
A Refutation Procedure for Proving Satisfiability of
Constraint Specifications on XML Documents ∗

Marisa Navarro1 and Fernando Orejas2

1 Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
marisa.navarro@ehu.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain
orejas@lsi.upc.edu

Abstract

In this paper we first present three sorts of constraints (positive, negative and conditional ones) to specify that
certain patterns must be satisfied in an XML document. These constraints are built on boolean XPath patterns. We
define a specification as a set of clauses whose literals are constraints. Then, to reason about these specifications, we
study some sound rules which permit to infer, subsume or simplify clauses. The main goal is to design a refutation
procedure (based on these rules) to test if a given specification is satisfiable or not. We have formally proven the
soundness of our procedure and we study the completeness and termination of the proposed method.

1 Introduction
XPath [12, 16] is a well-known language for navigating an XML document (or XML tree) and returning
a set of answer nodes. Since XPath is used in many XML query languages as XQuery, XSLT or XML
Schema among others [15, 13, 14], a great amount of papers deal with different aspects on different
fragments of XPath. For instance, in [3] an overview of formal results on XPath is presented concerning
the expressiveness of several fragments, complexity bounds for evaluation of XPath queries, as well as
static analysis of XPath queries. In [4] they study the problem of determining, given a query p (in a given
XPath fragment) and a DTD D, whether there exists an XML document conforming to D and satisfying
p. They show that the complexity ranges from PTIME to undecidable, depending on the XPath fragment
and the DTD chosen. The work presented in [5] deals with the same problem (in a particular case) and
it uses Hybrid Modal Logic to model the documents and some class of schemas and constraints. They
provide a tableau proof technique for constraint satisfiability testing in the presence of schemas.

Our approach is different than the previous ones in two aspects. On the one hand, we do not consider
any DTD or schema, and we use a simple fragment of XPath. In this sense our approach is simpler than
previous ones. But, on the other hand, our aim is to define specifications of classes of XML documents
as sets of constraints on these documents, and to provide a form of reasoning about these specifications.
In this sense, our main question is satisfiability, that is, given a set of constraints S, whether there exists
an XML document satisfying all constraints in S. Moreover, we are looking for refutation procedures,
based on sound and complete inference rules. In addition to checking satisfiability, these rules can be
used to infer other constraints from the given set, which can help us to optimize the given specification.

Some other work, which shares part of our aims, is the approach for the specification and verification
of semi-structured documents based on extending a fragment of first-order logic [2, 7]. They present
specification languages that allow us to specify classes of documents, and tools that allow us to check if
a given document (or a set of documents) follows a given specification. However, they do not consider
the problem of defining deductive tools to analyze specifications, for instance to look for inconsistencies.

∗This work has been partially supported by the Spanish Project TIN2013-46181-C2-2-R, the Basque Project GIU12/26, and
grant UFI11/45.

T. Kutsia, A. Voronkov (eds.), SCSS 2014 (EPiC Series, vol. 30), pp. 47–61 47

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

a

b *

c(x) d

Figure 1: A tree pattern with answer node (marked x)

Schematron [8] has a more practical nature. It is a language and a tool that is part of an ISO standard
(DSDL: Document Schema Description Languages). The language allows us to specify constraints on
XML documents by describing directly XML patterns (using XML) and expressing properties about
these patterns. Then, the tool allows us to check if a given XML document satisfies these constraints.
However, as in the previous approach, Schematron provides no deductive capabilities. Finally, we
consider the work presented in [10]. It shows how to use graph constraints as a specification formalism,
which can be used to specify classes of semi-structured documents, and how to reason about these
specifications, providing refutation procedures based on inference rules that are sound and complete.

We follow the main ideas given in [10] trying to apply them to XML documents. Our constraints are
based on Xpath queries, as given in [9], which contain branching, label wildcards and can express de-
scendant relationships between nodes. In particular, their tree patterns are an alternative representation
of XPath queries consisting of node tests, the child axis (/), the descendant axis (//) and wildcards (*).
The answer nodes are marked with (x). For instance, Figure 1 shows a tree pattern p that when applied
to a given XML document t (which is also represented by a tree but in this case without descendant axis
or wildcards), it must check if the root node in t is labelled a, if some child node of the root node in t
is labelled b, and if some descendant node of the root node in t has both a child node labelled d and a
descendant node labelled c. If all of these conditions are satisfied, the application p(t) will return a set
with such last descendant nodes (the nodes marked with x); otherwise, it will return the empty set.

Since our purpose is to reason on XML documents by means of a set of constraints, and not to obtain
the answer nodes, we shall consider tree patterns without answer marks (which are called Boolean tree
patterns in [9]). The application of such a pattern to a document t will return true, if t satisfies the
conditions specified by the pattern, or false otherwise.

We consider three kinds of (atomic) constraints. The first one is ∃p where p is a tree pattern. This
constraint will be satisfied by a document t if p(t) is true. The second one is ¬∃p that will be satisfied
by a document t if p(t) is false . The third sort of constraint is written ∀(c : p→ q), where both p and q
are tree patterns (related by c in a special way) and, roughly speaking, it will be satisfied by a document
t if p(t) implies q(t). Nevertheless, the application of the ideas in [10] to our setting is not trivial, as
discussed in Section 3.

Our aim is to study adequate inference rules to find a sound and complete refutation procedure for
checking satisfiability of a given specification. The inference rules take a format similar to the inference
rules given in [10], but again the particularization to our setting needs to define appropriate operators and
to prove new results. Moreover, these rules allow to infer, subsume and simplify clauses; that is, they
permit to manipulate a specification and obtain another optimized specification which is semantically
equivalent to the given one.

The paper is organized as follows. Section 2 contains some basic notions and notational conventions
we are going to use along the paper. Section 3 introduces the three sorts of constraints that we use as
literals of the clauses in a specification. Section 4 presents the main inference rules for our refutation

48

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

procedure, proving soundness. We also give an example of refutation for a given specification. Then,
in Section 5 we show that some other rules (named unfolding rules) are necessary in order to obtain
completeness. We also add some subsumption and simplification rules to produce a more efficient
procedure and we study the conditions for the termination of the refutation procedure. Having done this
study, we propose in Section 6 a refutation procedure by defining how to apply the rules. Finally, in
Section 7 we provide some conclusions and further work.

2 Basic Definitions and Notations

In this section we introduce some basic concepts and notations that are used along the paper.

