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Abstract

A major challenge in computational biology regards recognizing one or more biologically-
active/native tertiary protein structures among thousands of physically-realistic structures
generated via template-free protein structure prediction algorithms. Clustering structures
based on structural similarity remains a popular approach. However, clustering orga-
nizes structures into groups and does not directly provide a mechanism to select individual
structures for prediction. In this paper, we provide a few algorithms for this selection prob-
lem. We approach the problem under unsupervised multi-instance learning and address it
in three stages, first organizing structures into bags, identifying relevant bags, and then
drawing individual structures/instances from these bags. We present both non-parametric
and parametric algorithms for drawing individual instances. In the latter, parameters are
trained over training data and evaluated over testing data via rigorous metrics.

1 Introduction

The three-dimensional (tertiary) structure in which the chain of amino acids comprising a
protein molecule folds in three dimensions determines to a great extent a protein’s biological
activities [6]. For millions of known protein sequences with no known functional or structural
characterization, structure determination is key to obtain information on potential activities
in the cell. Template-free protein structure prediction algorithms approach the problem of
tertiary structure determination as an optimization problem. Instantiated from a given amino-
acid sequence, they generate many physically-realistic tertiary structures driven the objective
of minimizing a potential energy function that sums up interatomic interactions [15]. Many
low-energy structures are generated. Somewhere among them hide the ones that are populated
by a protein molecule under physiological conditions, also referred to as native or near-native.
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Recognizing the near-native structure(s) among the decoy structures remains an open prob-
lem in computational biology [12]. At low energies, energy values are not discriminative enough
to point to the near-native structures. Therefore, clustering structures based on structural sim-
ilarity remains a popular approach [2]. Research on effective clustering remains active [5, 19].
However, clustering organizes structures into groups and does not directly provide a mechanism
to select individual structures for prediction. In this paper, we focus on such mechanisms and
provide a few algorithms to address this selection problem.

In this paper, we approach the problem of identifying a near-native structure by utilizing un-
supervised multi-instance learning (MIL) [9]. We realize that the popular clustering approaches
carry out a learning process of building groups or bags in which (ideally) similar instances are
put together, and less similar instances are separated. Building over this, we propose to proceed
in three stages, first organizing structures into bags (via clustering), identifying relevant bags
(clusters), and then drawing individual structures/instances from the identified bags.

Our focus is not on designing better clustering algorithms for molecular structures, though
we employ here a state-of-the-art clustering algorithm that can handle non-uniform clusters,
such as Gaussian Mixture Model (GMM) clustering. So as not to be handicapped by the high
dimensionality of protein tertiary structures, the GMM algorithm is applied to featurized data
obtained via nonlinear autoencoders. The latter are shown to provide superior dimensionality
reduction over linear and other non-linear models [4]. While our focus is not on improving clus-
tering or dimensionality reduction, in this paper we demonstrate via precise machine learning
metrics that the obtained clusters are bags of high quality and warrant leveraging for single-
instance/decoy selection.

Specifically, we present both non-parametric and parametric algorithms for single-instance
selection. These algorithms operate over a bag/cluster predicted to be of high quality via
ranking-based selection. In the proposed parametric algorithms, parameters are trained over
training data and evaluated over testing data. The evaluation is carried out over several datasets
containing Rosetta-generated decoys of proteins of diverse lengths and folds, employing rigorous
machine learning performance metrics.

2 Method

In the interest of clarity, we first provide a summary of the proposed approach. The input is
a set of the tertiary structures of a given protein molecule. These structures are generated via
the Rosetta AbInitio protocol [10], which is publicly available to researchers. Each structure is
specified in terms of the Cartesian {x, y, z} coordinates of its atoms. The approach consists of
three main components: organizing given structures into bags, identifying/predicting a high-
quality bag (or more), and selecting a single instance/decoy from the identified bag(s). An
important component of all unsupervised MIL approaches that utilize clustering is featurization
of the given instances, as clustering is known to perform badly on high-dimensional data [16].
Therefore, the tertiary structures are first encoded in a latent feature space prior to being
subjected to clustering. We now detail the featurization, clustering, identification of relevant
clusters, and single-decoy selection algorithms utilized in the proposed methodology.

2.1 Data Featurization

If we treat each structure as a data point, the data reside in a space of thousands of dimensions,
as a small-to-medium protein molecule may contain thousands of atoms. Therefore, it is imper-
ative to reduce the dimensionality of the space (that is, featurize the data) prior to clustering.
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However, the focus of our paper is not on feature design. Instead, we prefer to employ domain-
agnostic, non-linear techniques demonstrated to be useful at reducing the dimensionality of
molecular structure data.

