
Abstract Interpretation over Zones without

Widening

Thomas Martin Gawlitza
The University of Sydney, Australia

gawlitza@it.usyd.edu.au and Helmut Seidl
Technische Universität München, Germany

seidl@in.tum.de

Abstract

We present a practical algorithm for computing least solutions of systems of (fixpoint-
)equations over the integers with, besides other monotone operators, addition, multipli-
cation by positive constants, maximum, and minimum. The algorithm is based on max-
strategy iteration. Its worst-case running-time (w.r.t. a uniform cost measure) is indepen-
dent of the sizes of occurring numbers. We apply this algorithm to compute the abstract
semantics of programs over integer intervals as well as over integer zones.

1 Introduction

Tight bounds on the possible values of integer variables are crucial when memory errors at
array indexing are to be excluded. Just to name one further prominent application, such
bounds are also crucial for inferring worst-case execution times [29]. Various extensions of
interval analysis have been considered which also infer nontrivial relationships between integer
variables. Beyond upper and lower bounds on the values of variables, the abstract domain of
zones allows to express bounds on the differences between the values of two variables. This
domain has been introduced by Dor et al. [11] for the analysis of string manipulating C functions
and has later been refined by Miné [22]. Bounds on variable differences, however, have earlier
been widely used by the model-checking community [21, 31]. A dedicated representation for
zones, called difference bound matrices, as well as various operators on these for model-checking
timed automata were introduced by Larsen et al. [21], Yovine [31]. Later, this domain has
been generalized to octagons which additionally track bounds on the sums of the values of two
variables [23]. All of these domains are special instances of template polyhedra as studied by
Sankaranarayanan et al. [26].

The approach of inferring invariants by means of abstract interpretation first translates the
program into a set of constraints over an abstract lattice of possible invariants. The least solu-
tion of this constraint system represents the abstract semantics of the program, i.e., the most
precise invariants which the analysis can infer. The most immediate idea for determining this
least solution is to use some variant of Kleene fixpoint iteration which, starting from the least
value of the abstract domain, repeatedly re-evaluates constraints until no further contribution
to the values of unknowns is found. Already interval analysis, however, relies on lattices with
infinite strictly ascending chains. For such lattices, a Kleene fixpoint iteration may not ter-
minate and thus fail to determine the least solution. In order to enforce termination, Cousot
and Cousot propose a widening iteration which returns some, perhaps very imprecise solution,
which subsequently is improved by a narrowing iteration [10]. For the specific case of zones,
widening and narrowing operators have been introduced by Miné [22]. Since widening trades
termination of the fixpoint iteration against precision, widening/narrowing-based techniques
may not succeed in computing the least solution.

This was more or less state of the art until Costan et al. [7] proposed an alternative tech-
nique for computing solutions to constraint systems over integer intervals. They considered the

0 0 (ed.); 0, pp. 0–31

gawlitza@it.usyd.edu.au
seidl@in.tum.de

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

problem of computing least solutions to constraint systems of integer intervals as a two-players
zero-sum game where one player (the maximizer) aims at maximizing and his opponent (the
minimizer) aims at minimizing the values of the variables. Then they apply (min-)strategy
iteration to find a small solution to the constraints, i.e., they try to improve the strategy for
the minimizer step by step. While this approach still may not result in the least solution, it at
least avoids the crude overapproximation through widening.

Strategy iteration in itself is not new. Strategy iteration was introduced by Howard [18]
for solving one-player games. Hoffman and Karp [17] used the idea for solving certain two-
player games. A strategy improvement algorithm performs two basic steps that are to be
alternated: Each strategy has to be evaluated and based on the result of this evaluation it has
to be improved, if possible. These steps are repeated until stabilization, i.e., until no further
improvement is possible. In the context of program analysis through abstract interpretation,
Gaubert et al. [13] generalized the idea of Costan et al. [7] and applied it to zones, octagons or,
more generally, arbitrary template polyhedra. In contrast to the interval domain, these domains
are relational, i.e., they are able to express relations between the values of different variables.
Their method applies linear programming to perform a strategy improvement step, i.e., to
evaluate and improve a given strategy. It returns quite precise solutions which, however, are
not guaranteed to be minimal.

In this article, we elaborate the techniques for analyzing values of integer variables which we
have developed in [15, 16]. In these articles, we have proposed a max-strategy iteration which
is guaranteed to terminate with the least solution. Our approach differs from the approach
proposed by Costan et al. [7], Gaubert et al. [13] in that we improve the strategy for the max-
imizer instead of the strategy for the minimizer. Each strategy for the maximizer is evaluated
using a generalization of the Bellman-Ford algorithm. Our approach finally allows to compute
the abstract semantics of programs over integer intervals. We later extended this approach to
computing the abstract semantics over zones, octagons or template polyhedra [14]. The latter
methods, however, use exact rational arithmetic and apply linear programming to evaluate the
strategies for the maximizer.

