
Kalpa Publications in Computing

Volume 1, 2017, Pages 11–26

LPAR-21S: IWIL Workshop
and LPAR Short Presentations

Leo-III Version 1.1

(System description)∗

Christoph Benzmüller21, Alexander Steen1, and Max Wisniewski1

1 Freie Universität Berlin, Berlin, Germany
c.benzmueller|a.steen|m.wisniewski@fu-berlin.de

2 University of Luxembourg, Luxembourg

Abstract

Leo-III is an automated theorem prover for (polymorphic) higher-order logic which
supports all common TPTP dialects, including THF, TFF and FOF as well as their rank-1
polymorphic derivatives. It is based on a paramodulation calculus with ordering constraints
and, in tradition of its predecessor LEO-II, heavily relies on cooperation with external first-
order theorem provers. Unlike LEO-II, asynchronous cooperation with typed first-order
provers and an agent-based internal cooperation scheme is supported. In this paper, we
sketch Leo-III’s underlying calculus, survey implementation details and give examples of
use.

1 Introduction

Leo-III is an automated theorem prover (ATP) for classical higher-order logic (HOL) with
Henkin semantics and choice. It is the successor of the well-known LEO-II prover [8], whose
development significantly influenced the build-up of the TPTP THF infrastructure [32]. Leo-III
exemplarily utilizes and instantiates the associated LeoPARD system platform [36] for higher-
order (HO) deduction systems implemented in Scala. The prover makes use of LeoPARD’s
sophisticated data structures and implements its own reasoning logic on top, inter alia as agents
in LeoPARD’s provided blackboard architecture. A dedicated internal reasoning agent realizes
a stand-alone sequential proof procedure similar to the given clause algorithm of E [27]. Several
other agents serve as specialists for certain tasks and can, for example, bundle multiple calculus
rules that are often used in combination (cf. §5.3). Within Leo-III, agents are run in parallel
controlled by a scheduler based on an optimization algorithm for combinatorical auctions.

In the spirit of the cooperative nature of LEO-II, Leo-III version 1.1 supports collaboration
during proof search with external theorem provers, in particular, with first-order (FO) ATPs.
Unlike LEO-II, which translated proof obligations into untyped first-order formulae, Leo-III, by
default, translates its HO clauses to (polymorphically and monomorphically) typed first-order
clauses. The prover thus exploits the comparably novel support for types in first-order theorem
provers and, simultaneously, reduces clutter during FO encoding.

∗This work has been supported by the DFG under grant BE 2501/11-1 (Leo-III).

T.Eiter, D.Sands, G.Sutcliffe and A.Voronkov (eds.), LPAR-21S (Kalpa Publications in Computing, vol. 1),
pp. 11–26

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

Version 1.1, in comparison to previous versions, significantly increases the internal reasoning
capabilities of Leo-III, fixes a lot of minor errors and improves some data structure’s perfor-
mance. As of this version, Leo-III supports all common TPTP [31, 32] dialects (CNF, FOF,
TFF, THF) as well as its polymorphic variants [18]. It gives results according to the standard-
ized SZS ontology and, additionally, a TSTP-compatible refutation proof object can be printed
if desired. Leo-III version 1.1 will be released to the public at CASC-26 in August 2017.

In this system description, first the theoretical foundations of Leo-III are briefly surveyed.
Subsequently, the sequential proof procedure including the external cooperation scheme is pre-
sented. Also, implementation details of the underlying data structures and the agent mechanism
are presented. Finally, exemplary application scenarios of Leo-III are presented.

2 Polymorphic Higher-Order Logic

Simple type theory, also referred to as classical higher-order logic (HOL), is an expressive logic
formalism that allows for higher-order quantification, that is quantification over arbitrary set
and function variables. It is based on the simply typed λ-calculus and was originally developed
by Church [14]. For thorough discussions of typed λ-calculi we refer to the literature [3]. For
Leo-III, a restricted variant of a second-order polymorphic λ-calculus is used that corresponds
to HOL with rank-1 polymorphism (simply called HOL in the following).

The set of types T is thereby generated by the following abstract syntax (τi ∈ T):

τ1, . . . , τn ::= ζ(τ1, . . . , τn) (Type application)
| τ1 → τ2 (Abstraction type)
| α (Type variable)
| ∀α. τ1 (Polymorphic type)

where S is a non-empty set of sort symbols, ζ ∈ S is a type constructor of arity n and α is a
type variable. Type constructors of arity zero are called base types. According to the rank-1
polymorphism restriction, polymorphic types must not occur on the right side of an abstraction
type. It may thus, without loss of generality, be assumed that all type abstractions ∀α.∀β. . . .
appear as prefix (at prenex position) of a type. We assume that S consists of at least two
elements {o, ι} ⊆ S, both of arity zero, where o and ι denote the type of Booleans and some
non-empty domain of individuals, respectively.

