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Abstract

cn.MOPS is a frequently cited model-based algorithm used to quantitatively detect
copy-number variations in next-generation, DNA-sequencing data. Previous work has im-
plemented the algorithm as an R package and has achieved considerable yet limited perfor-
mance improvement by employing multi-CPU parallelism (maximum achievable speedup
was experimentally determined to be 9.24). In this paper, we propose an alternative mech-
anism of process acceleration. Using one CPU core and a GPU device in the proposed
solution, gcn.MOPS, we achieve a speedup factor of 159 and reduce memory usage by
more than half compared to cn.MOPS running on one CPU core.

1 Introduction

The introduction of next-generation sequencing (NGS) technologies in 2005 has enabled sci-
entists and researchers to sequence DNA samples at a relatively low cost. Since 2007, the
sequencing cost per genome has dropped at a significantly steeper rate than that projected by
Moore’s law [3]. This made DNA sequencing (DNA-seq) more accessible, which subsequently
led to an explosive growth in the amount of DNA-seq data [5]. One major area of study which
benefits from such growth in data is the detection of copy-number variations (CNV) from NGS
data using statistical and quantitative methods. Many software tools and algorithms were
pioneered [6] to tackle the problem of CNV detection. One of these tools is “Copy Number
estimation by a Mixture Of PoissonS” (cn.MOPS) [2]. However, one factor that is limiting
cn.MOPS, as well as other software tools in this field, is the computation time of analyzing
massive NGS data sets.

While cn.MOPS can accelerate data processing using multiple central processing units
(CPU), there is a limit to the maximum achievable speedup due to parallelism overhead. To
achieve a speedup that is considerably higher than the maximum offered by multi-CPU paral-
lelism, we propose an alternative approach of acceleration. Our approach stems from the notion
that cn.MOPS applies the same algorithm on a large amount of independent data elements.
Therefore, it is well-suited for execution on a processor that implements the single-instruction-
multiple-data architecture (SIMD) such as graphical processing units (GPUs).

Thus, instead of executing all steps of cn.MOPS’ processing pipeline using CPU, the mod-
elling step is excluded from CPU execution and is offloaded to GPU. This step is very compute-
intensive and is the core of cn.MOPS. Additionally, the impact of the memory-intensive part
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of the pipeline, which is the result of the postprocessing step, is minimized by making its ex-
ecution time negligible and reducing its memory footprint. In cn.MOPS, the postprocessing
step was implemented in a way that effectively resulted in having two copies of the same data
in memory. Meanwhile, the techniques used in the GPU-accelerated cn.MOPS (gcn.MOPS)
produced results from the modelling step that did not require postprocessing.

In summary, the contributions of this work are:

• Re-architecturing cn.MOPS to suit execution on GPU;

• Accelerating the modelling step by a factor of ∼159× compared to the experimentally-
determined maximum speedup of ∼9.24× with multi-CPU parallelism, and;

• Reducing the memory footprint of the postprocessing step by more than a half.

To the best of our knowledge, this paper is the first to propose the use of SIMD processors, i.e.
GPUs, to accelerate cn.MOPS and reduce its memory footprint.

2 Max Speedup with multi-CPU Parallelism

In order to determine the maximum speedup that cn.MOPS can achieve, a sufficiently large, yet
relatively small, benchmark is run and profiled. Details about this benchmark which is called
BM-A, as well as the used platform, are elaborated in Section 5.2. The total execution time
using 1× CPU core is found to be ∼112 minutes. This total does not include the execution
time of stage 1, which is mainly loading BAM files from disk. Figure 1 shows a breakdown of
the execution time for each pipeline stage as a percentage of total. Apparently, stage 4, i.e. the
modelling and the postprocessing steps combined, is the bottleneck.

