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Abstract

We describe new extensions of the first-order theorem prover Vampire for supporting program

analysis and proving properties of loops with arrays. The common theme of our work is the symbol

elimination method for generating loop invariants. In our work, we improve symbol elimination for

program analysis in two ways. First, we enhance the program analysis framework of Vampire by

simplifying skolemization during consequence finding. Second, we extend symbol elimination with

theory-specific reasoning, in particular in the theory of polymorphic arrays, and generate and prove

program properties over arrays. We illustrate our approach on a number of challenging examples coming

from program analysis and verification. Our experiments show that, thanks to our improvements,

programs that could not be analyzed before can now be verified with our method.

1 Introduction

Ensuring the correctness of software programs is critical in our software-controlled modern days.
However, due to the growing size and complexity of software systems, manual verification of
computer systems is not a viable task. Ideally, one would like to employ a computer program
for automating the verification process. Over the past decades, many rigorous approaches have
been proposed for automatically analyzing and verifying software programs, starting with the
pioneering works of [7, 4, 5, 11, 3]. While powerful and practically useful, these methods have
a number of limitations when applied to programs with loops/recursion. In this paper, we
focus on the analysis and verification of programs with loops over arrays. We rely on the
symbol elimination method in first-order theorem proving [9] and propose new extensions of
symbol elimination for handling loops with nested conditionals. In particular, our work allows
generating and proving first-order program properties with quantifier alternation and exploits
theory-specific reasoning in the polymorphic theory of arrays.
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work has been partially supported by the ERC Starting Grant 2014 SYMCAR 639270, the Wallenberg Academy
Fellowship 2014- TheProSE, the Swedish VR grant D0497701 and the Austrian research project FWF S11409-
N23.
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As our motivating example, consider the following small imperative program, written in a
Java-like syntax:

int [] A, B, C;

int a, b, c;

a = 0; b = 0; c = 0;

while (a < A.length) {

if (A[a] >= 0) {

B[b] = A[a];

b = b + 1; a = a + 1;

}

else {

C[c] = A[a];

c = c + 1; a = a + 1;

}

}

Figure 1: An imperative loop over three arrays. This program, which we refer to as the
partition example, separates the non-negative array elements from the negative ones by
element-wise copying array elements into two resulting arrays.

The program in Figure 1 copies the non-negative integer values of array A into array B, and
the negative ones into array C. While the program is a relatively simple one, it employs arith-
metic over array indexes and implements array operations depending on arithmetic conditions
over the array content. Capturing the behavior of this program therefore requires reasoning in
the first-order theory of arrays and integer arithmetic and needs to establish program proper-
ties, i.e. invariants, that hold at arbitrary loop iterations. For example, some of the properties
fulfilled by our running example are as follows:

1. Each element of the array B, starting from B[0] to B[b-1], is a non-negative integer and
equal to one element in the array A.

2. Each element of the array C, starting from C[0] to C[c-1], is a negative integer and equal
to one element in the array A.

3. Each non-negative element of the array A is also one element in the array B.

4. Each negative element of the array A is also an element in the array C.

5. Any array element positioned in B (respectively, C) after the final value of b (respectively,
c) is not updated during the loop.

The above enumerated properties capture the algorithmic nature of the loop. Note that these
properties hold at every loop iteration, and hence they are loop invariants. However, inferring
these properties requires deep understanding of the program semantics and reasoning in full
first-order logic; for example, formalizing the first property needs quantifier alternation over
the array elements of A and B. Nevertheless, knowing such invariants can prevent programmers
introducing errors while making changes in the code and hence such deriving such properties
fully automatically is invaluable in automating program analysis and verification.

In this paper we address the challenge of generating quantified invariants of loops with ar-
rays. We rely on the work of [9] where first-order theorem proving has been proposed not only
to prove, but also generate program properties. In particular, the work of [9] introduced the
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symbol elimination method in first-order theorem proving, becoming the first ever approach able
to derive loop invariants with alternating quantifiers in a fully automatic way. Symbol elimina-
tion is already supported in the first-order theorem prover Vampire [10]. Symbol elimination
was further extended for its application in program analysis in [2], enabling symbol elimination
to also prove program correctness by using the program specification. The approach in [2] is
interfaced with real world programming languages via an intermediate language called simple
guarded command language and is used within the KeY verification framework [1]. When eval-
uating symbol elimination on 20 challenging examples, [2] reports that 11 benchmarks were
proven correct. When analyzing the other failing examples, one sees that more sophisticated
program analysis on top of symbol elimination is required in order to guide the first-order
theorem prover in the process of invariant generation.