The set of HOL terms Λ is then given by the following abstract syntax (τ, ν ∈ T):

s, t ::= Xτ ∈ Vτ | cτ ∈ Σ (Variable / Constant)
| (λxτ . sν)τ→ν | (sτ→ν tτ)ν (Abstraction / Application)
| (Λα. sτ)∀α. τ | (s∀α. τ ν)τ [α/ν] (Type abstraction / Type application)
| (∀α. so)o (Type quantification)

where cτ denotes a typed constant from the signature Σ, Xτ is a (term) variable, and α is
a type variable. The type of a term is explicitly stated as subscript but may be dropped for
legibility reasons if obvious from the context. Note that, for using extrinsic typing, each term
t ∈ Λ is inherently well-typed. Terms so of type o are called formulae. As a further restriction,
only non-polymorphic types are allowed as argument for type applications.

Note that while type quantification ∀α.so could easily be defined as ∀α.so ≡ (Λα. so = Λα. T)
or regarded as a constant application Π?

(∀α. o)→o (Λα.so), we need to explicitly include it to the
syntax due to the rank-1 polymorphism restriction.

Σ is chosen to contain at least of the primitive logical connectives for disjunction, nega-
tion, and (polymorphic) equality, universal quantification and choice. Hence, we have

12

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

{∨o→o→o,¬o→o,=∀α. α→α→o,Π∀α. (α→o)→o, ι∀α. (α→o)→α} ⊆ Σ. Binder notation is used when-
ever reasonable, i.e. by convention the term Π∀α. (α→o)→o ι (λXι. so) is abbreviated by ∀Xι.so.
Also, type applications and infix notation are implicit whenever clear from the context, so
sτ = tτ is short for (=∀α. α→α→o τ sτ tτ). The remaining logical connectives can be defined as
usual, e.g. s ∧ t := ¬(¬s ∨ ¬t) or T := ¬∀Xo. X.

The semantics of monomorphic HOL can be found in the literature [6, 7, 22]. HOL aug-
mented with quantification over types and type operators was studied in [20]. The variant of
HOL presented here is more similar to the one used by HOL2P [33], since it includes universally
quantified types (but, as opposed to HOL2P, does not support type operator variables). It is
based on a restricted version of λ2, also called System-F [15].

As a consequence of Gödel’s Incompleteness Theorem, HOL with standard semantics is
necessarily incomplete. However, if we assume a generalized notion of HOL semantics, called
Henkin semantics [17], a meaningful notion of completeness can be achieved. We assume Henkin
semantics in the following.

3 Calculus

The proof search of Leo-III is guided by a refutation-based calculus, i.e. it uses the fact that
A1, . . . , An ` C if and only if S = {A1, . . . , An,¬C} is inconsistent. To that end, the set S
consisting of the axioms Ai and the negated conjecture ¬C is transformed into an equisatisfiable
set S′ of clauses in (equational) clausal normal form. Then, A1, . . . , An ` C is valid, if the empty
clause � can be derived from S′, or, equivalently, if � ∈ S′, where S′ ⊇ S′ is a set of clauses
closed under the inferences of the calculus.

A method for saturating a given set of HO clauses is resolution [4], as e.g. employed by
LEO-II [8]. In first-order theorem proving, superposition [2] – a further restricted form of
paramodulation [23] – is probably the most successful calculus, which improves naive resolu-
tion not only by an appropriate handling of equality, but also by using ordering constraints
to restrict the number of possible inferences. However, so far the generalization of superpo-
sition, paramodulation or even ordered resolution to HOL is still in its infancy, let alone the
development of appropriate term orderings for higher-order terms.

Leo-III employs a higher-order (ordered) paramodulation calculus with specialized rules for
treatment of extensionality, choice and defined equalities.

Higher-Order Paramodulation An equation is a pair s ' t of HOL terms, where ' is
assumed to be symmetric. A literal ` is a signed equation, written [s ' t]α where α ∈ {tt, ff}
represents the polarity of the literal. Non-equality predicates (terms so of type o) are represented
as literals [so ' T]α and may simply be written [so]

α. A clause C is a multiset of literals, denoting
its disjunction. For brevity, if C and D are clauses and ` is a literal, we write C ∨ ` and C ∨ D
for the multi-union C ∪ {`} and C ∪ D, respectively.

The higher-order paramodulation calculus EP is given by the union EP = INF ∪ EXT ∪
UNI ∪ CNF of the primary inference rules INF , extensionality rules EXT , unification rules
UNI and clause normal form rules CNF . For simplicity, the rules displayed here are variants
of the actual calculus rules for monomorphic HOL.

The primary inference rules INF are given by

C ∨ [l ' r]tt D ∨ [s ' t]α
(Para)

C ∨ D ∨ [s[r]π ' t]α ∨ [s|π ' l]ff
C ∨ [l ' r]α ∨ [s ' t]α

(EqFac)

C ∨ [l ' r]α ∨ [l ' s]ff ∨ [r ' t]ff

13

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

C ∨ [Xτi→o tiτi]
α P ∈ ABcτi→o

(PrimSubst)(
C ∨ [Xτi→o tiτi]

α
)
{X/P}

where s|π is the subterm of s at position π, and s[r]π denotes the term that is created by
replacing the subterm of s at position π by r. Since unification in HOL is undecidable, the
unification tasks are encoded as negative equality literals – as seen in (Para) and (EqFac)
– which may again be subject of further inferences. UNI defines further treatment of such
unification literals. Intuitively, paramodulation is a conditional rewriting step that is justified
if the unification tasks can be solved.