14.8%

8.1%

51.3%

7.4%

12.3%0.1%6.0%

#2 counting reads
#3 normalization
#4.1 modelling
#4.2 postprocessing
#5 segmentation
#6 CNV Calling
#7 est. integer CNV

Figure 1: Execution time expressed as % of total execution time (∼112 minutes) using 1× CPU
core to run benchmark BM-A. The leading numbers in the legend indicates the order of the
stage in the execution pipeline. For simplicity, stage #1, which is loading BAM files from disk,
is not shown

There are many factors that affected the execution time of the bottleneck stage, but the
most important one is the number of genomic regions/ranges (GRs) and samples in the exper-
iment. The original cn.MOPS package provides the means for parallel processing to reduce the
execution time of stage 4.1, i.e. the modelling step. To determine if gcn.MOPS is superior to
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cn.MOPS in terms of performance, the maximum speedup, ψCPU
max , that can be achieved with

cn.MOPS is estimated.
Estimating ψCPU

max is done by experimentally obtaining the speedup curve, which is shown
in Figure 2. For simplicity, the performance is modelled as a polynomial by extrapolating data
from Figure 2 using LibreOffice Calc. The obtained speedup formula, g(p), is shown in Equation
1, where p is the number of processors, i.e. CPU cores.

g(p) = −0.022695p2 + 0.908861p+ 0.141837 (1)

Next, the global maxima for g(p) is found by deriving g(p) and solving the derivative for p such
that g′(p)=0. This yielded p=20, which meant that ψCPU

max will be achieved using 20× CPU
cores. Substituting p=20 in Equation 1 yielded g(20) = ψCPU

max ' 9.24. In subsequent sections,
we introduce gcn.MOPS which showed significantly higher speedups.
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Figure 2: Speedup curve for multi-CPU parallelism for the modelling step

3 Overview of cn.MOPS

The basic idea behind cn.MOPS is that a CNV is detected in a given chromosomal segment for
a given DNA-seq sample if the following conditions hold:

1. variation in read counts (RCs) is detected across samples for a given chromosomal segment;

2. variation in RCs is detected across chromosomal segments for a given sample.

Analysis for the second condition happens in the segmentation step, which is beyond the scope
of this paper. Meanwhile, analysis for the first condition takes place in the modelling step,
which is the focus of this paper, and, hence, is briefly explained.

Analysis for the first condition begins by forming an RC matrix whose rows contain the RC
of multiple DNA-seq samples for a single genomic segment. Table 1 shows an example of an
RC matrix. For each row in the RC matrix, cn.MOPS computes multiple values as follows:

• “information gain of posterior over prior” (I/NI): an indicator for the existence of a
CNV in the genomic region (GR) across all samples. This value is calculated as shown in
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Genomic RCs per DNA-seq Sample
Region # Sample 1 Sample 2 Sample 3 Sample k

1 1625 15 1670 . . .
2 1391 1379 1383 . . .
3 935 901 921 . . .
4 1457 1438 102 . . .

. . . . . . . . . . . . . . .

Table 1: An example of an RC matrix, where a genomic region represents a genomic range

Equation 2.

I/NI =
1

N

N∑
k=1

n∑
i=0

α̂ik × |log(i/2)| (2)

• The posterior matrix (α̂): the probability distribution of RCs xk for samples 1..N cor-
responding to copy number (CN) i. Matrix values are calculated as shown in Equation
3, where: P is the probability density of Poisson distribution; and the denominator is a
conditional probability.

α̂ik =
αold
i × P (xk; i

2λ
old)

p(xk;αold, λold)
(3)

• Vector αnew: a model parameter which is calculated using Equation 4, where: initial
values αold

i are set to 0.05 except αold
2 which is set to 0.6; γi is related to the Drichet prior

on αi; and γs =
∑n

i=0 γi.

αnew
i =

1
N

∑N
k=1 α̂ik + 1

N (γi − 1)

1 + 1
N (γs − n)

(4)

• λnew: the expected read count for CN2 which is calculated using Equation 5.

λnew =
1
N

∑N
k=1 xk∑n

i=0

(
i

2N

∑N
k=1 α̂ik

) (5)

• “The signed individual I/NI” (sI/NI): measures the contribution of each sample to the
I/NI call and whether that contribution is a gain or a loss. This vector is used by the
segmentation algorithm to join consecutive, I/NI-calling, GRs into a CNV chromosomal
segment. Values in this vector are calculated using Equation 6, which is similar to the
inner summation of Equation 2 without taking the absolute value of the log function.

sI/NI =

n∑
i=0

α̂ik × log(i/2) (6)

• The expected copy number (CN): each component in this vector corresponds to a sample
such that components are row-labels of the maximum value in each column of α̂.