Motivated by the results of [2], in this paper we enhance symbol elimination in program
analysis in two ways. First, we propose a simplified treatment of array properties, whenever
updated positions in arrays can be described by monotonically increasing/decreasing functions.
Second, we extend symbol elimination with theory-specific reasoning. Unlike [2], we do not
treat arrays as uninterpreted functions but exploit the read/write semantics of array operations
and use the polymorphic theory of arrays [8] for generating and proving program properties over
arrays. Our work is implemented in Vampire and evaluated on many examples from program
analysis and verification. When compared to [2], our experiments show that some examples
that could not be handled before can now be proved by our method.

The rest of this paper is organized as follows. After fixing the notation and terminology in
Section 2, we describe symbol elimination in program analysis in Section 3. Our extension to
symbol elimination for program analysis is presented in Section 3.3.2. Next, Section 3 describes
theory-specific reasoning in symbol elimination and details our contribution in Section 4.1. Our
experimental results are summarized in Section 5 and Section 6 concludes the paper.

2 Preliminaries

This section fixes the notation and terminology used further in the paper. The material of this
section is mainly based on [9, 2], adapted to our setting.

2.1 Programming Model

Our programming model is expressed using a simple guarded command language. Unlike the
generic guarded command language of [6], our guarded command language is deterministic. We
support both scalar variables and array variables with two primitive types, int for the integers
and bool for the booleans. Standard arithmetical functions symbols such as +, - ,∗ , / and
predicate symbols ≤ and ≥ are also used. Given an array variable A, we denote A[p] as the array
element of A at position p, corresponding to the result of an array read/select operation. We
consider loops with nested conditionals; nested loops are not yet supported. A program loop is
represented by a loop condition and an ordered collection of guarded statements representing the
loop body. A loop condition is a quantifier-free boolean formula, while each guarded statement
consists of a guard and a non-ordered collection of parallel assignment statements. The ordered
collection of guarded statements is checked in sequential order and each guard is assumed to be
mutually exclusive with other guards. Further, the non-ordered collection of parallel assignment
statements are assumed to respect the following rules:

1. In case of scalar variable assignment, there cannot exist two parallel assignments to the
same scalar variable within the collection.
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2. In case of array variable assignment (which corresponds to an array write/store), the same
position cannot be assigned to two values. That is, if two array assignments A[i] := e

and A[j] := f occur in a guarded statement, the condition i 6= j is added to the guard.

Pre- and post-condition can be specified apart from the loop, using requires and ensures
keywords respectively. Conditions are boolean formulas over program variables and quantifiers
are allowed. Finally, all types must be declared upfront of the program.

The semantics of our simple guarded language is defined using the notion of a program state.
Each scalar and array variable is mapped to a value of correct type by the program states. In
our setting, a single program state corresponds to each loop iteration. Assuming n denotes
the upper bound of loop iterations, at any loop iteration i with 0 ≤ i < n, we have σi as the
program state. σ0 and σn represent the initial state and final state of the loop, respectively.
Once the guard is valid, the associated collection of parallel assignment statements will be
applied simultaneously to the program state. For example, executing the guarded statement:

true -> x = 0; y = x;

in a program state where x = 1 holds will result in a new program state with x = 0 & y = 1.

Our programming model is illustrated in Figure 2. All variables, including arrays and scalars,
are declared upfront. The declaration is followed by user specified pre-conditions using the
keyword requires. In this example, all array index variables a, b and c are initialized with zero
(value equality is denoted by ==). In addition, the scalar variable alength, denoting the length
of the array A, is required to be positive. The pre-conditions are followed by the user-specified
post-conditions, using the ensures keyword. While in this particular example, both pre- and
post-conditions are specified by the user, their presences are not required for our approach to
generate loop invariants. Our approach can however utilize the program specification to provide
better user experience, such as invariant filtering and proof of correctness.While most numerical
operations take the usual representing syntax, logical implication uses the ==> syntax. Inside
the loop body, each guarded command starts with double-colon followed by the quantifier-free
boolean guard. The guard is separated with the collection of parallel assignments by ->. Finally,
each assignment is terminated by the semicolon.