Although fast implementations of linear programming are available, no strongly polynomial
algorithm is known. Therefore, it is not clear how well algorithms that rely on linear program-
ming may scale to larger inputs — in particular, when exact rational arithmetic is applied. In
this article, we show that if we are only interested in integer zones, then full-fletched linear pro-
gramming is not necessary to evaluate a strategy for the maximizer. Instead, an algorithm can
be constructed which is based on the Bellman-Ford algorithm extended with subroutine calls
to solve minimum cost flow problems [25]. For the latter problem various strongly polynomial
algorithms have been devised (see e.g. Ahuja et al. [1] for a recent overview).

This article is organized as follows. In Section 2, we introduce systems of integer equations
and discuss elementary properties. An adaption of the Bellman-Ford algorithm that can be used
to evaluate strategies for the maximizer is presented in Section 4. Our strategy improvement
algorithm is presented in Section 5. We slightly extend the applicability of our approach in
Section 6, where we introduce systems of extended integer equations. In Section 7 we finally
apply our techniques for computing the abstract semantics of programs over intervals and zones.
We conclude with section 8.

1

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

2 Preliminaries

2.1 The max-strategy improvement approach by example

Before presenting the technical machinery, we introduce the key ideas of our max-strategy
improvement algorithm by an example. The goal is to compute the least solution of a system
of integer equations. Such a system consists of equations of the form x = e, where e is an
expression over Z = Z ∪ {−∞,∞} which uses, beside other monotone operators, addition,
multiplication by positive constants, minimum, and maximum. As an example, consider the
system:

x1 = 0 ∨ (−1 + x1 ∧ x2)

x2 = 0 ∨ 5 + x1 ∨ x1 (1)

x3 = 0 ∨ 1 + x3 ∨ 0 + x1

Here, ∧ denotes the minimum and ∨ the maximum operator. The least solution of equation
system (1) is given by x1 = 0, x2 = 5, and x3 =∞.

Our max-strategy improvement algorithm considers the computation of the least solution of
a fixpoint-equation system with monotone right-hand sides as a competition between a maxi-
mizer and a minimizer. The maximizer aims at maximizing the values of the variables, whereas
the minimizer aims at minimizing it. A state of a play is a variable assignment and the play
starts at the state x1 = x2 = x3 = −∞. The maximizer is allowed to control the game at
∨-operators, whereas the minimizer is allowed to control the game at ∧-operators. We focus on
the maximizer and assume that the minimizer locally always choses the best strategy.

The strategy for the maximizer is improved successively. In the above example, the maxi-
mizer may choose to start the fixpoint iteration with a strategy that corresponds to the equation
system

x1 = 0 x2 = 0 x3 = 0 (2)

That is, the maximizer selects the left-most argument for every ∨-expression. Conceptually,
a fixpoint iteration is now perfromed according to the strategy the maximizer has chosen.
In consequence, the next states of the play are determined by evaluating the right-hand sides
iteratively. The evaluation of the right-hand sides corresponds to a minimizer who always choses
the locally best alternative. In this example the play reaches the state x1 = x2 = x3 = 0. In
this state, the maximizer may choose to change his strategy to a strategy that corresponds to
the equation system

x1 = 0 x2 = 5 + x1 x3 = 1 + x3 (3)

Starting from the state x1 = x2 = x3 = 0, the fixpoint iteration now converges to the least
solution of the original equation system, which is x1 = 0, x2 = 5, and x3 = ∞. In other
words, x1 = 0, x2 = 5, and x3 = ∞ is the least solution that is greater than or equal to
x1 = x2 = x3 = 0.

Observe that x1 = 0, x2 = 5, and x3 = ∞ is also the greatest solution of the equation
system (3). This is not by accident. We will see that this is always the case — provided that
we follow some rules when switching from one strategy to another. This greatest solution can
be computed through the adaption of the Bellman-Ford algorithm that we present in Section 4.

2

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

2.2 Notations

As usual, N, Z, and R denote the set of natural numbers, the set of integers, and the set of real
numbers, respectively. We assume 0 ∈ N and we denote N\{0} by N>0. For D ∈ {Z,R}, we set
D := D ∪ {−∞,∞}. Z and R are complete linearly ordered sets. For two functions f : X → Y
and g : X ′ → Y , the function f ⊕ g : (X ∪X ′)→ Y is defined by

(f ⊕ g)(x) =

{

g(x) if x ∈ X ′

f(x) if x ∈ X \X ′
for all x ∈ X ∪X ′. (4)

We use a uniform cost measure where we count arithmetic operations and memory accesses for
O(1). The size of a data structure S in the uniform cost measure will be denoted by ‖S‖. An
algorithm is called uniform iff its running time w.r.t. the uniform cost measure only depends
on the size of the input in the uniform cost measure, i.e., the running time does not depend on
the sizes of the occurring numbers.