Once all these values are calculated, sI/NI is passed to the segmentation step for further
analysis. Equations 2 through 6, which are what the modelling step uses, are compute-intensive
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for relatively large data sets. Therefore, these equations are accelerated in our method. It should
be noted that said values are set to constants if all read counts across samples for a genomic
region are less then a given threshold, i.e. minimum read count (MRC). Experimentally, such an
operation is memory-intensive if executed on GPU. Thus, accelerating it is handled differently
as presented in sections 4.4 and 4.5.

4 Accelerating cn.MOPS Using GPU

In order to accelerate with GPU and CUDA, fundamental changes to the existing code and
algorithms are often required. For instance, cn.MOPS utilizes R’s functional primitive ”apply()”
to invoke its core algorithm on multiple data elements. While simple and convenient, this
primitive is replaced with a conventional for-loop that is executed in C/C++ instead of in R.
This is done in order to make it possible to efficiently offload work to GPU. Potentially, there
can be a speedup gain by executing this loop in C/C++, which we do not measure and report
here. The rest of this section presents the employed techniques which collectively results in
significantly better performance compared to cn.MOPS.

4.1 Assigning Memory To GPU Threads

Threads are assigned logical partitions of three, separately allocated, GPU memory spaces: the
input matrix, the result buffer, and the draft space used for intermediate calculations. Since
there is no dependency between rows in an input matrix, each GPU thread can independently
handle a single row. It should be noted that the number of rows can be greater than the
maximum allowed number of threads in a kernel launch (the grid). Thus, multiple rows of the
input matrix are assigned to each thread in the kernel which are separated by a stride of length
g, i.e. the number of threads in the grid, as shown in Table 2.

Thread ID iteration 0 . . . iteration i
thread 0 row 0 . . . row i×g
thread 1 row 1 . . . row i×g + 1
thread 2 row 2 . . . row i×g + 2
thread 3 row 3 . . . row i×g + 3
...

...
. . .

...
thread g-1 row g-1 . . . row (i+1)×g -1

Table 2: Illustration of the grid-strided loop for a grid of size g

In addition, the number of rows can be greater than what GPU memory can accommodate.
Again, there is no dependency between rows of an input matrix. Accordingly, the input matrix
is partitioned into smaller chunks such that each chunk fits in GPU memory. Then, the kernel
is launched multiple times to process each chunk independently.

4.2 Coalescing Memory Accesses

Ensuring a software design, in which threads are arranged to make coalesced access to data,
can positively impact performance. For instance, if thread T makes a memory-read request
for address $addr, the request is serviced by loading a contiguous, cache-line-sized chunk of
memory. This chunk contains the requested data as well as neighbouring data. If neighbours of
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thread T also request neighbours of $addr, then no further memory transactions are executed
since data requested by neighbours of T are already loaded. The performance impact in this
case is that less memory transactions are executed to service multiple threads. Since global
memory transactions have high latency, minimizing them results in a performance improvement.

If memory access patterns are inherited from cn.MOPS, memory requests for elements in
the result buffer will be strided and, hence, uncoalesced as shown in Figure 3, where n is the
number of classes and N is the number of samples. This is confirmed by running our benchmark,
which is detailed in Section 5.2, to obtain metrics “global memory load efficiency” and “global
memory store efficiency” [4]. The values for these two metrics are 9.2% and 25%, respectively.
These considerably low percentages suggested that memory bandwidth is wasted as most of the
elements loaded from global memory are unused.