In HOL, the additional rule (PrimSubst) is required for completeness. Primitive substitu-
tions guess the top-level logical structure of the instantiated term, while further decisions on P
are delayed. The instantiations ABcτi→o are called approximating bindings for type τi → o and
head symbol c.

The above rule (Para) is unordered and produces (in particular, in our higher-order setting)
numerous irrelevant and redundant clauses. In order to restrict inference rules such as (Para),
Leo-III employs a higher-order term ordering, called computability path ordering [10], which
has been investigated primarily for termination proofs. While the development of a complete
calculus is still ongoing research, first results of these ordering constraints seem promising.

Further rules The inference rules CNF for clause normalization are omitted here. The
unification rules UNI are a variant of Huet’s pre-unification augmented with type unification
rules (cf. [4]). Extensionality aspects of HOL with Henkin semantics are dealt with on the
calculus level rather than postulating corresponding extensionality axioms. The rules EXT are
analogous to those of LEO-II [8].

Furthermore, Leo-III adapts specialized inference rules for replacing defined (Leibniz and
Andrews) equalities and handling choice from its predecessor [9]. Additionally, exhaustive
instantiations of universally quantified variables of finite types prior to CNF calculation is
supported.

Figure 1: Functional design of Leo-III’s refutation process

14

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

4 Proof Procedure

Due to the agent-based architecture of Leo-III, the overall proof procedure is slightly more
complex compared to its predecessor. Leo-III’s functional design is schematically displayed in
Fig. 1. An invocation of the prover proceeds as follows:

(i) Reading the problem file locally or via a network connection to a specified URL

(ii) Parsing of the input stream to an internal abstract syntax tree (AST) representation

(iii) Axiom pruning using a relevance filter (if a conjecture is present)

(iv) Interpretation, type checking and translation of the AST to an equivalent λ-term

(v) The resulting terms are given to the main refutation procedure

(a) An agent is invoked which implements a traditional saturation loop (see below)

(b) In parallel, multiple independent agents (cf. §5.3) cooperatively try to find a proof

(c) At any point, both components may asynchronously invoke external provers

(vi) If a contradiction is found, a proof is reconstructed by recursive backward traversal of the
empty clause’s inference parents

(vii) An SZS [30] output is returned together with the refutation proof (if desired)

A dedicated internal reasoning agent (cf. (v)-(a) above) implements a stand-alone reasoning
loop inspired by the given-clause algorithm of E [27]. A simplified version is given by

1 U := preprocess(input)
2 P := ∅
3 while(U 6= ∅)
4 checkExternal()
5 g := selectBest(U)
6 g := simp(g, P)
7 g := ext(g)
8 if (¬clausalNormal(g)) U := U ∪ cnf(g)
9 else if (definesChoiceSymbol(g)) registerChoiceSymbol(g)

10 else
11 if (g = �) Theorem
12 else if (¬redundant(g, P))
13 submitExternal(P)
14 P := P \ {p ∈ P | redundant

(
p,{g}

)
}

15 P := P ∪ {g}
16 T := generate(g, P)
17 T := T ∪ findChoice(g, P)
18 T := simp(cnf(unify(T)))
19 U := U ∪ {t ∈ T | ¬trivial(t)}
20 endif
21 endif
22 end

The algorithm structures the search space using two sets U and P of unprocessed clauses and
processed clauses, respectively, where initially all input clauses are considered unprocessed.
Intuitively, the algorithm iteratively selects an unprocessed clause g (the given clause [27])

15

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

from U and inserts all inferences between g and clauses in P as fresh clauses into U until either
the empty clause is found or there are no unprocessed clauses left1.

To that end, the input problem is first pre-processed (including expansion of defined symbols,
simplification, miniscoping, CNF transformation and further) and added to U . Clause selection
(line 5) is inspired by E’s usage of multiple selection heuristics aligned in a weighted round-
robin scheme (see §5.1). The simplification methods simp (lines 6,18), in the current version,
do not yet include rewrite simplifications. This is a feature planned for the next release. The
ext method (line 7) applies (FuncExt) to the given clause g, if applicable. Since this may
create non-CNF formulas, we reinsert clauses that require CNF normalization (line 8) to the
unprocessed set U . redundant(c, S) checks for subsumption of c by a set of clauses S. This
method is used for forward subsumption (line 12) as well as for backward subsumption (line
14). The application of generating inferences (Para), (EqFac), (PrimSubst), (BoolExt) as well
as choice and defined equality rules are denoted generate, where at least one premise to each
rule must be g. Since generate may also create non-CNF formulas, normalization is applied
afterwards i.e. after eagerly solving unification constraints (line 18). Finally, only non-trivial
generated clauses are added to U (line 19), i.e. clauses that are not tautological.

Choice handling is displayed in lines 9 and 17, where the first operation removes clauses
representing the axiom of choice (AC) for a specific symbol and the latter operation inserts
concrete AC instances (cf. [9]).

Finally, external prover cooperation is displayed in lines 4 and 13: checkExternal checks
for external prover results in a non-blocking fashion and returns any helpful result, if existent.
If a helpful answer is returned, the saturation loop terminates and returns the external result
instead. submitExternal requests a external prover invocation with respect to the current
set of processed clauses P . The number of parallel open request per external reasoning systems
can be limited (two by default).