Specifically, we leverage recent work in [4], which evaluates various linear and non-linear,
shallow and deep autoencoders for dimensionality reduction of tertiary protein structures. The
interested reader can find more information in Ref. [5]. For the purpose of the study carried
out in this paper, we note that a non-linear (with parametric rectified linear unit as activation
function in both the encoder and decoder), deep autoencoder is employed to map Rosetta-
generated tertiary structures of a protein onto a two-dimensional (2D) feature space; that is,
each structure is represented with 2 features.

2.2 Clustering

The thus-featurized structures are fed to a clustering algorithm. As we relate in Section 1, the
focus of this paper is not on designing a novel clustering algorithm; nor is it on evaluating dif-
ferent clustering algorithms, though this line of research can certainly be investigated in future
work. Instead, we focus on making connections between the problem of single-decoy selection
with unsupervised MIL. In summary, in MIL, each object is represented by a bag composed
of multiple instances instead of by a single instance as in the traditional learning setting. The
majority of works focus on the multi-instance prediction problem, where each bag is associ-
ated with a binary (classification) or real-valued (regression) label. However, tertiary protein
structures do not come with labels and instead impose an unsupervised MIL setting. This
setting has also been studied and typically via clustering algorithms [9]. Under the umbrella
of unsupervised MIL, the problem of single-decoy selection can be approached in three steps,
first organizing structures into bags or clusters, then devising a mechanism to focus on one or
more bags likely to be relevant for single-decoy selection, and then applying an algorithm that
is likely to draw a near-native structure from the identified bag(s).

To obtain the bags containing multiple instances (near-native and non-native structures), we
elect to choose a popular, yet sophisticated clustering algorithm that can handle non-uniform
clusters, such as the Gaussian Mixture Modeling (GMM) [8]. In summary, the GMM clustering
algorithm implements the expectation-maximization algorithm for fitting mixture-of-Gaussian
models. To perform model selection in GMM, which concerns choosing both the covariance
type and the number of components/clusters, we use information-theoretic criteria, such as
the Bayesian Information criterion (BIC) [14] and the Akaike Information criterion (AIC) [1].
The number of components and the type of covariance (full, spherical, tied, or diagonal) are
determined by minimizing the AIC/BIC ratio. Model selection for GMM is provided in the
sklearn.mixture Python library.

An additional reason we prefer GMM over other clustering algorithms is due to the multi-
cluster membership feature that is a rich setting we exploit in this paper to present and evaluate
a variety of single-decoy selection algorithms. In GMM, a data point is not uniquely assigned to
one cluster. Instead, GMM associates each data point with a probability distribution of cluster
membership, where probabilities are provided for the points to belong to any of the clusters
identified (with the total adding up to 1). So, the clustering component of our methodology
provides two types of information: (1) the clusters identified over the data points, and (2) a
vector of membership probability per cluster for each data point.
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2.3 Ranking-based Cluster Selection and Evaluation

An important question for single-decoy selection is how to leverage the obtained clusters. The
answer to this question needs to consider the quality of clusters obtained. Since one does
not a priori know how near-native structures are distributed among the clusters identified, a
reasonable way to proceed is by considering the characteristics of clusters. We proceed with a
rather straightforward characteristic, such as size. That is, the hypothesis is that the largest
cluster is more likely to contain near-native structures than other clusters.

In Section 3, we evaluate this hypothesis by measuring the purity of the selected (largest)
cluster. This metric has been introduced by us in related work on clustering algorithms [3] and
is related to precision. Specifically, purity measures the fraction of the number of near-native
decoys in a cluster over the size (total number of decoys) of the cluster. The determination on
whether a decoy is near-native or not is based on a threshold over the popular least root-mean-
squared-deviation (lRMSD) metric [11]. The latter first finds an optimal superimposition of a
decoy to a known native structure to remove differences due to translation and rotation in 3D
and then averages the Euclidean distance over the number of dimensions/features.

Other characteristics can be investigated in future work, but in this paper we effectuate a
decision so as to proceed and evaluate single-decoy selection over an identified cluster. That is,
the output of this ranking-based selection that gets fed as a input to a single-decoy selection
algorithm is the largest cluster (with the decoys that reside in it) and the vector of probability-
per-cluster for each of the decoys in the largest cluster. It is important to note that the GMM
algorithm assigns a decoy to the cluster for which the probability-per-cluster of the decoy is
largest. By additionally considering the probabilities for a decoy to belong to other clusters,
we obtain a broader picture that we leverage for single-decoy selection as described below.