Logical labels and coloring (i.e. not part of buffer data)

Thread 0 Thread 1 Thread 2

genomic region [0] genomic region [1] genomic region [2] genomic region [R]

buf

λ [0] [1] [2] [3] ... [n] [0] [1] [2] [3] ... [n] [0] [1] [2] [3] ... [n] [0] [1] [2] [3] ... [n]

α [0] [1] [2] [3] ... [n] [0] [1] [2] [3] ... [n] [0] [1] [2] [3] ... [n] [0] [1] [2] [3] ... [n]

sini [0] [1] [2] [3] ... [N] [0] [1] [2] [3] ... [N] [0] [1] [2] [3] ... [N] [0] [1] [2] [3] ... [N] 

CN [0] [1] [2] [3] ... [N] [0] [1] [2] [3] ... [N] [0] [1] [2] [3] ... [N] [0] [1] [2] [3] ... [N] 

ini c c c c

α_ik [0,0] [0,1] [0,2] [0,3] ... [0,n] [0,0] [0,1] [0,2] [0,3] ... [0,n] [0,0] [0,1] [0,2] [0,3] ... [0,n] [0,0] [0,1] [0,2] [0,3] ... [0,n]

[1,0] [1,1] [1,2] [1,3] ... [1,n] [1,0] [1,1] [1,2] [1,3] ... [1,n] [1,0] [1,1] [1,2] [1,3] ... [1,n] [1,0] [1,1] [1,2] [1,3] ... [1,n]

[2,0] [2,1] [2,2] [2,3] ... [2,n] [2,0] [2,1] [2,2] [2,3] ... [2,n] [2,0] [2,1] [2,2] [2,3] ... [2,n] [2,0] [2,1] [2,2] [2,3] ... [2,n]

[3,0] [3,1] [3,2] [3,3] ... [3,n] [3,0] [3,1] [3,2] [3,3] ... [3,n] [3,0] [3,1] [3,2] [3,3] ... [3,n] [3,0] [3,1] [3,2] [3,3] ... [3,n]

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

[N,0] [N,1] [N,2] [N,3] ... [N,n] [N,0] [N,1] [N,2] [N,3] ... [N,n] [N,0] [N,1] [N,2] [N,3] ... [N,n] [N,0] [N,1] [N,2] [N,3] ... [N,n]

1st region -> λ,  2nd region -> α,  3rd region -> sini,  4th region -> CN,  5th region -> ini,  6th region -> α_ik
Thread T

... ... ... ...

Figure 3: Memory access patterns for the result buffer inherited from cn.MOPS, where n is the
number of classes, N is the number of samples, R is the number of genomic regions, and c is a
constant. Vertical segments of the same colour indicate a separate logical division within the
buffer that is allocated for an indvidual genomic region and, hence, a GPU thread. Darker colors
indicate a memory operation for a single iteration, where parallel reads occur across multiple
genomic regions only. All simultaneous memory accesses are for reading or writing a single
cell in a designated region of the buffer allocated for the variables of each individual genomic
region. The whole buffer is contiguous in memory and the order of placement in memory for
each variable is the same as shown in the Figure, i.e. λ followed by α etc.. It should be noted
that R could be larger than T as explained in section 4.1

In order to make all memory requests coalesced, each region in the buffer is reinterpreted.
The 1st, the 2nd, the 3rd, and the 4th regions are alternatively viewed as separate, row-major
matrices. We can conclude that threads are accessing these matrices column by column, which is
inefficient for row-major matrices. To eliminate this inefficiency, the four memory regions are in-
dividually treated as if they are transposed and, hence, consecutive threads made consecutively-
addressed memory accesses. For a thread to read/write the next data element, the offset be-
comes equal to the total number of ranges in the chunk being processed. In other words, the
logical sub-region of each thread is interleaved with the sub-regions of other threads as opposed
to it being logically contiguous. As for α ik, elements are interleaved and represented by a 2D,
row-major matrix of arrays. This notion is visually presented in Figure 4.
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Logical labels, indexing, and coloring (i.e. not part of buffer data)

Thread 0 Thread 1 Thread 2

genomic region [0] genomic region [1] genomic region [2] genomic region [R]

buf

λ
[0] [1] [2] [3] ... [n]

r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

α
[0] [1] [2] [3] ... [n]

r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

sini
[0] [1] [2] [3] ... [N] 

r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

CN
[0] [1] [2] [3] ... [N] 

r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

ini
r[0] r[1] r[2] r[R]

c c c c

α_ik [0] [1] [2] [3] ... [n]

[0] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

[1] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

[2] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

[3] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]
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 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

[N] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] r[0] r[1] r[2] r[R] ... r[0] r[1] r[2] r[R]

1st region -> λ,  2nd region -> α,  3rd region -> sini,  4th region -> CN,  5th region -> ini,  6th region -> α_ik
Thread T

...