5 Implementation

Leo-III is implemented in Scala2 based on the associated system platform LeoPARD [36]. The
latter provides a reusable framework and infrastructure for higher-order deduction systems,
consisting of fundamental generic data structures for typed λ-terms, indexing means, a generic
agent-based blackboard architecture, parser, and proof printer. Leo-III makes heavy use of
these data structures and support means, and, on top of them, implements its specific calculus
rules, control heuristics, the proof procedure, specialist agents and further functionality. Fig. 2
provides an overview on the components of Leo-III (roughly corresponding to Scala packages)
and their utilization relations indicated by arrows. Components surrounded by dotted lines are
provided (at least in part) by LeoPARD. The generic data structures, logical data structures
and indexing data structures are used by almost every other component so we omit the usage
relation arrows here. The calculus component provides the implementation of the inference
rules described in section 3. This package is used by the components Control and Agents which
both abstract from inference rules and represent a layer of (heuristic) calculus rule applica-
tions relative to the current prover state. A major component, the External package, provides
abstractions for external reasoning systems as well as generic means for asynchronous communi-
cation. Finally, the Encoding component provides various first-order transformation algorithms

1Since the set of clauses to be processed grows without bounds in general, a time limit is given to the system.
If the empty clause is not found within this limit, a timeout result (SZS Timeout) is returned.

2 Leo-III uses Scala 2.11.8 and requires Java 1.8. Previous versions of underlying Java distributions are not
supported due to limitations in system process management.

16

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

Figure 2: Overview of Leo-III’s components.

as well as pretty printer for different TPTP languages.
During the development of Leo-III, careful attention has been paid to providing maximal

compatibility with existing systems and conventions of the peer community, especially to those
of the TPTP infrastructure [31]. Leo-III reads problems in every standard dialect of the TPTP
syntax, including the higher-order THF dialect [32] and the (untyped and typed) first-order
dialects3 FOF and TFF [31]. New to version 1.1 of Leo-III is the support for the recent poly-
morphic variants TF1 and TH1 [18] of typed first-order and higher-order languages, respectively.
Results are printed out in TSTP format using SZS ontology [30] values. Additionally, Leo-III
can give a TSTP compatible proof object, e.g. for proof verification by GDV [31] or proof
reconstruction in the context of Isabelle’s Sledgehammer tool [24].

5.1 Data Structures

Data structure choices are a critical part of a theorem prover and permit reliable increases of
overall performance when implemented and exploited properly. Key aspects for efficient theorem
proving have been an intensive research topic and have reached maturity within FO ATPs. In
the context of the Leo-III prover, quite some effort was invested into designing appropriate
data structures for HOL reasoning procedures. While their development is still far from being
as mature and optimized as their first-order counterparts, the current data structures seem to
yield good results in practice. Two of the more interesting structure’s implementation details
are surveyed in the following.

5.1.1 Representation of λ-Terms

While currying is – from a theoretical point of view – an elegant technique for a uniform
treatment of functions of all arities, it comes with a major drawback for automation. There
are many logical procedures where the head symbol of a term needs to be accessed or the
individual arguments of an application need to be examined in the left-to-right reading order
(e.g. unification or matching procedures). However, in a naive curried representation of a
λ-term the head symbol of a term may be deeply buried under several layers of applications.

3 First-order problems are internally translated to higher-order terms and, in the current version, treated as
regular higher-order problems.

17

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

Hence for each head access a linear number of traversal operations need to be performed. A
similar phenomenon applies for left-to-right argument traversal.

To overcome this weakness of a classical term representation, Leo-III uses a so-called spine
notation [12], which imitates first-order-like terms in a higher-order setting. Here, terms are
either type abstractions, term abstractions or applications of the form f · (s1; s2; . . .) where
the head f is either a constant symbol, a bound variable or a complex term and the spine
(s1; s2; . . .) is a linear list of arguments that are, again, spine terms. Note that if a term is
β-normal, f cannot be a complex term. This observation led to a internal implementation
distinction between β-normal and (possibly) non-β-normal spine terms where the first kind
has an optimized representation whose head having only associated a reference to an integer
representing the constant symbol or variable (cf. further below).

Additionally, the term representation employs explicit substitutions [1]. In a setting of ex-
plicit substitutions, substitutions are part of the term language and can thus be postponed
and composed before being applied to the term. This technique admits more efficient β-
normalization resp. substitution operations as terms are only traversed once, regardless of
the number of substitutions applied.

Nameless Representation The term data structure uses a locally nameless representation
both at the type and term level, that extends de-Bruijn indices to (bound) type variables [19].
The definition of de-Bruijn indices [11] for type variables is analogous to the one for term vari-
ables. One of the most important advantages of nameless representations over representations
with explicit variable names is that α-equivalence is reduced to syntactical equality, i.e. two
terms are α-equivalent if their nameless representation is equal. Together with the term in-
dexing of Leo-III (cf. §5.1.2) this yields constant time operations for checking α-equivalence
(analogously for types).

An example term in an abstract representation of the here described data structure reads

Λ.λ1→o.f∀(1→o)→o→o ·
(
1;λ1. 2 · 1; co

)
where f, c ∈ Σ and the de-Bruijn indices for type variables are underlined.