2.1 XML Documents and Patterns

We consider an XML document as an unordered and unranked tree with nodes labelled from an infinite
alphabet Σ. The symbols in Σ can represent the element labels, attribute labels, and text values that can
occur in documents. A document on Σ = {a, b, c, d, e, f, g} is given in the right part of Figure 2. By
considering that the trees are unordered and unranked, the subtrees can commute (the "sibling ordering"
is irrelevant), and there are no restrictions on the number of children a node can have.

Definition 2.1. Given a signature Σ, a document on Σ is a tree t whose nodes are labelled with symbols
from Σ and with one sort of edges denoted /. TΣ denotes the set of all documents on alphabet Σ. Given
a document t ∈ TΣ, Nodes(t) and Edges(t) denote respectively the sets of nodes and edges in t;
Root(t) denotes its root node; and for each n ∈ Nodes(t), Label(n) denotes the label of such a node
n. Edges+(t) denotes the transitive closure of Edges(t). Each edge in Edge(t) is represented (x, y)
with x, y ∈ Nodes(t). Each (x, y) ∈ Edges+(t) represents a path in t from node x to node y.

As said above, we use patterns as an alternative representation of queries. In particular, we are
interested in boolean patterns. A pattern on Σ = {a, b, c, d, e, f, g} is given in the left part of Figure 2.

Definition 2.2. Given a signature Σ, a pattern on Σ is a tree p whose nodes are labelled with symbols
from Σ∪{∗} and with two sorts of edges: the descendant edges denoted // and the child edges denoted /.
PΣ denotes the set of all patterns on alphabet Σ. Given a pattern p ∈ PΣ, we use the same notations as
before: Nodes(p), Edges(p) and Root(p) for the nodes, the edges and the root of p, and Label(n) for
the label of n ∈ Nodes(p); but now the edges are distinguished: Edges(p) =Edges//(p)∪Edges/(p).
Edges+(p) denotes the transitive closure of Edges(p), that is, (x, y) ∈ Edges+(p) represents a path
in p from node x to node y with edges of type / or // along the path.

For the sake of simplicity, from now on we omit the signature Σ. Along this paper, patterns will be
drawn in the figures as trees, but to write them textually we will use the following format: A pattern p
with root labelled a and subtrees p1, . . . , pn will be textually written p = a(!p1) . . . (!pn) where each pi
is recursively written in the same format, and ! being / or // to indicate the edge from the root to each
subtree pi. Some parenthesis can be omitted in the case of having only one subtree.

From the previous definitions, it is clear that documents coincide with a special case of patterns:
those patterns with no label ∗ and with no edge of type //. For this reason, in the next section we
will define the relation between two patterns, and as a particular case we will have defined the relation
between a pattern and a document.

49

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

a // a

b //*

,,

b e

c

,,

d

,,

g f

c d

Figure 2: A pattern p, a document t and a monomorphism h : p→ t

2.2 Pattern Homomorphisms and Pattern Models
We define here the notion of homomorphism between two patterns and also (as a particular case) the
notion of homomorphism between a pattern and a document. The later one will be used to define which
documents are the models of a pattern. That is, from a logical point of view, we can see patterns as
formulae, documents as structures and we can define a notion of pattern satisfaction.

Definition 2.3. Given two patterns p, q ∈ P , a homomorphism from p to q is a function h : Nodes(p)→
Nodes(q) satisfying the following conditions:

• Root-preserving: h(Root(p)) = Root(q);

• Label-preserving: For each n ∈ (p), Label(n) = ∗ or Label(n) = Label(h(n));

• Child-edge-preserving: For each (x, y) ∈ Edges/(p), (h(x), h(y)) ∈ Edges/(q).

• Descendant-edge-preserving: For each (x, y) ∈ Edges//(p), (h(x), h(y)) ∈ Edges+(q).

From now on, we will simply write h : p → q for h : Nodes(p) → Nodes(q). The definition of a
homomorphism from a pattern p to a document t is the previous definition. Note that in this particular
case, Edges(t) = Edges/(t).

Definition 2.4. Given a pattern p ∈ P and a document t ∈ T , we say that t satisfies p, denoted t � p, if
there exists a monomorphism (i.e., an injective homomorphism) from p to t. The model set of a pattern
p is the set of documents satisfying p: Mod(p) = {t ∈ T | t � p}

In Figure 2 there is an example of an injective homomorphism h : p → t from the pattern p =
a(/b)(//∗ (/c)(/d)) to the document t = a(/e/f(/c)(/d))(/b/g). The homomorphism h is drawn with
dotted arrows. We can see that the document t satisfies the pattern p because its root is labelled with a, it
has a child node labelled b, and it has a descendant node (in the example labelled with f) with two child
nodes labelled with c and d respectively. In Figure 3 there is an example of a monomorphism h : p→ q
from the pattern p = ∗//e to the pattern q = a(/e)(//b/c). The monomorphism h is drawn with dotted
arrows. The existence of such monomorphism implies that all models of q are also models of p.

The following lemma relates monomorphisms and models for two patterns.

Lemma 2.1. Given two patterns p, q ∈ P :

• If there exists a monomorphism h : p→ q then Mod(q) ⊆ Mod(p).

• Mod(q) ⊆ Mod(p) does not imply that there is a monomorphism h : p→ q.

50

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

Proof. The first point: Let t be a document in Mod(q), then there exists a monomorphism f from q to
t. Then the composition f ◦ h is a monomorphism from p to t and therefore the document t is also a
model for p. The second point is illustrated with an example in [9] .

3 Constraints, Clauses and Specifications
We take from [10] the notion of graph constraint to define our notion of pattern constraint. In that paper
one sort of constraints is of the form ∃C, with C being a graph. Then a given graph G is defined to
verify this constraint when G contains C as a subgraph. However, translating the ideas in [10] to our
setting is not trivial mainly for two reasons. We deal with patterns that are trees having edges of type //,
but the related notion of “path" is not considered for graph constraints. On the other hand, in the setting
of graph constraints, models and formulas are both graphs, while in our setting models are documents
and formulas are patterns. This difference makes more complicated to apply to our framework results
given in [10].