Figure 4: The proposed layout of the result buffer, where n is the number of classes, N is the
number of samples, R is the number of genomic regions, and c is a constant. Partitioning of the
buffer is done by interleaving the cells of each variable’s array that is assigned to an individual
genomic region (GPU thread). For example, the buffer region for variable λ is partitioned into
n arrays such that array i stores the ith cell of λ for genomic regions 0..R. It should be noted
that R could be larger than T as explained in section 4.1

4.3 Minimizing the Impact of the Postprocessing Step

We change the original layout of the result buffer in order to ensure coalesced memory requests.
Once results are ready and copied back to host, one may consider transforming back the layout
of results to the original layout shown in Figure 3. However, this is not necessary if the layout
of input data for the next steps in the pipeline are considered.

Coincidentally, the conventional result postprocessing step transforms the output returned
from the modelling step, shown in Figure 3, such that it looks exactly like the optimized
layout of the result buffer shown in Figure 4. The only difference is that in the postprocessing
step, new memory spaces for λ, α, sini, CN , ini, and α ik are allocated separately within R.
Accordingly we can skip the postprocessing step and simply return the results after separating
each logical memory region into its own independently allocated vector/matrix. This way, a
reverse-transform operation of the layout to the original one is avoided.

This new organization of the object returned from the modelling step is advantageous for
the following reason. The execution time of the postprocessing step becomes negligible as the
components of the object returned from the modelling step needs to be passed to the next stage
while bypassing all expensive memory operations in postprocessing step. Hence, only the minor
task of assigning names to rows and columns of each matrix is carried out in this step.
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4.4 Eliminating Branch Divergance

Threads in a warp execute the same instruction for different data elements in a lock-step fashion.
If a control-flow instruction, i.e. if-statement, is encountered, then different threads may take
different execution paths. It is not possible for different threads in a warp to execute different
instructions concurrently and, thus, the different paths are executed serially. This serialization
of execution due to encountering a control-flow statement in a warp is called branch divergence.
There are two problems with branch divergence. First, if instructions for path A are executed,
threads that execute instructions for path B are forced to be idle. The idle thread may only
resume execution after all instructions in path A are finished. After that, the threads which
executed path A are forced to be idle until execution for path B is finished. Second, if memory
access patterns in both paths are dissimilar, then branch divergence will severely impact memory
coalescing. Thus, eliminating branch divergence will lead to a better performance by increasing
thread utilization, decreasing LD/ST instructions, and indirectly enhancing memory-request
coalescing.

In cn.MOPS, branch divergence happens due to a test for read count in a given row against
a given constant (i.e. minimum read count). If the condition is true, cn.MOPS’s core algorithm,
which is compute-intensive, is executed. Otherwise, the output is set to a constant in a memory-
intensive operation. Thus the two paths have dissimilar memory access patterns. In such a
scenario, branch divergence affects memory coalescing.

In order to address branch divergence, we eliminate the branch from the kernel. We assume
that the compute-intensive path will always be taken and, thus, processing started by launching
the kernel. This assumption leads to having erroneous results that should be corrected. After
the results are copied to host memory, the results for rows which should have been processed
in the memory-intensive path, i.e. the erroneous results, are overwritten. The overhead of
overwriting erroneous results is relatively insignificant due to the nature of the memory-intensive
path. In this path, the core algorithm sets the erroneous results to constant values.

4.5 Overlapping Host/Device Execution

Given an input matrix with R rows, n classes, and N samples, the time complexity of the
memory-intensive path is O(R × (2n + 3N + nN + 2)). Normally, n and N are considerably
smaller than R. For a very large R, the overhead of executing said path on host might become
noticeable. Such an overhead is hidden with host/device concurrency as follows. First, kernel
launches are asynchronous with respect to host and, thus, it is possible to overlap host and
device operations. Second, a large input is handled by partitioning it into multiple, smaller
chunks; then, these chunks are processed independently. These two pieces of information,
together, show that with proper synchronization, host operations acting on one chunk can be
overlapped with device operations acting on another chunk.