int [] A, B, C;

int a, b, c, alength;

requires a == 0;

requires b == 0;

requires c == 0;

requires alength > 0;

ensures forall int i, 0 <= i & i < b ==> B[i] >= 0;

ensures forall int i,

exists int j, 0 <= i & i < b ==>

0 <= j & j < a & B[i] == A[j];

while (a <= alength) do

:: A[a] >= 0 -> B[b] = A[a]; a = a + 1; b = b + 1;

:: true -> C[c] = A[a]; a = a + 1; c = c + 1;

od
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Figure 2: Our running example from Figure 1, expressed using our simple guarded com-
mand language. The second guard true functions as the final conditional guard, similar to
the otherwise construct found in other languages.

2.2 Invariant Generation Process

We now overview the main steps of symbol elimination for generating program properties, in
particular loop invariants. Symbol elimination for invariant generation is composed of two
main steps: static program analysis and logical inferences using first-order theorem proving.
The input program, expressed in the simple guarded language of Section 2.1, is first passed
to static program analysis. The analysis aims to statically find out valid relations between
program variables and formulates these relations in first-order logic. This analysis does not
actually execute any part of the input program, hence it is as a static analysis. Let P denote
the set of first-order formulas derived in this step. The second part of invariant generation by
symbol elimination uses P as input to a first-order theorem prover, in particular Vampire, and
tries to saturate P , that is generate all logical consequences of P . Any logical consequence is
a valid loop property as it is implied by P ; in addition, the logical consequences that use only
program variables are invariants. In our work, we extended both parts of symbol elimination:
we improved static analysis over arrays and enhanced consequence finding by theory-specific
reasoning in the polymorphic theory of arrays.

3 Program Analysis

We now describe the program analysis step of symbol elimination for generating loop invariants.

3.1 Preprocessing of Invariant Generation

Given a program as described in Section 2.1, in the first step of symbol elimination static
analysis of the program is carried out in order to express the program semantics as a collection
of first-order formulas that can further be used by saturation theorem proving. In this step of
program analysis, we rely on the previous symbol elimination framework of [9, 2], but make a
simple extension to this framework when it comes to reason about array properties. In more
detail, within program analysis we perform the following steps:

• Lex and parse the input program. In our work, we used the standard C++ scanner
generator flex and parser generator Bison for the simple guarded command language of
Section 2.1.

• Express the (user-given) pre- and post-conditions of the input program as first-order for-
mulas. On the implementation level, these formulas are formulated as first-order formulas
using Vampire terms. We use the sorts of program variables in the first-order formulas to
be generated and turn program variables into extended expressions, that is into functions
of the loop counter. Extended expressions help us capturing the program state in which
an update of a particular variable occurs – see Section 3.2 for details.

• Perform static analysis over the input program and extract first-order properties involving
extended expression over scalar and array variables. When compare to the previous works
of [9, 2], one contribution of our work comes with an extension of program analysis over
array variables: under the additional condition that updates to array variables can be
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described by monotonic function, we generate a new program property over arrays. We
call this property the monotonic indexing property, as described later in Section 3.3.4.

• Use the collection of generated first-order properties as typed first-order formulas and feed
further these formulas as input to a saturation theorem prover (second step of symbol elim-
ination). Following the work of [2], we also use the (user-given) pre- and post-conditions
in the consequence finding (invariant generation) part of symbol elimination. Therefore,
program specifications are also given as input to the theorem prover.

3.2 Extended Expressions

The goal of invariant generation is to generate properties that hold at an arbitrary iteration
of the loop. For doing so, we extend the language of our input program with an additional
variable, called the loop counter, in order to reason about loop iterations. With a loop counter
at hand, we can then reason about program states and express which variables are update
in which program state. Using the loop counter, program variables become functions of the
loop counter; these functions are called extended expressions and we refer to the language of
extended expression as the extended language. Note however that loop properties formulated
in the extended language are not necessarily loop invariants as they use symbols (extended
expressions) which are not part of the input language of the program. Therefore, the goal of
the consequence finding step of symbol elimination is to generate logical consequences of the
loop properties expressed in the loop language such that the generated logical consequences do
not contain extended expressions.