3.1 Constraints and Clauses
We consider three kinds of constraints: positive, negative and conditional constraints. The underlying
idea of our constraints is that they should specify that certain patterns must occur (or must not occur) in
a given document. For instance, the simplest kind of constraint, ∃p, specifies that a given document t
should satisfy p. Obviously, ¬∃p specifies that a given document t should not satisfy p. A more complex
kind of constraints is of the form ∀(c : p → q) where c is a prefix function. Roughly speaking, this
constraint specifies that whenever a document t verifies the pattern p it should also verify the extended
pattern q (see Definition 3.3 below). In general we will have clauses formed as disjunctions of these
three types of constraints.

Definition 3.1. Given two patterns p and q, a prefix function from p to q is an injective function c :
Nodes(p)→ Nodes(q) that satisfies the following conditions:

• Root-identity: c(Root(p)) = Root(q);

• Label-identity: For each n ∈ Nodes(p), Label(n) = Label(c(n));

• Child-edge-identity: For each (x, y) ∈ Edges/(p), (c(x), c(y)) ∈ Edges/(q);

• Descendant-edge-identity: For each (x, y) ∈ Edges//(p), (c(x), c(y)) ∈ Edges//(q).

We will simply write c : p→ q and we will say that p is a prefix of q. Obviously each prefix function
is a monomorphism, but the contrary is not true. See for instance that the monomorphism in Figure 3 is
not a prefix function since it violates two conditions: "Label-identity" and "Descendant-edge-identity".

* // a

e // e b

c

Figure 3: A monomorhism h : p→ q between two patterns

51

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

Definition 3.2. Given a pattern p, ∃p denotes a positive constraint and ¬∃p denotes a negative con-
straint. A conditional constraint is denoted ∀(c : p → q) where p and q are patterns and c : p → q is a
prefix function.

A clause α is a finite disjunction of literals L1 ∨ L2 ∨ · · · ∨ Ln, where, for each i ∈ {1, . . . , n}, the
literal Li is a (positive, negative or conditional) constraint. The empty disjunction is called the empty
clause and it can be represented by FALSE .

Satisfaction of clauses is inductively defined as follows.

Definition 3.3. A document t ∈ T satisfies a clause α, denoted t |= α, if it holds:

• t |= ∃p if t � p (that is, if there exists a monomorphism h : p→ t);

• t |= ¬∃p if t 2 p (that is, if there does not exist a monomorphism h : p→ t);

• t |= ∀(c : p→ q) if for every monomorphism h : p→ t there is a monomorphism f : q → t such
that h = f ◦ c.

• t |= L1 ∨ L2 ∨ · · · ∨ Ln if t |= Li for some i ∈ {1, . . . , n}.

Let us see what satisfaction of a conditional constraint means. Consider the conditional constraint
∀(c : p → q) with p = ∗//a , q = ∗//a/b and c being the obvious prefix function from p to q. By
Definition 3.3, a document satisfies this constraint if each node (descendant of the root) labelled a has
a child node labelled b. Then the document t = g(/a/b)(/a/h) does not satisfy the constraint. In fact,
for the monomorphism h : p→ t that applies the node a in p into the second node a in t, there does not
exist a monomorphism f : q → t such that h = f ◦ c. However, note that t |= q. Therefore, in general,
to verify the conditional constraint ∀(c : p→ q) is stronger than to verify the clause C = ¬∃p ∨ ∃q.

3.2 Specifications

We assume that a specification consists of a set of clauses. As said in the introduction, our aim is to
find a sound and complete refutation procedure for checking satisfiability of specifications consisting of
clauses as defined above. Here we give an example of an unsatisfiable specification.

Example 3.1. Consider the specification S = {C1, C2, C3, C4} where C1 = ∃(∗//b) ∨ ∃(∗//e), C2 =
∀(c2 : ∗//b→ ∗(//b)(/e)), C3 = ∀(c3 : ∗//e→ ∗(//e)(/b)), and C4 = ¬∃(∗(/b)(/e)).
Clause C1 specifies that the document(s) must have a node labelled b or e; C2 says that if the document
has some node labelled b then its root must have a child node labelled e; similarly, C3 says that if the
document has some node labelled e then the root must have a child node labelled b; and finally, C4

says that the root cannot have two children nodes labelled b and e. It is easy to test, for instance, that
the document t1= a(/b)(/f/e) satisfies C1, C3 and C4 but t1 6|= C2. Similarly, the document t2 = a/e
satisfies C1, C2 and C4 but t2 6|= C3. There is no document satisfying all clauses in S.

4 Rules for a Refutation Procedure

As it is often done in the area of automatic reasoning, the refutation procedure that we present in this
paper is defined by means of some inference rules. Each rule tells us that if certain premises are satisfied
then a given consequence will also hold. In this context, a refutation procedure can be seen as a (possibly
nonterminating) nondeterministic computation where the current state is given by the set of formulas
that have been inferred until the given moment, and where a computation step means adding to the given

52

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

state the result of applying an inference rule to that state. In our case, we assume that in general the
inference rules have the following form, where the premises Γ1, Γ2 and the conclusion Γ3 are clauses 1:

Γ1 Γ2

Γ3

A refutation procedure for a set of clauses S is a sequence of inferences: S0 ⇒ S1 ⇒ · · · ⇒ Si ⇒ . . .
where the initial state is the original specification (i.e., S0 = S) and where we write Si ⇒ Si+1 if there
is an inference rule such that Γ1,Γ2 ∈ Si, and Si+1 = Si ∪ {Γ3}.

In general, a refutation procedure for S is sound if whenever the procedure infers the empty clause it
holds that S is unsatisfiable. And a procedure is complete if, whenever S is unsatisfiable, the procedure
infers FALSE . In this framework, since the procedures are nondeterministic, there is the possibility that
we never apply some key inference. To avoid this problem we will always assume that the procedure is
fair, which means that every inference will eventually be performed (they are not postponed forever).

4.1 Inference Rules
Here we present three inference rules (R1), (R2) and (R3), for our refutation procedure. In our context,
the clauses are disjunction of literals where each literal can be of the form ∃p, ¬∃p, or ∀(c : p → q).
We are going to present and explain each rule giving some examples of them.

∃p1 ∨ Γ1 ¬∃p2 ∨ Γ2

Γ1 ∨ Γ2
(R1)

if there exists a monomorphism m : p2 → p1

Rule (R1) is similar to the Resolution rule, since the two premises have literals that are, in some sense,
“complementary": one is a positive constraint, the other one is a negative one, and the condition about
the monomorphism from p2 to p1 plays the same role as unification. Note that when Γ1 and Γ2 are
empty, the rule (R1) infers the empty clause FALSE .

