LMCS-7(2:6)2011.

[7] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of
Mathematics, 5(4):285–309, 1955.

57

	Introduction
	An Abstract View of the fpm Method
	An operational view of the fpm method

	Implementation in BDDs
	Potential Extensions to other Non-Classical Logics
	Multimodal [], extra frame conditions and interacting relations
	Description Logic
	Hybrid logic

	Using BDDs to decide the -calculus
	Syntax and semantics of the -calculus
	Defining denotations
	Enforcing semantics
	Proofs

	Further work