5.1.2 Indexing Structures

Indexing data structures are popular in first-order theorem proving for speeding up querying
of terms, literals or clauses wrt. certain conditions (the indexing relation). Employment of
indexing methods improves operations that are frequently invoked during the proof procedure,
such as finding unifiable terms or clauses for subsumption.

In higher-order theorem proving, there exist only a few indexing approaches. This is due to
the fact that most operations for building a term index are undecidable, e.g., computing the most
specific generalization, or higher-order unification. For the latter case, however, there exists a
decidable unification fragment, so called higher-order pattern unification [21], but algorithms
for those fragment are highly complex and seem not to be efficient in practice [25, 26].

Term Sharing Terms are perfectly shared within Leo-III, meaning that each term is only
constructed once and then reused between different occurrences. This not only reduces mem-
ory consumption in large knowledge bases, but also allows constant-time term comparison for
syntactic equality using the term’s pointer to its unique physical representation. For fast (sub-
)term retrieval based on syntactical criteria (e.g. head symbol, subterm occurrences, etc.) from
the term indexing mechanism, terms are kept in β-normal η-long form. Leo-III comes with

18

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

a number of different (heuristic) β-normalization strategies that adjust the standard leftmost-
outermost strategy with different combinations of strict and lazy substitution composition resp.
normalization and closure construction [29].

Subsumption Indexing In Leo-III a higher-order adaption of feature vector indexing [28]
is employed. It is used to reduce the number of subsumption tests during the proof procedure.
The adapted feature vector index has limitations when indexing terms with variables at head
positions but nevertheless seems suitable in practice. A formal, more thorough investigation
about its benefits in this setting is further work.

5.2 External cooperation

As pointed out before, Leo-III’s agents may at any point invoke external reasoning tools. To
that end, Leo-III includes an encoding module which translates (polymorphic) higher-order
clauses to polymorphic and monomorphic typed first-order clauses. While LEO-II relied on
cooperation with untyped first-order provers, we hope to reduce clutter and therefore achieve
better results using native type support in first-order provers. Further cooperation with other
TPTP-compliant FO or HO reasoning tools is supported, e.g. for using higher-order counter
model finder. To that end, Leo-III supports output in TF0, TF1, TH0 and TH1 syntax.

5.3 Agents

An agent is a software component that can be executed independently from others. Moreover,
an agent is given the ability to decide on its own when to execute its functionality. This high
amount of autonomy is a key feature of agents [34]. In the Leo-III system, agents are employed
as specialists for some aspects of the proof search. The underlying architecture of Leo-III
employs a blackboard data structure which agents collaboratively use for finding a proof. The
work of the agents is thereby divided in transactional tasks and organized as auctions, in which
it is decided what tasks to be executed next in case of interference [35, 36]. In Leo-III agents
can be utilized in two different ways: First, top down, where one agent implements a sequential
loop and all remaining agents perform subsidiary or computationally heavy tasks in parallel.
Second, bottom up, as a set of inference agents where each agent is in charge for the application
of a single inference rule.

The underlying architecture consists of three main components: A blackboard data structure
containing the shared proof state, the agents and their execution, and the scheduler that coor-
dinates an agent’s access to the blackboard. Figure 3 displays the overall interaction between
these components. In the following the components of the architecture are briefly described, as
well as two example agent implementations are given.

Blackboard Architecture. In a blackboard architecture communication focuses on the glob-
ally shared data [34]. Agents do not communicate directly with other agents, but do so indi-
rectly by manipulating the data in the blackboard. The Leo-III blackboard [36] is a collection
of globally shared and accessible data structures any agent can query and manipulate at any
time in parallel. The set of data structures itself is not fixed, as any object implementing the
DataStore interface can be added, even during execution. Hence, an agent will not insert
data into data structures itself, but will pass the proposed insertion to the blackboard. The
blackboards main purpose is the organization and presentation of all shared data.

19

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

Figure 3: Information- and work flow of the Blackboard-Agent-Interaction.

Agents. Whereas the blackboard organizes and presents the data in the system, agents are
specialized, autonomous components manipulating this data. Classically, agents are composed
of three components: environment perception, decision making, and action execution [34].

Environment perception is handled by both a subscriber pattern that triggers on changes
within relevant part of the blackboard and the provision of data through its maintained data
structures. The two remaining components are separated in the here employed agent abstrac-
tion. The first part, the interface Agent, is responsible for the decision making. Upon the
triggering of changed or new data, a function filter is called. This function captures the
intention of the agent and returns a sequence of functionality invocations an agent wants to
execute. The intended work of multiple agents might interfere, e.g. one agent removes a redun-
dant clause and another wishes to perform a paramodulation with the same clause. To that
end, agent’s actions are abstracted by the interface Task. A Task capsules a transaction which
results in a so-called Delta, containing the changes to be applied to the blackboard. A Task
might not be executed if it is blocked by an interfering task.

Auction Scheduler. Since computational resources are limited, only a selection of the gen-
erated tasks can be executed. The selection addresses two important aspects: Firstly, a ranking
that prefers the execution of most promising tasks. Secondly, a collision detection such that
only sets of non interfering tasks are executed. The implementation for this selection is given
by an approximation algorithm for combinatorical auctions [13]. More precisely, each agent
computes and places a bid for the execution of its task(s). The scheduler then tries to maxi-
mize the global benefit of the particular set of actions to choose. In the current version, the
agents assign value to their tasks purely heuristic. The calculation of task importance based
on machine learning and the proof state is ongoing development.