In what follows, we call program properties (not just invariants) containing only symbols
from the input program as program assertions. Note that any program assertion is also a
property in the extended language, but not every property expressed in the extended language
is also a program assertion. In the sequel, we first present our program assertion language and
then describe the loop properties we generate in the extended language.

3.2.1 Assertion Language

The assertion language is meant to express loop properties as classical first-order logic formulae.
For each scalar variable v of type τ used in the program, we create two corresponding symbols
in our extended language: v : τ and vinit : τ . The introduction of vinit : τ allows us to state
the initial value of the variable v, while the v : τ captures the final values of v (after the last
loop iteration). An interpretation in our assertion language maps symbols to their values; the
interpretations depend though on a given program state α.

An example of a program assertion assertion can be obtained from our running example in
Figure 2. As the values of a, b, c are assumed by the requires statements, one can translate
these requirements into the following program assertion:

ainit = binit = cinit = 0

In the previous work [2], array variables are captured in the assertion language using unin-
terpreted function symbols of type Z→ τ , where Z denotes the integer sort of array indexes. In
our work, we extended [2] by a proper treatment of arrays instead of treating arrays as uninter-
preted functions (see Section 4). Finally, pre- and post-conditions, which are in the first-order
logic, are trivially expressible in our using the assertion language.
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3.2.2 Extended Language

Extended expressions capture the behavior of program variables within program states. For
each variable v of type τ , the extended expression of v is a function of type Z → τ capturing
the value of v at various loop iterations. While the extended expression of v can take arbitrary
integer arguments, in practice arguments are non-negative integers as loop iterations are non-
negative integers as well. In the sequel, vi denotes the application of the extended expression of
v on the ith loop iteration, and represents the value of v in the program state αi (where αi is the
program state corresponding to the ith loop iteration). In [2], the extended expressions of array
variables have an additional argument denoting the array index at which the array is accessed.
This is not the case in our work as we treat arrays as proper arrays and not as uninterpreted
functions; that is, in our work, arrays are accessed via the interpreted select(array, index)

operation.

Finally, the extended language of the program includes an additional symbol, denoted by
n, representing the upper bound of loop iterations. In what follows, we consider n fixed and
give all definitions relative to it.

We now list some examples of extended expressions. Consider the following property ex-
pressed in the extended language:

vi+1 = vi + 1,

which states that the value of variable v at iteration i + 1 is the successor of the value of v
at the ith loop iteration. Such a property holds, for example, in the case of variable a in our
running example from Figure 2.

Using extended expression, one can capture the relation between the values of a variable
at different program states. As already mentioned, we treat two program states, namely the
states corresponding to the first and final loop iteration, differently than the other states and
name these states as αinit and αn, respectively . The following example expresses that the final
value of variable v is the same as its initial value:

vn = v0

Following the semantics of extended expressions, the following equalities between the asser-
tion language terms and the extended expressions are naturally true:

vinit ≡ v0
vn ≡ vn

select( Ainit , p) ≡ select( A0 , p)

select( A , p) ≡ select( An , p) ,

where the capital letter variable A denotes an array variable.

For simplicity, in the sequel we call properties expressed using the extended expressions as
extended loop properties. These extended loop properties are central for symbol elimination.
During invariant generation by symbol elimination, extended loop properties are first inferred
and then logical consequences of these extended loop properties are generated using saturation
theorem proving.

We next detail how extended loop properties are generated in our work.
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3.3 Extracting Loop Properties

Using extended expressions, we can capture the values of variables at various program
states/loop iterations. Our next step is to generate valid extended loop properties. For doing
so, we examine updates made to scalar and array variables and formulate properties on variable
updates as first-order formulas with extended expressions.

Let us also note, that in addition to the generated extended loop properties, user-given pre-
and post-conditions are also translated into extended expressions. We exemplify the translation
of program specifications into extended loop properties below. Consider the pre-condition:

requires forall int i, 0 <= i & i < alength ==> A[i] > 0.

This pre-condition is translated into the following extended loop property:

(∀i)(0 ≤ i < alength⇒ select(A(0), i) > 0)

In the remaining of this section, we first overview the program analysis framework of [9, 2] for
extracting extended loop properties and then describe our improvement on this framework. Our
contribution is a simpler and more efficient treatment of array variables, called the monotonic
indexing property of array updates.