2.4 Single-Decoy Selection

We present two single-decoy selection algorithms, non-parametric and parametric, as describe
below. Before relating details, we note that we evaluate these algorithms by evaluating the
quality of a decoy they select from a given bag of decoys. We do so in terms of loss. Specifically,
we measure the lRMSD of the best decoy we could have selected and compare how much larger
the lRMSD of the actual-selected decoy is to a given native structure. Obviously, we can only
do so on a benchmark dataset where we do not operate in a blind setting, but know the native
structure for the purpose of evaluation. Specifically, let us refer to the lRMSD of the best
decoy (closest to the native structure) to the known native structure as lRMSD(Best Decoy).
Loss is then measured as lRMSD(Selected Decoy) − lRMSD(Best Decoy). The smaller the
value, the better the performance of the algorithm. The single-decoy selection algorithms we
present draw from a given bag or bags – cluster(s) – in a non-deterministic/probabilistic manner.
Therefore, we measure their average loss over L independent drawings (with replacement). In
our evaluations, we employ L = {5, 10}.

The non-parametric algorithm is utilized as a baseline in our evaluation. It is a naive
algorithm that draws a decoy at random from a given set. The parametric algorithm is more
sophisticated, as it utilizes the per-cluster-membership probabilities of each decoy in a given
set of decoys. Note that there is no need to associate this set with the largest cluster/bag. The
algorithms are agnostic to how the set was obtained. What the parametric algorithm relies on
is the expectation that each decoy is associated with a vector of values in [0, 1], where a value
at index i encodes the probability that the decoy belongs to bag i. The order of bags (and
corresponding indices) relates to size (in the above ranking-based selection, clusters are ordered
by size, from largest to smallest).
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For each decoy, the parametric algorithm finds the probability that it belongs to the largest
bag and measures the range of these probabilities over all decoys in the set provided to it. The
intuition we leverage is that this probability potentially provides us with insight into the quality
of a decoy. We hypothesize that the larger the probability that a decoy belongs to the largest
bag, the more likely it is to be of high quality (near-native in our case).

After obtaining the range of probabilities (belong to the largest bag) over the decoys, the
parametric algorithm proceeds by removing/discarding from the set decoys of low quality; that
is, decoys where this probability is very low, are discarded. The algorithm makes use of a
threshold parameter τ for this purpose, and grid search over a training dataset is carried out to
determine a reasonable value for τ . This value is then later utilized in evaluating the parametric
single-decoy selection algorithm over a testing dataset (in the context of the overall performance
in terms of loss). Only decoys whose probability of belonging to the largest cluster is no lower
than τ are retained in the set. Random drawing is utilized over the reduced set that is now
expected to contain higher-quality decoys.

2.5 Implementation Details

The algorithms presented here are implemented in Python. We make use of Python’s sklearn
library for the GMM implementation and model search. The autoencoder-based featurization,
which is based on our earlier work, is implemented via Keras [7]. Experiments are carried out
on the Mason Argo supercomputing cluster where we used Dell Compute nodes with 16 to 28
cores (Dual Intel Xeon CPUs) and 64GB to 1.5TB RAM memory per core. Clustering the data
(including model search) takes anywhere from 0.5s to 2hrs, depending on dataset size.

3 Results

3.1 Datasets

We employ a benchmark dataset of 18 proteins of varying lengths (ranging from 53 to 123
amino acids) and folds (α, β, and α + β) that are used widely for evaluation [17, 18], shown
in Table 1. We experiment with 18 proteins of different lengths and folds. These proteins
constitute a benchmark dataset often used by decoy generation algorithms [13, 18]. We used
the Rosetta template-free (decoy generation) protocol [10] to generate 51, 000 to 68, 000 decoys
per target. For each decoy, we only retain its all-atom Cartesian coordinates. The energy of
each decoy is measured via the Rosetta all-atom internal energy function (score12) measured
in Rosetta Energy Units (REUs).