Monolithic and Subsidiary Agents One important mode in which Leo-III can utilize the
agents is the so-called monolithic mode. In this mode, a interleavable sequential loop is executed
by one agent. Since agents actions are executed in transactions (tasks), the sequential loop
represents a single loop iteration as a dedicated task. In parallel to this loop, subsidiary agents
can be employed performing supportive (maybe non-essential) tasks and handle computationally
expensive, parallelizable tasks. An exemplary subsidiary agent is a higher-order pre-unification
agent, that solves all unification constraints generated during one loop iteration in parallel.

20

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

Other subsidiary agents implemented in Leo-III are subsumption agents that remove redun-
dant clauses and agents invoking external provers.

Rule Agents and Compound Rule Creation From an opposite point of view, we can
explore the implementation of an ATP system by implementing its calculus rules directly as
independent agents. In this context, one agent is provided for each inference rule. Here,
an agent observes the blackboard for possible candidate formulas. If its associated rule is
applicable, a task is created whose result will insert the new formulas (or update existing ones).
Exploiting the Rule interface, further compound rules can be constructed, that is, combinations
of inference rules that should always be executed directly after each other.

Since the vast amount of tasks generated by this approach is, at the moment, guided only
by heuristic selection, the approach is not competitive and still experimental. Ongoing work
includes guidance of rule agents with machine learning methods. Additionally, the automatic
generation of compound rules based on machine learning from previous proof experience is
current research.

5.4 Further Components

The underlying LeoPARD framework provides useful stand-alone components. For example,
a generic parser is provided that supports all TPTP syntax dialects. It is implemented using
ANTLR4 and converts its produced concrete syntax tree to an internal TPTP AST data struc-
ture which can be used to implement further stand-alone procedures. A pretty printer which
converts Leo-III’s internal term representation to THF and TFF format is used for external
cooperation.

6 Applications and Examples

Apart its the theorem proving capabilities, Leo-III supports additional features for its input.
Given the flag --consistency, the problems axioms are checked for consistency, depend-
ing on the overall mode in advance or in parallel to the proof search. Calling the program
with --toTHF, the parser can be employed to convert any TPTP problem into THF. If the
conversion is not needed a call with --syntaxCheck checks the problem for correct TPTP
syntax and the flag --typeCheck runs the internal type checker on the parsed problem to
verify any correct input up to TH1. The verbose proof object can be reduced with the option
--proofcompression. This mode skips less informative non-branching steps in the proof
and compress them into a sequence of inference applications (cf. section 6.3). To this flag a list
of inference rule names can be passed to customize the compression.

6.1 Leo-III as Meta Prover

The architecture of Leo-III allows for an easy employment as a meta prover. As described in
section 5.2 Leo-III, is already able to integrate external reasoners into its own proof procedure.
Combining these external agents and some preprocessing and translation options, Leo-III can
be run purely as a meta system coordinating provers and translating between them, similar to
Isabelle’s Sledgehammer [24].

As a meta prover, Leo-III provides axiom selection, pre-processing techniques, encoding
into all TPTP formats, as well as asynchronous, parallel external prover support. In this mode,
different preprocessing settings and axiom selections can be scheduled to the different provers.

21

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

While this meta prover mode of Leo-III is not yet optimized towards high performance, all
required components are available an can already be used to create ad-hoc solutions.

6.2 Reasoning in Non-Classical Logics

One major goal of Leo-III is to provide native means of reasoning within (and about) non-
classical logics including free logic, quantified conditional logic, and quantified modal logic. The
reasoning in such non-classical logics is enabled by a semantical embedding of the target logic
into HOL. Detailed information about this approach can be found in [5] (see also the references
therein). Such logics are of strong interest in many different fields of research, for example in
mathematics, artificial intelligence, and philosophy. In its current state, our system is already
capable of reasoning for a range of embedded logics using an external pre-processor [16]. The
next version of Leo-III will natively integrate such a pre-processor in order to offer out-of-the-
box automation for non-classical logics.

6.3 Example

A prominent example easily expressible in HOL is the surjective Cantor theorem. It can be
stated as:

thf(sur_cantor, conjecture, (˜ (? [F: $i > ($i > $o)] : (
! [Y: $i > $o] :
? [X: $i] : (

(F @ X) = Y
)

))),file(’sur_cantor.p’,sur_cantor)).

Leo-II gives verifiable proofs. Interesting steps from a ”proof idea” point of view are formulae 41
and 95; in these steps a diagonalization argument is constructed by (PrimSubst) and unification,
respectively. A compressed version of the proof output (via --proofcompression flag) is
displayed below. Unfortunately, compressed proofs cannot, at the moment, be processed by
GDV. However, the uncompressed variant was verified by GDV in 351 seconds (see GDV output
at Appendix A).