2.3 Monotone self-maps on complete lattices

Let D be a partially ordered set (partially ordered by ≤). For x ∈ D, we set D≥x := {y ∈ D |
y ≥ x} and D≤x := {y ∈ D | y ≤ x}. As usual, for x, y ∈ D, we write x < y iff x ≤ y and
x 6= y. We denote the least upper bound and the greatest lower bound of a set X by

∨

X and
∧

X , respectively. D is called a complete lattice iff
∨

X and
∧

X exist for all X ⊆ D. The least
element

∨

∅ (resp. the greatest element
∧

∅) is denoted by ⊥ (resp. ⊤). We define the binary
operators ∨ and ∧ by

x ∨ y :=
∨

{x, y}, and x ∧ y :=
∧

{x, y} (5)

for all x, y ∈ D, respectively. For ✷ ∈ {∨,∧}, we will also consider x1 ✷ · · · ✷ xk as the
application of a k-ary operator. This will cause no problems, since the binary operators ∨ and
∧ are associative. In order to simplify notations, we assume that ∧ binds tighter than ∨, i.e.,
x ∧ y ∨ z = (x ∧ y) ∨ z holds for all x, y, z ∈ D.

Let f : D → D be a self-map. An element x ∈ D is called a fixpoint (resp. pre-fixpoint,
resp. post-fixpoint) iff x = f(x) (resp. x ≤ f(x), resp. x ≥ f(x)). The set of all fixpoints
(resp. pre-fixpoints, resp. post-fixpoints) of f is denoted by Fix(f) (resp. PreFix(f), resp.
PostFix(f)). The least fixpoint (resp. the greatest fixpoint) of f is denoted by µf (resp. νf),
provided that it exists. For x ∈ D, µ≥xf (resp. ν≤xf) denotes the least (resp. greatest) element
from D≥x ∩ Fix(f) (resp. D≤x ∩ Fix(f)), provided that it exists.

A map f is called monotone iff x ≤ y implies f(x) ≤ f(y) for all x, y. The existence
of least and greatest fixpoints of monotone self-maps on complete lattices is ensured by the
Knaster-Tarski fixpoint theorem [28]: Every monotone self-map f on a complete lattice has
a least fixpoint µf and a greatest fixpoint νf . Furthermore, µf =

∧

PostFix(f), and νf =
∨

PreFix(f).
Let f be a monotone self-map on a complete lattice D. Let x ∈ PreFix(f). Then D≥x

is also a complete lattice and the restriction of f to D≥x is a self-map on D≥x. Thus, the
Knaster-Tarski fixpoint theorem implies that µ≥xf exists. Dually, if x ∈ PostFix(f), then
ν≤xf exists.

Let X be a set of variables. The set X→ D of all variable assignments is partially ordered
by the point-wise extension of ≤ which we, for simplicity, again denote by ≤. If D is a complete
lattice, then X → D is also a complete lattice. For d ∈ D, d denotes the variable assignment
{x 7→ d | x ∈ X}.

3

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

2.4 Systems of monotone equations

Assume that a fixed set X of variables and a partially ordered set D (for instance Z) are given.
We consider (fixpoint-)equations of the form x = e, where x ∈ X is a variable that takes
values in D and e is an expression over D. A system E of (fixpoint-)equations is a finite set
{x1 = e1, . . . ,xn = en} of equations, where x1, . . . ,xn are pairwise distinct variables. We
denote the set {x1, . . . ,xn} of variables occurring in E by XE . We drop the subscript, whenever
it is clear from the context. The set of subexpressions occurring in the right-hand sides of E
is denoted by S(E). The set of variables occurring in the right-hand sides of E is denoted by
Vars(E). For X′ ⊆ X, we set E⊕{x = ex | x ∈ X′} := {x = e ∈ E | x /∈ X′}∪{x = ex | x ∈ X′}.

For an expression e, we write e[ex/x]x∈X′ for the expression which is obtained from e by
simultaneously substituting all occurrences of the variable x with the expression ex for all
variables x ∈ X′. We set E [ex/x]x∈X′ := {x = e[ex/x]x∈X′ | x = e ∈ E}.