Assuming a large input is partitioned into p chunks, each chunk C is identified by its serial
number i, where 0 ≤ i < p. While a launched kernel is asynchronously processing Ci+1, host
will concurrently execute the memory-intensive path, overwriting erroneous results for Ci that
were previously computed by GPU due to the assumption that the compute-intensive path will
always be taken. By the time the last kernel is finished, p−1

p % of the overhead will have been

absorbed by host/device concurrency provided the chunk size is sufficiently large. Further,
copying large results from host buffer to the return-object has an associated overhead which
is also hidden by host/device concurrency. In other words, results of Ci are copied to their
corresponding spaces in the return-object while Ci+1 is being processed on device.
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5 Methodology

To measure the execution time of each step in the pipeline, R’s Sys.time() is used [1]. System’s
time is captured before the start and after the end of each step. Then, the difference in time
is measured using R’s difftime(..). For both gcn.MOPS and cn.MOPS, system’s time is
sampled at the same point of the program flow.

The host memory footprint is measured using debugging tool valgrind and heap profiling
tool massif. To ensure that peak memory is not due until later pipeline stages, statement
return(NULL) is inserted before the beginning of the segmentation step of the pipeline to halt
further processing. For accuracy, memory footprints of the following are subtracted from peak
memory usage of both gcn.MOPS and cn.MOPS:

• The initialization of the R session.

• The process of loading package cn.MOPS.

• The normalized input data loaded from disk.

These adjustments are needed because valgrind and massif profiles R as a whole process instead
of just profiling the script. Therefore, host memory footprints associated with the list above
did not contribute to the analysis and, accordingly, are not included. Experimentally, the sum
of memory footprints of the processes/data above is found to be ∼ 164 MB. Hence, this value
is subtracted from memory-footprint results.

In addition, early steps of the pipeline, namely counting reads and sample normalization, are
not modified in gcn.MOPS and, thus, they are never involved in benchmarking and memory-
footprint profiling. They are excluded by running them in a separate R session and, then,
saving the output on disk. During benchmarking and memory profiling, results’ file from the
sample normalizatoin step is simply loaded from disk and processing is started at the modelling
step.

Finally, the kernel’s grid and block sizes are set to 112 and 512 respectively in gcn.MOPS. All
computing resources are made available while ensuring that the on-disk swap memory is never
used by disabling it with shell command ‘‘sudo swapoff -a’’. The benchmarking script is
run in the R interactive shell while system’s graphical environment is disabled.

5.1 Platform Configuration

The specifications of the used machine, Dell T7500, are detailed as follows:

• CPU: 2× Intel Xeon 6-core X5650 @ 2.67 GHz.

• RAM: 12× 4 GB, ECC, Registered, DDR3 @ 1333 MHz.

• Storage: ATA Samsung SSD 840, 500 GB.

• Graphic card <0>: nVidia Tesla C2050.

• Graphic card <1>: nVidia Quadro 4000.

The following are relevant details about the system environment:

• Operating System: Linux Ubuntu 16.04.2 LTS, 64-bit.

• CUDA: version 8.0.

• R: version 3.2.3 (Wooden Christmas-Tree)

• Graphic driver: nVidia driver version 367.57.
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5.2 Benchmarks

Two benchmarks based on real DNA samples from 1000 Genome Project are created. Each
sample is whole-exome-alignment which is stored in BAM format (.bam) and accompanied by
its indexing file (.bai). The samples are downloaded from the website of National Center for
Biotechnology Information (NCBI) using IBM’s plugin Aspera Connect. Appendix A lists the
samples used to construct both benchmarks.

For simplicity, the two benchmarks are named BM-A and BM-B. Table 3 presents the
relevant details about both benchmarks. Specifically, BM-B is used to measure host memory

BM-A BM-B
number of samples 15 15
ref. chromosomes 1, 2, 3 21
genomic ranges (GRs) 6,904,726 481,299
% of the memory-intensive path 9% of GRs 30% of GRs
size (as an array) 103,570,890 7,219,485
GRanges object size 447 MB 31 MB

Table 3: Technical details of used benchmarks

footprints and to conduct sensitivity analysis. Meanwhile, BM-A is used to evaluate both
gcn.MOPS and cn.MOPS since its size is sufficiently larger than BM-B.