% SZS status Theorem for sur_cantor.p
% SZS output start CNFRefutation for sur_cantor.p
thf(sk5_type,type,(sk5: $i > $i > $o)).
thf(sk6_type,type,(sk6: ($i > $o) > $i)).
...
thf(2,negated_conjecture,(

˜ (˜ (? [A: ($i > $i > $o)] :
! [B: ($i > $o)] :
? [C: $i] :

((A @ C)
= B)))),

inference(neg_conjecture,[status(cth)],[sur_cantor])).
thf(17,plain,(

! [B: $i,A: ($i > $o)] :
((sk5
@ (sk6
@ ˆ [C: $i] :

(A @ C))
@ B)

| ˜ (A @ B))),
inference(bool_ext,[status(thm)],

inference(func_ext,[status(esa)],
inference(lifteq,[status(thm)],
inference(cnf,[status(esa)],
inference(polarity_switch,[status(thm)],

inference(defexp_and_simp_and_etaexpand,[status(thm)],[2]))))))).
thf(41,plain,(

22

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

! [B: ($i > $o),A: $i] :
((sk5
@ (sk6
@ ˆ [C: $i] :

˜ (B @ C))
@ A)

| (B @ A))),
inference(simp,[status(thm)],

inference(cnf,[status(esa)],
inference(prim_subst,[status(thm)],
[17:[bind(A,$thf(ˆ [D: $i] : ˜ (C @ D)))]])))).

thf(95,plain,
(sk5
@ (sk6

@ ˆ [A: $i] :
˜ (sk5 @ A @ A))

@ (sk6
@ ˆ [A: $i] :

˜ (sk5 @ A @ A))),
inference(pre_uni,[status(thm)],

inference(eqfactor_ordered,[status(thm)],[41])
:[bind(A,$thf(sk6 @ ˆ [C: $i] : ˜ (sk5 @ C @ C))),
bind(B,$thf(ˆ [C: $i] : (sk5 @ C @ C)))])).

...
thf(141,plain,(

$false),
inference(pattern_uni,[status(thm)],

inference(paramod_ordered,[status(thm)],[95,108]))).
% SZS output end CNFRefutation for sur_cantor.p

Deduction of formula 2 is simple negation of the input conjecture. Formula 17 is inferred
by CNF calculation and application of extensionality rules. Formula 41 is generated by rule
(PrimSubst) from formula 17 via instantiation of the universally quantified variable A by an
approximating binding for ¬ and subsequent simplification, i.e. instantiation with the term
λDι.¬(C D), where C is a fresh variable to the clause. Subsequently, in formula 95 the variable
A is instantiated by a set that does not contain those elements contained in the image (the
power set) of the original function f . An analogous inference counter part branch (yielding in
formula 108) is not displayed due to space limitations. After paramodulation (and unification)
both these branches yield the empty clause (formula 141) and hence a proof for the initial
conjecture.

7 Summary and Further Work

Leo-III is a cooperative higher-order theorem prover, which extends and further improves on the
ideas underlying its predecessor system LEO-II. Unlike LEO-II, Leo-III implements a higher-
order (ordered) paramodulation calculus that is employed within a given-clause saturation
procedure and orchestrated (in different forms) within an agent-based architecture for parallel
proof search. Cooperation with first- and higher-order reasoning systems such as theorem
provers or model finders is supported.

Future work includes more experimentation with external provers and their flag settings,
as well as internal parameter optimization for clause selection and further aspects of the proof
search. Moreover, a thorough evaluation of the agent-based reasoning approach needs to be
performed in order to optimally adjust the architecture for various platforms and applications.

23

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
J. Funct. Program., 1(4):375–416, 1991.

[2] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection
and simplification. J. Log. Comput., 4(3):217–247, 1994.

[3] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.
Perspectives in logic. Cambridge University Press, 2013.

[4] Christoph Benzmüller. Extensional higher-order paramodulation and RUE-resolution. In Harald
Ganzinger, editor, Automated Deduction - CADE-16, 16th International Conference on Automated
Deduction, Trento, Italy, July 7-10, 1999, Proceedings, number 1632 in LNCS, pages 399–413.
Springer, 1999.

[5] Christoph Benzmüller. Invited talk: On a (quite) universal theorem proving approach and its
application in metaphysics. In Hans De Nivelle, editor, TABLEAUX 2015, volume 9323 of LNAI,
pages 213–220, Wroclaw, Poland, 2015. Springer. (Invited paper).

[6] Christoph Benzmüller, Chad Brown, and Michael Kohlhase. Higher-order semantics and exten-
sionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.

[7] Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In Jörg Siekmann,
Dov Gabbay, and John Woods, editors, Handbook of the History of Logic, Volume 9 — Logic and
Computation. Elsevier, 2014. In print.

[8] Christoph Benzmüller, Lawrence C. Paulson, Nik Sultana, and Frank Theiß. The higher-order
prover LEO-II. Journal of Automated Reasoning, 55(4):389–404, 2015.

[9] Christoph Benzmüller and Nik Sultana. LEO-II version 1.5. In Jasmin Christian Blanchette and
Josef Urban, editors, PxTP 2013, volume 14 of EPiC Series, pages 2–10. EasyChair, 2013.

[10] Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. The computability path ordering.
Logical Methods in Computer Science, 11(4), 2015.

[11] N.G. De Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. INDAG. MATH, 34:381–392, 1972.

[12] Iliano Cervesato and Frank Pfenning. A linear spine calculus. J. Log. Comput., 13(5):639–688,
2003.

[13] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational Aspects of Cooper-
ative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2011.

[14] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68, 1940.