Table 1 presents all the 18 proteins arranged into 3 different categories/levels of difficulty
(easy, medium, and hard). These levels have been determined using the minimum lRMSD
between the generated decoys and a known native structure of the corresponding protein (ob-
tained from the PDB). The size of the decoy ensemble |Ω| for each target is shown in Column
5. The proteins in this dataset are identified via the PDB entry id of a known native structure
for them. The 4-letter PDB ids are shown in Column 2; the fifth letter identifies the chain
in a multi-chain PDB entry. Column 7, which shows the percentage of near-native decoys
(within dist threshold of the known native structure), conveys the extreme imbalance of the
decoy datasets; in some cases, the near-native decoys constitute less than 5% of the dataset.
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Table 1: Testing dataset (* denotes proteins with a predominant β fold and a short helix).
The chain extracted from a multi-chain PDB entry (shown in Column 2) to be used as the
native structure is shown in parentheses. The fold of the known native structure is shown in
Column 3. The length of the protein sequence (#aas) is shown in Column 4. The size of the
Rosetta-generated decoy dataset is shown in Column 5. Column 6 shows the minimum lRMSD
over decoys from the known native structure. Column 7 shows the percentage of near-native
decoys (within dist threshold of the known native structure).

Difficulty PDB id Fold # aas # decoys min lRMSD % near-native
(Å)

Easy

1ail α 70 58, 491 0.50 6.352
1dtd(B) α+ β 61 58, 745 0.51 22.827
1wap(A) β 68 68, 000 0.60 10.192

1tig α+ β 88 60, 000 0.60 15.109
1dtj(A) α+ β 74 60, 500 0.68 22.435

Medium

1hz6(A) α+ β 64 60, 000 0.72 11.325
1c8c(A) β∗ 64 65, 000 1.08 10.882

2ci2 α+ β 65 60, 000 1.21 22.443
1bq9 β 53 61, 000 1.30 1.565
1hhp β∗ 99 60, 000 1.52 2.486
1fwp α+ β 69 51, 724 1.56 5.819
1sap β 66 66, 000 1.75 2.304

Hard

2h5n(D) α 123 54, 795 2.00 0.845
2ezk α 93 54, 626 2.56 13.047
1aoy α 78 57, 000 3.26 10.923
1cc5 α 83 55, 000 3.95 5.529

1isu(A) coil 62 60, 000 5.53 5.304
1aly β 146 53, 000 8.53 2.779

3.2 Experimental Setup

We proceed to show three sets of results. First, we carry out a ranking-based analysis to
observe where the highest-purity cluster (obtained via GMM) falls when ranking clusters based
on different criteria. We then relate the quality of the largest cluster in terms of its purity and
the largest cluster after the parametric single-decoy selection algorithm removes decoys deemed
to be of low quality. We then show the ranking of the highest-quality cluster (measured via
purity) in different orderings of the cluster based on different criteria. Finally, we relate the
average loss (over L ∈ 5, 10 drawings) obtained by the non-parametric (baseline) and parametric
single-decoy selection algorithms operating over the largest cluster.

We note that the parametric single-decoy selection algorithm depends on the threshold
parameter τ . We have carried out grid search over different parameter values in a subset of the
datasets. We refer to the latter as the training dataset, as we learn a reasonable threshold value
on a subset of the datasets and then later relate results on application of the threshold on the
rest of the datasets. Specifically, we select proteins from each category (for a total of 6 datasets)
over which to learn the optimal threshold parameter value. These are 1dtj(A), 1dtd(B), 1bq9,
1ail, 1aoy, and 1cc5. Table 2 relates the average loss (over L = 5 and L = 10 drawings) obtained
at the different thresholds and shows that albeit variations, τ = 80% is a reasonable threshold.
When τ = 80%, the lowest loss is obtained for L = 5 on 4/6 of the datasets (1dtd(B), 1dtj(A),
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1aoy, and 1cc5). When L = 10, the lowest loss is obtained for τ = 80% on 2/6 of the datasetss
(1dtj(A) and 1aoy); on the two datasets of 1dtd(B) and 1cc5, the loss is similar to the lowest
loss achieved on these datasets.

Table 2: Average Loss over Different Thresholds. Entries in Columns 3-8 are shown as pairs,
relating the average loss over L = 5 and the average loss over L = 10.

Difficulty PDB id τ = 51% τ = 60% τ = 70% τ = 80% τ = 90%

Easy
1ail 1.680, 1.492 1.800, 2.766 1.755, 1.637 1.740, 1.723 1.662, 1.296
1dtd(B) 4.320, 5.830 2.843, 3.258 3.886, 3.612 3.445, 3.433 3.731, 4.245
1dtj(A) 0.465, 1.395 0.813, 1.281 1.277, 1.084 0.345, 1.179 1.920, 1.248

Medium 1bq9 3.201, 5.441 4.639, 4.504 3.476, 3.466 6.050, 3.931 4.151, 6.018

Hard
1aoy 6.146, 5.403 5.120, 5.892 4.770, 6.317 4.473, 5.203 6.068, 5.666
1cc5 8.046, 6.120 6.839, 6.830 7.817, 7.968 6.492, 6.136 6.547, 7.296

3.3 Quality of Selected Cluster

We first track the rank of the highest-purity cluster in various orderings based on criteria, such as
size (largest to smallest) and average lRMSD over decoys in a cluster (lowest to highest). Table 3
shows that for most of the datasets (particularly those in the Easy and Medium categories),
the ranks are low. This is an encouraging result, as it suggests that selecting based on size is
likely to yield purer clusters.