6 Results

Figure 5 presents the execution time, on logarithmic scale, of both gcn.MOPS and cn.MOPS in
the modelling and postprocessing steps for BM-A. In the modelling step, gcn.MOPS achieved
a speedup of 159.19× relative to cn.MOPS. This speedup is substantially higher than the
projected maximum achievable speedup with multi-CPU parallelism

(
ψCPU
max

)
. In Section 2, it

was shown that ψCPU
max . 9.24×. In the postprocessing step, gcn.MOPS decreased the execution

time by 97% relative to cn.MOPS. This ratio is expected to remain fairly constant for larger
problems. The reason is that in gcn.MOPS, this stage is mostly limited to assigning names to
rows and columns of various matrices, which can be regarded as a relatively trivial operation.

In both steps combined, gcn.MOPS has a lower host memory footprint running BM-B
relative to cn.MOPS. The peak memory usage of the gcn.MOPS is 711.2 MB vs 1,726.5 MB
for cn.MOPS. In other words, we reduce memory usage by 58% or almost 1 GB in BM-B. This
reduction in host memory usage is expected since results are not duplicated in the postprocessing
step to change data organization as required by cn.MOPS.

7 Conclusion

In short, the modelling step of cn.MOPS, a CNV detection tool, is alternatively accelerated
with GPU. The new solution, gcn.MOPS, achieved a speedup factor of 159× in the modelling
step. Such a speedup factor is considerably higher than the maximum of what can be achieved
with cn.MOPS, which is found to be . 9.24×. Moreover, the execution time of the memory-
intensive, data postprocessing step is reduced by 97% and is made negligible relative to other
steps in cn.MOPS pipeline. In both steps combined, gcn.MOPS reduces memory usage by more
than a half.

24



gcn.MOPS: Accelerating cn.MOPS with GPU Alkhamis and Baniasadi

cn.MOPS
1x CPU core

gcn.MOPS
1x GPU dev

0.1

1

10

100

8.31

0.22

57.31

0.36

Modelling Postprocessing

T
im

e 
(m

in
),

 L
og

ar
ith

m
ic

Figure 5: gcn.MOPS vs cn.MOPS: execution time in the modelling and the postprocessing
steps for benchmark BM-A

These performance levels are achieved by applying various optimization techniques to make
the core algorithm fit the GPU architecture. Data access patterns are changed to ensure coa-
lesced memory accesses. This results in an efficient use of GPU memory and an almost-complete
elimination of the data postprocessing steps. Additionally, branch divergence is made minimal
by decoupling the non-compute path from the compute-intensive path of the algorithm. The
former is executed on CPU and the associated execution time is hidden by host/device con-
currency. Other applied optimization techniques include using constant memory and disabling
L1 cache memory. Potentially, more performance might be gained with for-loop unrolling, but
this can impact software complexity and readability.

For the setup used, the modelling and the data postprocessing steps in gcn.MOPS ac-
count for ∼1.3% of the pipeline’s total execution time as opposed to ∼58.7% in cn.MOPS
using 1× CPU core. Thus, other pipeline stages should be investigated for GPU execution.
Meanwhile, further improvements to gcn.MOPS should be limited to ensuring cross-device and
cross-platform compatibility.
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A Benchmarking Samples

The following is the list of samples used to construct performance benchmarks:

1. NA07048.mapped.ILLUMINA.bwa.CEU.exome.20120522.bam

2. NA07051.mapped.ILLUMINA.bwa.CEU.exome.20120522.bam

3. NA06984.mapped.ILLUMINA.bwa.CEU.exome.20120522.bam

4. NA06986.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

5. NA06989.mapped.ILLUMINA.bwa.CEU.exome.20120522.bam

6. NA07037.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

7. NA11933.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

8. NA07347.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

9. NA10847.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

10. NA11843.mapped.ILLUMINA.bwa.CEU.exome.20120522.bam

11. NA11893.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

12. NA11894.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

13. NA11930.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

14. NA11931.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

15. NA11932.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam
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