For instance, for p1 = a(/e)(// ∗ (/c)(/b)) and p2 = ∗//b, there exists a monomorphism from p2 to
p1 that applies the root of p2 (labelled *) into the root of p1 (labelled a), the node in p2 labelled b into
the node in p1 labelled b, and the edge // in p2 into a path in p1 formed by // followed by /. Then the
empty clause FALSE is obtained as the conclusion of rule (R1) from the premises ∃p1 and ¬∃p2.

∃p1 ∨ Γ1 ∃p2 ∨ Γ2

(
∨

s∈p1⊗p2
∃s) ∨ Γ1 ∨ Γ2

(R2)

Rule (R2) builds a disjunction of positive constraints from two positive constraints. It uses the operator
⊗ that we define below. Informally speaking, given two patterns p1 and p2, p1⊗p2 denotes the set of
patterns that can be obtained by “combining" p1 and p2 in all possible ways.

For instance, given the patterns p1 = a(/b/e)(//c) and p2 = a//b/x, the set p1⊗p2 contains the two
patterns: s1 = a(/b(/e)(/x))(//c) and s2 = a(/b/e)(//b/x)(//c). Each one corresponds with a way of
combining p1 and p2; the nodes labelled b are shared in s1 while there are two different nodes b in s2.

The underlying idea is that all patterns s in p1⊗p2 must verify that every document that is a model
of s must be a model of p1 and a model of p2. Conversely, every document that is a model of both p1

and p2 must be a model of some s in p1⊗p2. In some cases FALSE can be inferred by rule (R2).

1Clauses are seen as sets of literals, i.e. in a clause written L ∨ Γ, L is not necessarily the leftmost literal in the clause.

53

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

Definition 4.1. Given two patterns p1 and p2, p1⊗p2 is defined as the following set of patterns: p1⊗p2 =
{s ∈ P | there exist jointly surjective monomorphisms inc1 : p1 → s and inc2 : p2 → s} where “joinly
surjective" means that Nodes(s) = inc1(Nodes(p1)) ∪ inc2(Nodes(p2)).

Lemma 4.1. Given two patterns p1 and p2, the set of patterns p1 ⊗ p2 is the empty set if and only if p1

and p2 have different labels in Σ. Then
∨

p∈p1⊗p2
∃p is the clause FALSE .

Proof. If the roots of p1 and p2 have different labels in Σ (for instance, a and b) then no combination s
is possible since inc1 : p1 → s implies that the root of s must be labelled a and inc2 : p2 → s implies
that the root of smust be labelled b. Conversely, if the roots of p1 and p2 have the same label a (or if one
of them is a and the other one is ∗) then the document s with root labelled a and whose set of subtrees
is the union of the subtrees of p1 and p2 is an element in p1 ⊗ p2.

∃p1 ∨ Γ1 ∀(c : p2 → q) ∨ Γ2

(
∨

s∈p1⊗c,mq ∃s) ∨ Γ1 ∨ Γ2
(R3)

if there is a monomorphism m : p2 → p1 that cannot be extended to f : q → p1 such that f ◦ c =m.

Rule (R3) is similar to (R2) in the sense that it builds a disjunction of positive constraints, but now from
a positive constraint ∃p1 and a conditional constraint ∀(c : p2 → q) . This rule is applied when there is
a monomorphism from p2 to p1 that cannot be extended to another one from q to p1 via c. That is, there
is a monomorphism m : p2 → p1 but there is no monomorphism f : q → p1 such that f ◦ c =m.

Rule (R3) uses the operator ⊗c,m that we define below. Informally speaking, given a pattern p1, a
prefix function c : p2 → q (that is, a pattern q with prefix p2) and a monomorphism m : p2 → p1,
p1 ⊗c,m q denotes the set of patterns that can be obtained by combining p1 and q in all possible ways,
but maintaining p2 shared.

For instance, given the patterns: p1 = a(/b/e)(//c/i), p2 = ∗//b, and q = ∗(//b//a)(//c/d),
with the unique possible monomorphism m : p2 → p1 and the unique possible prefix function
c : p2 → q, the set p1 ⊗c,m q contains the patterns s1 = a(/b(/e)(//a))(//c/i)(//c/d) and s2 =
a(/b(/e)(//a))(//c(/i)(/d)). Note that s2 is similar to s1 but with only one node labelled c.

Definition 4.2. Given a pattern p1, a prefix function c : p2 → q, and a monomorphism m : p2 → p1,
p1 ⊗c,m q is defined as the following set of patterns: p1 ⊗c,m q = {s ∈ P | there exist jointly surjective
monomorphisms inc1 : p1 → s and inc2 : q → s such that inc1 ◦m = inc2 ◦ c}.

The underlying idea is that all patterns s in p1 ⊗c,m q must verify that every document t that is a
model of s must be a model of p1 and a model of q. However, such a document t is not necessarily a
model of the conditional constraint ∀(c : p2 → q). Conversely, every document that is a model of both
p1 and ∀(c : p2 → q) must be a model of some s in p1 ⊗c,m q, as it is established in Lemma 4.2.

4.2 Example of Refutation
Consider the specification given in Example 3.1, S = {C1, C2, C3, C4} with C1 = ∃(∗//b) ∨ ∃(∗//e),
C2 = ∀(c2 : ∗//b→ ∗(//b)(/e)), C3 = ∀(c3 : ∗//e→ ∗(//e)(/b)), and C4 = ¬∃(∗(/b)(/e)).
We can prove that this set of clauses is unsatisfiable by applying the inference rules until obtaining the
empty clause, in the following way:

1.- (R3) applied to C1 and C2 gives C5 = ∃(∗(//b)(/e)) ∨ ∃(∗//e)
2.- (R3) applied to C5 and C3 gives C6 = ∃(∗(//b)(/e)(/b)) ∨ ∃(∗(/e)(/b)) ∨ ∃(∗//e)
3.- (R1) applied to C6 and C4 gives C7 = ∃(∗(/e)(/b)) ∨ ∃(∗//e)

54

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

4.- (R1) applied to C7 and C4 gives C8 = ∃(∗//e)
5.- (R3) applied to C8 and C3 gives C9 = ∃(∗(//e)(/b))
6.- (R3) applied to C9 and C2 gives C10 = ∃(∗(//e)(/b)(/e)) ∨ ∃(∗(/b)(/e))
7.- (R1) applied to C10 and C4 gives C11 = ∃(∗(/b)(/e))
8.- (R1) applied to C11 and C4 gives FALSE .