3.3.1 Static Properties of Scalar Variable

Given a scalar program variable v, we call it increasing or decreasing if the following extended
property holds:

∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 ≥ vi /* v is increasing */
∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 ≤ vi /* v is decreasing */

where iteration is the set of loop iteration values, that is, iteration = {0, . . . , n}. We consider
iteration part of the extended loop language.

A scalar variable which is increasing (decreasing) is also called monotonic. The analysis for
monotonicity can be achieved via light-weight program analysis, such as ensuring that every
program assignment to v is of the form v = v + e, where e is a non-negative integer.

Apart from monotonicity checking, a scalar variable v is called strict if the following extended
properties hold:

∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 > vi /* v is strictly increasing */
∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 < vi /* v is strictly decreasing */

Since our guarded command language only supports integer sort for numerical scalars, we
further call an increasing scalar variable v dense if the following property holds:

∀i ∈ iteration, 0 ≤ i < n⇒ |vi+1 − vi| ≤ 1 /* v is dense*/

Exploiting the definition of monotonic, strict and dense variables, extended properties relat-
ing variables values at different iterations can be expressed. The generated extended properties
are summarized in the following table:
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Table 1: Added static properties for scalar variables

Scalar variable v is: We generate the extended property’:

[increasing, strict, dense] ∀i, vi = v0 + i

[increasing, strict] ∀i,∀j, j > i⇒ vj > vi

[increasing, dense] ∀i,∀j, j ≥ i⇒ vi + j = vj + i

[increasing] ∀i,∀j, j ≥ i⇒ vj ≥ vi

Finally, if a variable v is not updated at any loop iteration, one can simply treat v as a
constant symbol throughout all program states.

3.3.2 Update Properties of Array Variable

For simplicity, in what follows we denote array variables by capital letters, such A, B, C. Given
an array variable A, our approach analyzes the conditions which trigger the updates on array
elements array at position p by the value v at the loop iteration i. We encode these conditions
and their corresponding properties in additional properties denoted as updA(i, p, v) and called
update predicates. We also consider the predicate updA(i, p) for encoding that the array A has
been updated at position p and loop iteration i; we refer to the predicate updA(i, p) also as an
update predicate of array A. Update predicates are extended expressions and are part of our
extended language. Hence, extended loop properties may contain update predicates.

The update predicates of arrays are used to generate the following properties over array
variables:

• If the array A is only updated once throughout all possible program states, and the update
happens at index p with the value v, then this value is associated with the final value at
the same index during the last loop iteration.

(∀i ∈iteration, j ∈ iteration, p ∈ index, v)

(updA(i, p, v) ∧ (updA(j, p)⇒ j ≤ i))⇒
select(A(n), p(n)) = v)

(1)

3.3.3 Array Non-Update

Given an array variable A which has not been updated during any loop iteration i, the approach
of [9, 2] generates the following extended loop property over A:

∀j, A(i+ 1, j) = A(i, j),

where A(i, j) is the extended expression of A capturing the value of the array element A[j] at
iteration i. In our work we do not treat however arrays as uninterpreted functions (i.e. A(i, j))
but use the polymorphic theory of arrays to represent array operations. Based on the array
theory, a naive translation of the property above into our work would yield:

∀j, select(A(i), j) = select(A(i+ 1), j)

This property should however not be added as it is already assumed in the theory of array.
Without array updates, that is without array store operations, the elements in an array are
assumed to be unchanged from one program state to the next. Therefore, compared to [9, 2],
we do not consider this extended loop property in our work.
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3.3.4 Monotonic Indexing

We now describe our contribution for improving the program analysis framework of [9, 2]. Our
contribution comes with a so-called monotonic indexing property, which is an extended loop
property over arrays. The intuition behind this monotonic indexing property originated from
the monotonicity of indexing scalars. If a scalar variable v is strict and monotonic, the value
vi of v at iteration i will only increase or decrease in later iterations. Therefore, once the value
vi is visited/updated, v variable will not have this value in later iterations. In our work we
use this observation on strict and monotonic array index variables and derive extended loop
properties with array update predicates.