Table 3: Ranks of the highest-purity cluster, when clusters are ordered based on different
criteria. In Column 1, clusters are ranked by size (largest to smallest). In Column 2, they are
ordered by the average lRMSD over cluster decoys (from lowest to largest average lRMSD).

Difficulty PDB id Rank (order by size) Rank (order by average lRMSD)

Easy

1ail 1 1
1dtd(B) 2 2
1wap(A) 1 1
1tig 1 1
1dtj(A) 1 1

Medium

1hz6(A) 2 2
1c8c(A) 2 2
2ci2 1 1
1bq9 1 1
1hhp 3 3
1fwp 1 1
1sap 1 1

Hard

2h5n(D) 4 4
2ezk 4 4
1aoy 3 3
1cc5 2 2
1isu(A) 7 7
1aly 1 1
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Figure 1 shows (in the red bars) the purity of the largest cluster obtained by GMM over
each dataset. The datasets are identified based on the PDB id of the corresponding known
native structure. As expected, the results show that the datasets in the Easy and Medium
categories have overall a higher purity (of their largest cluster) over the datasets in the Hard
category. This is expected, as the datasets in the Hard category contain very few near-natives
(see Column 7 in Table 1. This result additionally informs on the fact that single-decoy selection
is expected to be challenging.

The blue bars in Figure 1 show the purity recalculated over the remaining decoys in the
largest cluster, after the parametric single-decoy selection algorithm removes decoys determined
to be of low quality (as based on their per-cluster membership probabilities). Overall, the blue
bars are higher than the red bars, indicating that the purity increases after the parametric
algorithm removes decoys that do not meet the threshold. This result indirectly confirms the
hypothesis that the parametric algorithm is more likely to remove non-native over near-native
decoys. As, such the application of the parametric algorithm for single-decoy selection is now
further warranted, as the algorithm now draws at random over a subset of decoys that has
higher purity than the original set (the largest cluster). As such, this algorithm is expected
to outperform drawing at random over the largest cluster, which is what the non-parametric,
baseline algorithm carries out. Fig. 2, which we relate next, confirms this observation.
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Figure 1: The purity of the largest cluster obtained via GMM and pSDS over each dataset.
Two settings are shown, comparing the quality of clustering GMM, input space over the quality
of clustering parametric algorithms pSDS.

3.4 Loss-based Analysis

Figure 2 compares the average loss (over L = 5 and L = 10) of the non-parametric and para-
metric single-decoy selection algorithms. For ease of presentation, we refer to these algorithms
as npSDS and pSDS, respectively, in Figure 2. The results in Figure 2 show clearly that the
parametric algorithm (pSDS) achieves, on average, lower loss than the non-parametric one.
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This confirms that decoys with lower probability to belong to the largest cluster are of lower
quality and removing them facilitates drawing a decoy that is more likely to be near-native.
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Figure 2: Comparison of average loss (over L decoys drawn with replacement) over the non-
parametric (npSDS) and parametric (pSDS) decoy selection algorithms. Loss values are shown
on the y-axis. The x-axis lists the various datasets, identifying them by the PDB id of the
corresponding known native structure.

4 Conclusion

In this paper, we have developed an approach that leverages unsupervised multi-instance learn-
ing for instance search/prediction, inspired by a central problem in computational biology.
Specifically, we have leveraged soft clustering via the GMM algorithm to investigate non-
parametric and parametric algorithms for selecting a near-native structure over decoy structures
generated for a given protein sequence via template-free protein structure prediction algorithms.

The presented methodology utilizes featurization, clustering, and ranking-based selection
of clusters. While our focus in this paper has been on single-decoy selection, advances in
featurization, clustering, and prediction of high-quality clusters present interesting directions
for further research. It is worth noting that in the evaluation presented here, we have focused on
2D featurizations of protein tertiary structures. Based on a preliminary evaluation, we expect
similar results when considering the 5D-10D regime (data not shown) but anticipate a worsening
of performance on higher dimensionalities due to the challenge that high dimensionalities present
to clustering algorithms [16]. In addition, we plan to investigate additional single-decoy selection
algorithms that do not rely on parameters but still leverage soft clustering.
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