It may be noted that in step 2, the disjunction ∃(∗(//b)(/e)(/b)) ∨ ∃(∗(/e)(/b)) is the result of doing∨
s∈p1⊗c,mq ∃s for p1 = ∗(//b)(/e) and ∀(c : p2 → q) = C3. Similarly in step 6.

4.3 Soundness of the Inference Rules
For proving soundness of a refutation procedure it is enough to prove the soundness of its rules. We
present first a property and then prove the soundness of each rule.

Proposition 4.1. (Pair Factorization Property)
Given three patterns p1, p2, r, and two monomorphisms f1 : p1 → r and f2 : p2 → r, there exists
a pattern s ∈ p1 ⊗ p2, with monomorphisms inc1 : p1 → s and inc2 : p2 → s, and there exists a
monomorphism h : s→ r such that h ◦ inc1 = f1 and h ◦ inc2 = f2. In the particular case when r is a
document, this property means that r is a model of s . Graphically:

p1

inc1

��

f1

''
s

h // r

p2

inc2

OO

f2

77

Proof. Since f1, f2 are monomorphisms, the roots of p1 and p2 cannot have different labels in Σ.
Moreover, some s ∈ p1 ⊗ p2 holds this property. Such pattern s must be chosen such that, for every
m ∈ Nodes(p1) and n ∈ Nodes(p2): if f1(m) = f2(n) then inc1(m) = inc2(n) and if f1(m) is an
ancestor (respectively descendant) of f2(n), inc1(m) must not be a descendant (respectively ancestor)
of inc2(n). Then h is well-defined.

Lemma 4.2. Rules (R1), (R2), and (R3) are sound.

Proof. A rule with premises Γ1 and Γ2 and conclusion Γ3 is sound if for every document t: if t |= Γ1

and t |= Γ2 then t |= Γ3.
Rule (R1). Let t be a document and suppose that t |= ∃p1∨Γ1, t |= ¬∃p2∨Γ2, and that there exists

a monomorphism m : p2 → p1. It cannot happen that t |= ∃p1 and t |= ¬∃p2, since if t |= ∃p1 then
there exists a monomorphism h : p1 → t and it implies that h ◦m : p2 → t is also a monomorphism,
meaning that t |= ∃p2. Therefore, t |= Γ1 ∨ Γ2.

Rule (R2). Let t be a document such that t |= ∃p1 ∨ Γ1 and t |= ∃p2 ∨ Γ2. The cases where
t |= Γ1 or t |= Γ2 are trivial. Suppose that t |= ∃p1 and t |= ∃p2. It means that there are two
monomorphisms h1 : p1 → t and h2 : p2 → t. By Proposition 4.1, there exists some s ∈ p1 ⊗ p2

verifying the pair factorization property with h : s → t being a monomorphism. Then t |= ∃s and
therefore t |=

∨
s∈p1⊗p2

∃s.
Rule (R3). Let t be a document such that t |= ∃p1 ∨ Γ1 and t |= ∀(c : p2 → q) ∨ Γ2, and suppose

that the condition of the rule is fulfilled for the monomorphism m : p2 → p1. The cases where t |= Γ1

or t |= Γ2 are again trivial. Suppose that t |= ∃p1 and t |= ∀(c : p2 → q), and let us see that t |= ∃s
for some s in p1 ⊗c,m q. Since t |= ∃p1, there exists a monomorphism h1 : p1 → t. Then h1 ◦m is
also a monomorphism from p2 to t. From here, since t |= ∀(c : p2 → q), there is a monomorphism

55

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

h2 : q → t such that h1 ◦m = h2 ◦c. On other hand, we now that for each element s in p1⊗c,m q it holds
that inc1 ◦m = inc2 ◦ c. Choose s such that, for each pair of nodes x in p1 and y in q, the following
properties hold:

a) If h1(x) = h2(y) then inc1(x) = inc2(y).
b) If h1(x) is an ancestor (respectively descendant) of h2(y) in t then inc1(x) is not a descendant

(repectively an ancestor) of inc2(y) in pattern s.
Then we can build a monomorphism h : s → t verifying h ◦ inc1 = h1 and h ◦ inc2 = h2. Such
monomorphism h is defined as follows: For each node z in inc1(p1): h(z) = h1(inc1

−1(z)). For
each node z in inc2(q): h(z) = h2(inc2

−1(z)). By property a), h is well-defined for the nodes in
inc1(p1) ∩ inc2(q); by property b), h : s→ t is a monomorphism. Therefore t |= ∃s. Graphically:

p1

inc1

��

h1

&&
p2

m

88

c

&&

s
h // t

q

inc2

OO

h2

88

5 Looking for Completeness
We have seen that our refutation procedure consisting of the three inference rules (R1), (R2) and (R3) is
sound, that is, whenever the procedure infers the empty clause from a set of clauses S, we have proven
that S is unsatisfiable. However, the procedure is not complete: It may happen that the clause FALSE
is not infered by the procedure although S is unsatisfiable, as the following example shows.

Example 5.1. Consider the specification S = {C1, C2, C3} which contains the clauses: C1 = ∃(a//b),
C2 = ¬∃(a/ ∗ //b), and C3 = ¬∃(a/b). Obviously, rules (R2) and (R3) cannot be used here. Rule (R1)
cannot be applied to C1 and C2, because there is no monomorphism from (a/∗//b) to (a//b), and (R1)
cannot be applied to C1 and C3, because there is no monomorphism from (a/b) to (a//b). However C1

is semantically equivalent to the clause C ′1 = ∃(a/ ∗ //b)∨ ∃(a/b), since for every document t it holds:
t |= C1 if and only if t |= C ′1. Therefore S is unsatisfiable but our procedure does not infer FALSE .