[15] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University Press,
New York, NY, USA, 1989.

[16] Tobias Gleiner, Alexander Steen, and Christoph Benzmüller. Theorem provers for every normal
modal logic. In Thomas Eiter and David Sands, editors, Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR), EPiC Series in Computing, Maun, Botswana, 2017. EasyChair.
To appear.

[17] Leonard Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):81–91, 1950.

[18] Cezary Kaliszyk, Geoff Sutcliffe, and Florian Rabe. TH1: the TPTP typed higher-order form with
rank-1 polymorphism. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors, Proceedings
of the 5th Workshop on Practical Aspects of Automated Reasoning, Coimbra, Portugal., volume
1635 of CEUR Workshop Proceedings, pages 41–55. CEUR-WS.org, 2016.

[19] A.J. Kfoury, S. Ronchi della Rocca, J. Tiuryn, and P. Urzyczyn. Alpha-conversion and typability.
Information and Computation, 150(1):1 – 21, 1999.

[20] Thomas F. Melham. The HOL logic extended with quantification over type variables. Formal
Methods in System Design, 3(1-2):7–24, 1993.

24

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

[21] Dale Miller. Unification of simply typed lambda-terms as logic programming. In In Eighth Inter-
national Logic Programming Conference, pages 255–269. MIT Press, 1991.

[22] Reinhard Muskens. Intensional models for the theory of types. Journal of Symbolic Logic, pages
98–118, 2007.

[23] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages
371–443. Elsevier and MIT Press, 2001.

[24] Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science. Springer, 2002.

[25] Brigitte Pientka. Higher-order term indexing using substitution trees. ACM Trans. Comput. Logic,
11(1):6:1–6:40, November 2009.

[26] Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern unification. In 19th Inter-
national Conference on Automated Deduction, pages 473–487. Springer-Verlag, 2003.

[27] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126, August 2002.

[28] Stephan Schulz. Simple and efficient clause subsumption with feature vector indexing. In
Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics -
Essays in Memory of William W. McCune, volume 7788 of LNCS, pages 45–67. Springer, 2013.

[29] Alexander Steen and Christoph Benzmüller. There Is No Best β-Normalization Strategy for Higher-
Order Reasoners. In M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR), volume 9450 of LNAI, pages 329–
339, Suva, Fiji, 2015. Springer.

[30] Geoff Sutcliffe. The SZS Ontologies for Automated Reasoning Software. In LPAR Workshops,
volume 418, 2008.

[31] Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J. Automated Reasoning,
43(4):337–362, 2009.

[32] Geoff Sutcliffe and Christoph Benzmüller. Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formalized Reasoning, 3(1):1–27, 2010.

[33] Norbert Völker. HOL2P – a system of classical higher order logic with second order polymorphism.
In Theorem Proving in Higher Order Logics, pages 334–351. Springer, 2007.

[34] Gerhard Weiss, editor. Multiagent Systems. MIT Press, 2013.

[35] Max Wisniewski and Christoph Benzmüller. Is it reasonable to employ agents in theorem proving?
In Jan van den Heerik and Joaquim Filipe, editors, Proceedings of the 8th International Conference
on Agents and Artificial Intelligence, volume 1, pages 281–286, Rome, Italy, 2016. SCITEPRESS
– Science and Technology Publications, Lda.

[36] Max Wisniewski, Alexander Steen, and Christoph Benzmüller. Leopard - A generic platform for the
implementation of higher-order reasoners. In Manfred Kerber et al., editors, Intelligent Computer
Mathematics - International Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015,
Proceedings, volume 9150 of LNCS, pages 325–330. Springer, 2015.

25

Leo-III Version 1.1 Benzmüller, Steen and Wisniewski

A GDV output for sur cantor

% START OF SYSTEM OUTPUT
SUCCESS: Derivation has unique formula names
SUCCESS: All derived formulae have parents and inference information
SUCCESS: Derivation is acyclic
SUCCESS: Assumptions are propagated
SUCCESS: Assumptions are discharged
SUCCESS: Leaf axioms are satisfiable
RESULT: 2.thm.dis - Isabelle---2016 says Theorem - CPU = 47.75
SUCCESS: 2 is a thm of 1 (Negated cth)
[...]
RESULT: 198.thm.dis - Isabelle---2016 says Theorem - CPU = 48.48
SUCCESS: 198 is a thm of 112 192
RESULT: 205.thm.dis - Isabelle---2016 says Theorem - CPU = 48.51
SUCCESS: 205 is a thm of 198
SUCCESS: Derived formulae are verified
SUCCESS: Verified
SZS status Verified
[...]
% RESULT: SOT_oJ7tTg - GDV---0.0 says Verified - CPU = 1329.90 WC = 351.47 CPUTime = 1224.91
% OUTPUT: SOT_oJ7tTg - GDV---0.0 says Verification - CPU = 1329.90 WC = 351.47

26

	Introduction
	Polymorphic Higher-Order Logic
	Calculus
	Proof Procedure
	Implementation
	Data Structures
	Representation of -Terms
	Indexing Structures

	External cooperation
	Agents
	Further Components

	Applications and Examples
	Leo-III as Meta Prover
	Reasoning in Non-Classical Logics
	Example

	Summary and Further Work
	GDV output for sur_cantor