Suppose the array variable A is only accessed by the array index variable x throughout the
entire program, where x is monotonic and strict. In our framework, we derive the monotonic
indexing property as follows:

1. Assume x is monotonic and strictly increasing. The following extended loop property over
x holds:

(∀α ∈ programstate) (∀β ∈ programstate)

(β > α⇒ xβ > xα)

2. Suppose the array A is updated by the program statement A[x] := val at iteration α.
For any iteration β, the implication β > α ⇒ xβ > xα holds. As argued above, we never
revisit array A at index xα in later iterations β. This means, that val is the final value of
A[x]. Hence, we generate the following extended loop property:

An[xα] == Aα[xα] == val

Formulating this property using the theory of arrays, we have the so-called monotonic
indexing property:

select(A(n), x(α)) == select(A(α), x(α))

With the same reasoning, we generate a similar monotonic indexing property for arrays
whose array index variables are monotonic and strictly decreasing.

Consider our running example from Figure 2. In both program branches, the scalar variable
a is increased by one and hence a is monotonic and strictly increasing. Further, we know that
the array A is only accessed by a. All of the requirements of our monotonic indexing property
are thus satisfied and the monotonic indexing property over the array variable A is:

select(A(n), a(α)) == select(A(α), a(α))

In our work, we apply a similar reasoning monotonic increasing/decreasing array indexes
which are not strict, and derive monotonic indexing properties of the corresponding arrays. In
our example from Figure 2, we generate monotonic indexing properties of the arrays B (and
similarly to C), as follows:

select(B(n), b(α)) == select(B(α), b(α))

where α represents the program state in which the update to B takes place.
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4 Invariant Generation by Theory-Specific Reasoning

Once program analysis is finalized, a set P of extended loop properties are generated. In the
second step of invariant generation by symbol elimination, we saturate P using a saturation
theorem prover in order to generate logical consequences of P . In our work, we rely on the
Vampire theorem prover and apply the saturation algorithm of Vampire to generate logical
consequences of P . To this end, we support three different settings of consequence finding with
Vampire:

1. We try to saturate P using Vampire and generate logical consequences of P . Whenever
a logical consequence of P is generated as a program assertion, that is without extended
expression, a loop invariant is obtained by Vampire. Hence, for invariant generation by
symbol elimination, symbols from the extended language that are not part of the input
program language are eliminated and invariants are inferred as logical inferences of P .

2. The set of invariants generated by simply saturating P using Vampire is, in general,
infinite as we generate logical consequences of a set of valid first-order formulas. Many
of the generated invariants might therefore be not of much use when it comes to prove
the user-specified post-conditions of the loop. Therefore, in our work, we can use the
post-condition to guide Vampire while saturating P and generate/output invariants from
which the post-condition can be proven.

3. Finally, the user-specified post-condition can be used to directly prove program correct-
ness, without the burden of eliminating symbols from P and generate invariants as logical
consequences of P . That is, Vampire uses P as input formulas and the user-given post-
condition is as the conjecture to be proven, and tries to refute the post-condition while
saturating P . This approach is already supported in [2].

In the rest of this section, we explain the logical inferences performed by Vampire and the
symbol elimination method for invariant generation. Vampire is a fully automatic first-order
theorem prover, hence it requires no user guidance during proving/saturation. This allows
our invariant generation approach to be fully automated, the user is not required to provide
any input or steer the generation of formulas during runtime. Vampire uses a logically sound
inference system, i.e. the superposition inference system. This means that the generated
logical consequences of P are also valid loop properties. The overall performance of Vampire
for invariant generation is significantly affected by the input P . Additionally, Vampire has a
sophisticated internal architecture and the performance of Vampire very much depends on what
options are used for proving. As we describe the process of consequence finding in Vampire, we
will also briefly explain critical concepts related to the choice of options.

4.1 First-Order Reasoning about Array Properties

The recent work of [8] introduces an extension of first-order logic, called FOOL. FOOL extends
first-order logic with first-class boolean variables and polymorphic arrays. FOOL is already
supported by Vampire and hence can be used for symbol elimination. In addition, FOOL
allows the use of if-then-else and let-in and the theory of polymorphic arrays is encoded
using array theory axioms with select/store operations.