5.1 Unfold Rules
The problem detected in the previous example can be solved by adding some new rules to our refutation
procedure to allow unfolding a pattern like a//b in the two cases a/b and a/∗//b. Then, by transforming
C1 into C ′1, the procedure can infer from the set {C ′1, C2, C3} by applying twice the rule (R1).
As a/ ∗ //b and a// ∗ /b are equivalent patterns, we will need to have two different ways of unfolding
a descendant edge (or //-edge). The two unfolding rules are the following (to indicate a specific edge //
in a tree T to be unfolded we will write T[//]):

∃p ∨ Γ

∃p1 ∨ ∃p2 ∨ Γ
(Unfold1)

for p = T [//]: p1 = T [/] and p2 = T [/, ∗, //]

∃p ∨ Γ

∃p1 ∨ ∃p2 ∨ Γ
(Unfold2)

for p = T [//]: p1 = T [/] and p2 = T [//, ∗, /]

56

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

The rule (Unfold1) substitutes inside a clause the positive constraint ∃p by ∃p1 ∨ ∃p2, where p1

(respectively p2) is obtained from p by substituting an edge // in p by the edge / in p1 (respectively by
the sequence /,*,// in p2). The rule (Unfold2) is similar, but substituting // by the sequence //,*,/ in p2.
Both rules are sound: for every document t, it holds that t |= ∃p if and only if t |= ∃p1 ∨ ∃p2.

With the two unfolding rules added to our refutation procedure, it is possible to infer the empty
clause in more cases than without them, as we have seen in the previous example. Nevertheless, the
repeated application of the unfolding rules can be infinite, giving rise to a termination problem. To
avoid such a problem, the idea would be to apply the unfolding rules finitely and only in the necessary
cases. We show this idea in the following example.

Example 5.2. Consider the specification S = {C1, C2, C3} with clauses: C1 = ∃(a//c/d), C2 =
¬∃(a/ ∗ /d), and C3 = ¬∃(a/ ∗ // ∗ /c).
We can see that is not possible to apply the rule (R1) to C1 and C3 since there is no monomorphism
from the pattern q = (a/ ∗ // ∗ /c) to the pattern p = a//c/d. However, it can be detected that a
monomorphism would be possible if the edge // from a to c in p, is unfolded until matching with the
sequence /*//*/ from a to c in q. The form of this sequence tells us to apply first (Unfold1) and then
(Unfold2). More precisely: Rule (Unfold1) is applied to C1 giving C ′1 = ∃(a/c/d) ∨ ∃(a/ ∗ //c/d).
Rule (Unfold2) is applied to C ′1 giving C ′′1 = ∃(a/c/d) ∨ ∃(a/ ∗ /c/d) ∨ ∃(a/ ∗ // ∗ /c/d). Now, the
rule (R1) can already be applied to C ′′1 and C3 giving C4 = ∃(a/c/d)∨∃(a/ ∗ /c/d). To finish, the rule
(R1) can be applied to C4 and C2 giving C5 = ∃(a/ ∗ /c/d).

5.2 Subsumption and Simplification Rules

Finally, we can consider another classical notion, the subsumption of clauses, to build a more efficient
refutation procedure. Given two clauses C and D, C subsumes D (or equivalently D is subsumed by
C) if Mod(C) ⊆ Mod(D). For instance, Γ1 subsumes Γ1 ∨ Γ2. Subsumed clauses are redundant and
it seems obvious that they must be deleted as soon as possible in the refutation procedure. However, we
must have into account that, in some cases, introducing deleting rules may cause that a different strategy
is needed to prove the completeness of the procedure [11]. Following with the example 5.2, we show
now the subsumed clauses that can be deleted in each step of our procedure.

Example 5.3. Following the previous example we have that: C ′1 replaces C1 after the application of
(Unfold1), therefore C1 is deleted; C ′′1 replaces C ′1 after the application of (Unfold2), therefore C ′1 is
deleted; C4 subsumes C ′′1 , so C ′′1 can be deleted after the first application of (R1); and C5 subsumes
C4, so C4 can be deleted after the second application of (R1). Taking into account these subsumptions,
the sequence of inferences from the specification S = {C1, C2, C3} can be then summarized as follows
(by applying subsumption as soon as possible):

S = {C1, C2, C3}⇒ {C ′1, C2, C3}⇒ {C ′′1 , C2, C3}⇒ {C4, C2, C3}⇒ {C5, C2, C3}.

In this step of the refutation procedure, the set of clauses is {∃(a/∗/c/d) , ¬∃(a/∗/d) , ¬∃(a/∗//∗/c)}.
Now no rule can be applied (note that the unfolding rules are only applied on positive constraints),
therefore the procedure finishes. As FALSE has not been inferred, the actual set of clauses (and then
also the initial state) is satisfiable. Moreover, the last set of clauses constitutes a new specification that
is equivalent to but simpler than S.

Here we present all subsumption and simplification rules that are used in our procedure. Apart from
the general subsumption rule we mentioned before (named S1 below), we have defined other three
subsumption rules (S2, S3 and S4). The meaning of such rules is that one premise disappears because it

57

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

is subsumed by the other premise under some conditions.

Γ1 ∨ Γ2 Γ1

Γ1
(S1)

∃q ∨ Γ ∃p ∨ Γ

∃q ∨ Γ
(S2)

if there exists a monomorphism m : p→ q

¬∃p ∨ Γ ¬∃q ∨ Γ

¬∃p ∨ Γ
(S3)

if there exists a monomorphism m : p→ q

∀(c1 : x1 → q1) ∨ Γ ∀(c2 : x2 → q2) ∨ Γ

∀(c1 : x1 → q1) ∨ Γ
(S4)

if there exist monomorphisms f : x1 → x2 and g : q2 → q1

Soundness of rules S2 and S3 can be proven by using Lemma 2.1. For S4 note that if f : x1 → x2 and
g : q2 → q1 are monomorphisms then every model of ∀(c1 : x1 → q1) is a model of ∀(c2 : x2 → q2).

Other rules that are convenient for a refutation procedure are the simplification rules. We implicitly
consider that the clause Γ∨L∨L is the same as the clause Γ∨L, and we add three simplification rules
that correspond with the previous subsumption rules (each Sim with the corresponding S):

∃p ∨ ∃q ∨ Γ

∃p ∨ Γ
(Sim2)

if there exists a monomorphism m : p→ q

¬∃p ∨ ¬∃q ∨ Γ

¬∃q ∨ Γ
(Sim3)

if there exists a monomorphism m : p→ q

∀(c1 : x1 → q1) ∨ ∀(c2 : x2 → q2) ∨ Γ

∀(c2 : x2 → q2) ∨ Γ
(Sim4)

if there exist monomorphisms f : x1 → x2 and g : q2 → q1

As before, soundness of the simplification rules can be easily proved. To avoid unnecessary steps, the
simplifications must be applied as soon as possible in the refutation procedure.

5.3 Termination
Let us study the termination of the refutation procedure: Are there examples of non-termination? Can
we obtain the termination under some conditions? To answer these questions we will try to separate the
different cases which we must face down.

Example 5.4. Consider the specification S = {C1, C2, C3} with clauses C1 = ∃(a/b), C2 = ∀(c2 :
∗//b→ ∗//b/c), and C3 = ∀(c3 : ∗//c→ ∗//c/b).

C2 says that each node labelled b must have a child node labelled c and C3 says that each node
labelled c must have a child node labelled b. Since C1 = ∃(a/b), then a document satisfying the three
clauses must necessarily be a document with a infinite branch a/b/c/b/c/.... Therefore, rule (R3) can
be infinitely applied: First to C1 and C2 giving C4 = a/b/c, then to C4 and C3 giving C5 = a/b/c/b,
etc. Moreover, by the subsumption rule (S2), C1 is subsumed by C4, and C4 is subsumed by C5, . . . ,
and so on. Note that no more rules can be applied in this example.

58

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

The previous example shows that "non-termination" is intrinsically linked with specifications that
have only infinite models. As it could expect, the procedure will not stop for such class of specifications.

However, in the case of a satisfiable specification with a finite model, the refutation procedure will
stop in a finite number of steps. This result will be obtained if two conditions hold. On one side, as
commented before, the procedure must be "fair", which means that inferences are not postponed forever.
For instance, suppose we add the clause C4 = ¬∃(∗//c) in the Example 5.4. Then, we need to apply
(R1) eventually to obtain FALSE .

The second point to study is more intricate and refers to the application of the unfolding rules. These
rules change a positive constraint with a //-edge into the disjunction of two positive constraints, one of
which also containing a //-edge. Then obviously these rules can be infinitely applied and they can cause
non-termination for a satisfiable specification. We need to control the application of the unfolding rules,
using them only if necessary and in a controlled way, as viewed in Examples 5.2 and 5.3. However, to
be sure that we will not need to unfold later a concrete //-edge that has already been unfolded, we must
unfold it until a maximum size. The following definition help us to formalize this maximum size.

Definition 5.1. Given a pattern p, a *-sequence of p is a sequence of the form !*!...!*! belonging to
(a branch of) p, with all its nodes (labelled *) without more children in p, and each ! being either a
/-edge or a //-edge. The length of a *-sequence is the number of nodes in the sequence. Let LS be the set
of all *-sequences that appear either in a negative constraint ¬∃q or in the premise p of a conditional
constraint ∀(c : p → q) in a specification S. The star-length of the specification S is defined as m + 1
where m = maximum of the lengths of the elements in LS .

For instance, for the specification in the Example 5.2, the star-length is 3. This means that we do not
need to apply more than 3 times the rules to unfold each //-edge (in a positive constraint). But in general
we do not know a priori what is the appropriate combination of unfolding rules (we may need more than
one combination), for this reason the number of times will be extended to cover all cases. In concrete,
we will proceed as follows: Once we have calculated the star-length l of a given specification S, all the
//-edges in each positive constraint ∃p will be unfolded by applying l times the rule (Unfold 1) followed
by applying l times the rule (Unfold2). Indeed, these applications can be done in one summarized step.

Again in Example 5.2: C1 is unfolded (in one step) into the clause C = ∃(a/c/d) ∨ ∃(a/ ∗ /c/d) ∨
∃(a/ ∗ / ∗ /c/d)∨∃(a/ ∗ / ∗ / ∗ /c/d)∨∃(a/ ∗ / ∗ / ∗ / ∗ /c/d)∨∃(a/ ∗ / ∗ / ∗ / ∗ / ∗ /c/d)∨∃(a/ ∗ / ∗
/ ∗ // ∗ / ∗ / ∗ /c/d). Now the rule (R1) can be repeatedly applied to C and the negative constraint C3,
on the third to seventh literals in C, obtaining as a resovent the clause C4 = ∃(a/c/d)∨∃(a/ ∗ /c/d) as
we expected.

This case study can be extended to any star-length. It is worth mentioning that the definition of
the star-length (Definition 5.1) also takes into account the *-sequences appearing in the premises of a
conditional constraint because we may also need to unfold the //-edges in the positive constraints to see
explicitly all the particular cases that may be extended by the conditional constraints by means of the
rule (R3).

6 The Refutation Procedure
Once defined all the rules, we classify them in three groups: the first group IR consists of the inference
rules (R1), (R2) and (R3); the second group SR consists of the subsumption rules (S1),(S2),(S3), (S4)
and the simplification rules (Sim2), (Sim3) and (Sim4); the third group UR consists of the unfolding
rules (Unfold1) and (Unfold2).

Starting from the general definition given in Section 4 and considering now these groups of rules,
we can say that a refutation procedure for a specification S is a sequence of states:

S0 ⇒ S1 ⇒ · · · ⇒ Si ⇒ . . .

59

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

where the initial state is the original specification (i.e., S0 = S) and where each state Si+1 is obtained
from the previous state Si by applying a rule. If this rule is in IR, a new clause Γ is added to Si to
obtain Si+1. Otherwise, if the rule is in SR then Si+1 is obtained either deleting a clause in Si (by a
subsumption rule) or replacing a clause in Si by another equivalent clause (by a simplification rule).

We can add the application of a rule in UR into this scheme, but we would need to keep in Si+1 both
the premise and the conclusion of the rule or, alternatively, apply both unfolding rules simultanously and
then replace the premise by the two conclusions. However, the application of the rules in UR must be
controlled, therefore we will proceed as explained in the previous section:

Calculate the star-length l of the specification S0 and apply the rules in UR in a "great summarized
step", by unfolding all //-edges in each positive constraint ∃p by applying l times the rule (Unfold 1)
followed by applying l times the rule (Unfold2) and marking the remaining //-edges which are not going
to be unfolded anymore. After this preprocess, we obtain a specification S ′0 semantically equivalent to
S0 where all necessary unfoldings (for the //-edges in the present positive constraints) are already done.

From this new specification, the algorithm proceeds by applying the rules in IR and SR. This
chain of states will stop within a state Si if the clause FALSE appears in Si or when no more rules can
be applied to Si. In the former case, the procedure is finished. In the second case, Si is the new input
specification and the whole process must be repeated: apply the rules in UR in a "great summarized
step" but now only unfold the //-edges that are non-marked; S ′i is obtained; then the algorithm will
continue by applying the rules in IR and SR if such S ′i is different from Si. Otherwise, the procedure
is finished. Note that, from the aplication of the rule (R3), Si may contain new positive constraints with
some //-edges marked and some //-edges non-marked.