In our work, we exploited the polymorphic theory of arrays built-in Vampire. We used this
theory for both generating extended loop properties and later inferring loop invariants by symbol
elimination. In the previous work of [2], array variables have been encoded as uninterpreted
functions and one cannot explicitly express the differences between array reads/selects and array
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writes/stores. In our work, arrays are now encoded as array theory symbols and we distinguish
between the read/select and write/store operations over arrays. With this improvement, the
semantics of array operations is captured. Let us exemplify some differences between [2] and
our treatment of arrays:

• In [2], the array assignment of a[i] = b[j] at iteration k is internally encoded as:

equals(a(k+1,i(k)),

b(k ,j(k)))

where the function equals() creates internal equality over two terms for Vampire.

In our work, with the array encoding, we represent the above array assignment statement as:

store(a(k+1),

i(k),

select(b(k),j(k)))

In our work, whenever a select and/or store operation over arrays is encountered, the
array theory axioms are automatically loaded within Vampire. The polymorphic array fragment
of FOOL is more general than our simple guarded command language when it comes to the
sorts of array indexes: FOOL supports arbitrary sorts of array indexes, whereas in our work
array indexes are always (non-negative

5 Experimental Results

Our work is implemented in Vampire and evaluated on 20 interesting examples, including the
benchmarks of [2]. In this section we report on our experimental results and compare our results
with [2]. All our results are collected using a computer with quad-core i7 CPU equipped with
16GB of RAM. For a fair comparison, we reproduced the results of [2] on our hardware setup.

Results of all test cases Our benchmarks were annotated with pre- and post-conditions. We
evaluated invariant generation by symbol elimination in Vampire, but we were also interested
in proving the specified post-condition. For this reason, we used the pre- and post-conditions
to guide Vampire in the process of invariant generation and tried to prove the correctness of
the post-conditions during consequence finding.

Table 2 shows the experiment result without array theory reasoning and monotonic indexing
property; these table summarizes the results we obtained by evaluating the work of [2] on our
benchmarks. Table 3 reports on the results we obtained using our implementation, where array
theory reasoning and the monotonic indexing property is used. All test case, in both cases, are
performed with the time limit set to 300 seconds. For both tables, the first column names the
benchmark problem. Column ∆direct shows the time (in seconds) Vampire needed to prove the
user-given post-condition while generating logical consequences and invariants of the extended
loop properties. An empty entry in the ∆direct column means that Vampire failed to find a
proof. Finally, the total number of generated clauses during consequence finding is given the
third column: whenever Vampire finds a proof, the number of generated clauses corresponds to
the number of generated clauses until the proof was found. Whenever Vampire failed to find a
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proof, the number of generated gives the number of clauses generated by Vampire within the
300 seconds time limit.

Table 2: Reasoning without the array theory and monotonic indexing property

Test case ∆direct(sec) generated clauses

absolute 0.374 2095

copy 0.057 495

copyOdd 0.208 1571

copyPartial 0.047 426

copyPositive 530669

find 412821

findMax 324456

init 0.052 415

initEven 430518

initNonConstant 0.117 909

initPartial 0.060 495

inPlaceMax 362783

max 0.348 2140

mergeInterleave 376322

partition 622830

partitionInit 488387

reverse 0.079 593

strcpy 0.048 373

strlen 0.019 139

swap 812284
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Table 3: Reasoning with the array theory and monotonic indexing property

Test case ∆direct(sec) created clauses

absolute 0.484 2614

copy 0.079 654

copyOdd 0.181 1098

copyPartial 0.104 800

copyPositive 46.238 89280

find 413352

findMax 398548

init 0.069 592

initEven 391735

initNonConstant 0.128 940

initPartial 0.069 593

inPlaceMax 530098

max 0.481 2634

mergeInterleave 543746

partition 97.519 210837

partitionInit 28.217 72989

reverse 0.098 733

strcpy 0.081 538

strlen 0.031 168

swap 11.218 61786

When compared to [2], Table 3 shows that our work managed to solve four examples that
could not be proven before in [2]: copyPositive, partition, partitionInit, and swap. We
note that all examples that were proven in [2] were also proven in our work. For the partition,
copyPositive, and partitionInit examples, our contribution on the monotonic indexing
property was the key part, whereas for the swap our contribution on reasoning with the array
theory was essential.