Graphically, by using the arrow −→ to express a UR summarized step, our refutation procedure is:

S0 −→ S ′0 ⇒ S1 −→ S ′1 ⇒ · · · ⇒ Si −→ S ′i ⇒ Si+1 −→ S ′i+1 ⇒ · · · ⇒ Sn . . .

Recall that the procedure must be fair (as said in Section 5.3). A suitable implementation will also
apply the rules in SR as soon as possible to get a better performance. Although without a formal proof
yet, we claim that this procedure is sound and complete: The specification is unsatisfiable if and only if
the clause FALSE is obtained in the process. Moreover, we think that the final outcome is one of the
three following results:
a) If the procedure finishes with the clause FALSE in some state, then the specification is unsatisfiable.
b) If the procedure finishes and FALSE does not belong to any state, then the specification is satisfiable
and it has a finite model.
c) If the procedure does not stop, then the specification is satisfiable and only has infinite models.

Finally, note that when the specification has no conditional constraints, the algorithm always finishes
giving a result in cases a) or b).

7 Conclusion and Further Work
As said in the Introduction, our aim was to define a class of specifications on XML documents and
to reason about these specifications. To this extent we have first proposed the specifications as sets of
clauses, where a clause is a disjunction of constraints built on boolean XPath-patterns. In particular,
we have defined three sorts of constrains: positive, negative, and conditional constraints. We have also
defined when a document satisfies a constraint and therefore when a specification is satisfiable.

In order to reason about these specifications, we have studied adequate inference rules to build a
sound and complete refutation procedure for checking the satisfiability of a given specification. In
particular, we consider three inference rules (R1), (R2) and (R3), which take a similar format than the
inference rules for graphs given in [10] but defining the appropriate operators (p ⊗ q and p ⊗c,m q)

60

A refutation procedure for proving satisfiability of constraint specifications on XML documents Navarro and Orejas

for our setting. Also some subsumption and simplification rules are added. We have proven soundness
of all the rules. Then we show that some other rules are needed in order to obtain completeness. In
concrete, we introduce the unfolding rules and study a way of apply them finitely. Then, assuming that
the procedure is fair, the termination of the procedure rests within the own specification.

We plan to prove formally that the refutation procedure is complete; and with respect to implemen-
tation, we are building a prototype [1]. In fact, a first prototype implementing the previously described
refutation procedure is available at http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/
SpecSatisfiabilityTool.html, where we also explain the application’s requirements. The al-
gorithm of the refutation procedure is written in Prolog [6] but it also has a Java interface for an easy and
friendly use. The main goal of this tool is to test if a given specification is satisfiable or not, showing the
history of the execution. It can also be used to test if a given document is a model of a given specification
and, as a subproduct, it permits to look for all the relations (monomorphisms) between two patterns or
the result of the operations p ⊗ q and p ⊗c,m q. The results are visually shown and therefore the tool
makes these operations to be more understandable.

References
[1] Albors, J., and Navarro, M. SpecSatisfiabilityTool: A tool for testing the satisfiability of specifications on XML

documents, Proceedings of PROLE 2014, to appear in eptcs (Elect. Proc. in Theoretical Computer Science).
[2] Alpuente. M., Ballis, D., and Falaschi, M. Automated Verification of Web Sites Using Partial Rewriting, Soft-

ware Tools for Technology Transfer, 8 (2006), 565-585.
[3] Benedikt, M., and Koch, C. XPath Leashed, ACM Computing Surveys 41, 1 (2008).
[4] Benedikt, M., Fan, W., and Geerts, F. XPath satisfiability in the presence of DTDs. JACM 55, 2 (2008).
[5] Bidoit, N., and Colazzo D. Testing XML constraint satisfiability. Proceedings of the International Workshop on

Hybrid Logic (HyLo 2006). ENTCS 174, 6 (2007), 45-61.
[6] Clocksin, W. F., Mellish, C.S. Programming in Prolog. Springer-Verlag (2003).
[7] Ellmer, E., Emmerich, W., Finkelstein, A., and Nentwich, C. Flexible Consistency Checking, ACM Transaction

on Software Engineering and Methodology, 12(1) (2003), 28–63.
[8] Jelliffe, R. Schematron, Internet Document, http://xml.ascc.net/resource/ schematron/.
[9] Miklau, G., and Suciu, D. Containment and equivalence for a fragment of XPath, JACM, 51, 1 (2004).
[10] Orejas, F., Ehrig, H., and Prange, U. A Logic of Graph Constraints, Fundamental Approaches to Software

Engineering, 11th Int. Conference, FASE 2008. LNCS 4961 (2008) 179-198.
[11] Pichler, R. Completeness and Redundancy in Constrained Clause Logic, LNCS 1761 (2000), 221-235.
[12] WORLD WIDE WEB CONSORTIUM. 1999a. XML path language (XPath) recommendation,

http://www.w3c.org/TR/xpath/.
[13] WORLD WIDE WEB CONSORTIUM. 1999b. XSL transformations (XSLT). W3C recommendation version

1.0, http://www.w3.org/TR/xslt.
[14] WORLD WIDE WEB CONSORTIUM. 2001. XML schema part 0: Primer. W3C recommendation,

http://www.w3c.org/XML/Schema.
[15] WORLD WIDE WEB CONSORTIUM. 2002. XQuery 1.0 and XPath 2.0 formal semantics. W3C working

draft, http://www.w3.org/TR/query-algebra/.
[16] WORLD WIDE WEB CONSORTIUM. 2007. XML path language (XPath) 2.0.

61

http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/SpecSatisfiabilityTool.html
http://www.sc.ehu.es/jiwnagom/PaginaWebLorea/SpecSatisfiabilityTool.html

	Introduction
	Basic Definitions and Notations
	XML Documents and Patterns
	Pattern Homomorphisms and Pattern Models

	Constraints, Clauses and Specifications
	Constraints and Clauses
	Specifications

	Rules for a Refutation Procedure
	Inference Rules
	Example of Refutation
	Soundness of the Inference Rules

	Looking for Completeness
	Unfold Rules
	Subsumption and Simplification Rules
	Termination

	The Refutation Procedure
	Conclusion and Further Work