5.1 Case Study: swap

int [] a, b, olda, oldb;

int i, alength, blength;

requires blength == alength;

requires i == 0;

requires forall int i, 0 <= i & i < alength ==> a[i] == olda[i];
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requires forall int i, 0 <= i & i < blength ==> b[i] == oldb[i];

ensures forall int i, 0 <= i & i < blength ==> a[i] == oldb[i];

ensures forall int i, 0 <= i & i < blength ==> b[i] == olda[i];

while (i < alength) do

:: true -> a[i] = b[i]; b[i] = a[i]; i = i + 1;

od

Figure 3: Test case: swap

We now look into more detail for the swap example. The program takes two integer arrays of
equal length and element-wise swaps the two arrays, as shown in Figure 3. The pre-conditions
requires equal length of the input arrays and keeps a copy of the values inside each array (olda
and oldb). The post-conditions ensures that every element in the modified array b is indeed
an element-wise equal to olda. This test case has rather straightforward semantics for human
reader, yet its algorithm heavily relies on the array operations select and store. While this
example could not be proved by the approach of [2], using our work, we managed to prove the
post-conditions thanks to theory-specific reasoning over arrays.

38747. C1 $select(oldb,sK6) = $select(a,sK6)

| $lesseq(alength,$sum(-1,sK6))

<- {80, 185, 192, 194}

[subsumption resolution 38698,30268]

38749. C1 $lesseq(alength,$sum(-1,sK6))

<- {19, 80, 185, 190, 192,194}

[subsumption resolution 38747,30169]

38750. 262 | 19 | ~80 | 185 | ~190 | ~192 | ~194

[AVATAR split clause 38749,30139,30132

,30125,30101,1660,307,38738]

63634. C0 $false [AVATAR sat refutation

48074,47723,371,180,186,30241,340,341,3414,

63200,339,38750,30127,30141,30134,381,208,

214,44449,309,1780,1681,330,48112,45944,48885,

51852,47081,3177,3247,332,323,48525,55659,331,

63319,1668,1696,316]

Figure 4: Critical proof steps in the test case: swap

Some critical steps in the successful proof of correctness are contributed by the array theory
axioms, as shown in Figure 4. This shows the array theory derived inferences are indeed used
in the final proof by refutation. Using our approach, Vampire can automatically generate the
following loop invariant, written in the Vampire native format:

! [X2 : $int] : ($select(oldb,X2) = $select(a,X2) |

~($less(X2,blength) & $lesseq(0,X2))).
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Writing the above invariant using standard first-order logic notation, we have the invariant in
conjunctive normal form:

∀i ∈ Int , oldb[i] = a[i] ∨ ¬((i < blength) ∧ (0 ≤ i))

which is essentially states the following property:

∀i ∈ Int , (0 ≤ i < blength) ⇒ oldb[i] = a[i]

6 Conclusion

We described improvements to invariant generation by symbol elimination and demonstrated
the practical impact of our work on a collection of example. Our work is implemented using
Vampire and our contributions come with theory-specific reasoning in the polymorphic theory
of arrays and enhancing the program analysis framework of Vampire with a special treatment
of arrays with monotonic indexes. Our approach of invariant generation using Vampire requires
no user guidance nor any predefined templates of invariants.

Future Work Our work can further be extended by a number of ways.

1. Boolean array test cases and experiments: using the FOOL framework, boolean
arrays can be incorporated into our array theory reasoning approach. Using boolean
arrays could, for example, be used to reason about sorted properties arrays.

2. Vampire with SMT solvers: The AVATAR architecture of Vampire [12] enables the
communication between first-order provers and SAT solvers. The AVATAR architecture
can also be used with SMT solvers instead of SAT solvers. Despite the fact that Vam-
pire has built-in approximation of arithmetic axiomatization, complex properties involving
arithmetic require dedicated solvers, such as theory-specific SMT solvers. We believe that
program properties with arithmetic operations, such as even/odd predicates, could be
generated/proven using AVATAR with SMT solving.

3. More language constructs: Apart from the polymorphic array theory, the FOOL logic
also supports if then else and let-in constructs, allowing user to encode programs
directly into FOOL logic. Changing our input language and program analysis framework
to support and generate FOOL formulas is therefore an interesting venue to investigate.
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