For a variable assignment ρ : X→ D, e is mapped to a value JeKρ by

JxKρ := ρ(x), and Jf(e1, . . . , ek)Kρ := f(Je1Kρ, . . . , JekKρ), (6)

where x ∈ X, f is a k-ary operator, for instance +, and e1, . . . , ek are expressions. Let E be a
system of (fixpoint-)equations. We define the unary operator JEK on X→ D by setting

(JEKρ)(x) := JeKρ for all equations x = e of E . (7)

A solution of E is a variable assignment ρ such that ρ = JEKρ. The set of solutions is denoted
by Sol(E). A pre-solution (resp. post-solution) of E is a variable assignment ρ such that ρ ≤
JEKρ (resp. ρ ≥ JEKρ). The set of pre-solutions (resp. the set of post-solutions) is denoted by
PreSol(E) (resp. PostSol(E)). The least solution (resp. the greatest solution) of a system E
of equations is denoted by µJEK (resp. νJEK), provided that it exists. For a pre-solution ρ (resp.
for a post-solution ρ), µ≥ρJEK (resp. ν≤ρJEK) denotes the least solution that is greater than or
equal to ρ (resp. the greatest solution that is less than or equal to ρ).

An expression e (resp. an equation x = e) is called monotone iff all operators occurring in
e are monotone. An expression e or an equation x = e is called disjunctive (resp. conjunctive)
iff e does not contain ∧-operators (resp. ∨-operators). An expression e or an equation x = e is
called basic iff e does neither contain ∧- nor ∨-operators.

In our setting, the Knaster-Tarski fixpoint theorem can be stated as follows: Every system E
of monotone equations over a complete lattice has a least solution µJEK and a greatest solution
νJEK. Furthermore, µJEK =

∧

PostSol(E), and νJEK =
∨

PreSol(E).

3 Systems of Integer Equations

In this section we introduce the class of fixpoint equation systems we will focus on in the
remainder of this article. We moreover study elementary properties of these equation systems
and the operators that are allowed in right-hand sides.

3.1 Operators on Z

On Z we consider two additions, +−∞ and +∞, which are dual to each other. Both coincide
on Z with the usual addition. The operator +−∞ preserves −∞, whereas the operator +∞

preserves ∞:

x+−∞y :=

−∞ if −∞ ∈ {x, y}
∞ if −∞ /∈ {x, y} and ∞ ∈ {x, y}
x+ y if x, y ∈ Z

for all x, y ∈ Z (8)

4

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

x+∞y :=

∞ if ∞ ∈ {x, y}
−∞ if ∞ /∈ {x, y} and −∞ ∈ {x, y}
x+ y if x, y ∈ Z

for all x, y ∈ Z. (9)

We have x+−∞y = x+∞y, whenever (x, y) /∈ {(−∞,∞), (∞,−∞)}. In particular, both oper-
ators +−∞ and +∞ behave equal, if one argument is from Z. In our applications, we mostly
use the operator +−∞. Therefore, in the following we also denote the operator +−∞ simply by
+. We extend the multiplication on Z as usual, i.e.,

x · ∞ =∞ · x =∞, x · −∞ = −∞ · x = −∞ for all x > 0 (10)

x · ∞ =∞ · x = −∞, x · −∞ = −∞ · x =∞ for all x < 0 (11)

0 · ∞ =∞ · 0 = 0 · −∞ = −∞ · 0 = 0. (12)

Observe that the multiplication · on Z is not monotone, since for instance (−1, 0) ≤ (−1, 1)
and −1 · 0 = 0 6≤ −1 = −1 · 1. For c ∈ Z, we denote the unary operator that assigns c+x (resp.
c · x) to each x ∈ Z by c+ (resp. c·). The operator c· is monotone, whenever c is positive. For
simplicity, we make the following agreements: The operator c· binds tighter than the operators
+−∞ and +∞. These operators bind tighter than ∧, which binds tighter than ∨. All operators
are left-associative.

3.2 Expansivity

In this article, we are in particular interested in expressions e for which the evaluation function
JeK is expansive (see below) in all variables occurring in e. Informally, this means that the value
of an expression e increases (resp. decreases) by at least δ, whenever the value of a variable
increases (resp. decreases) by δ.

Let X be a set and f : (X → Z) → Z be a mapping. The mapping f is called upward-
expansive in X ′ ⊆ X iff

f(ρ⊕ {x 7→ ρ(x) + δ}) ≥ f(ρ) + δ for all x ∈ X ′, ρ : X → Z, δ ∈ N. (13)

Dually, f is called downward-expansive in X ′ ⊆ X iff

f(ρ⊕ {x 7→ ρ(x) − δ}) ≤ f(ρ)− δ for all x ∈ X ′, ρ : X → Z, δ ∈ N. (14)

The mapping f is called expansive in X ′ ⊆ X iff it is upward- and downward-expansive in
X ′ ⊆ X . It is simply called upward-expansive (resp. downward-expansive, resp. expansive) iff
it is upward-expansive in X (resp. downward-expansive in X , resp. expansive in X). Since Z

n

can be identified with the set Z
{1,...,n}

= {1, . . . , n} → Z of all functions from {1, . . . , n} to Z,
the above definitions also apply to operators.

Lemma 1. If all operators that occur in an expression e are expansive (respectively upward-
expansive, respectively downward-expansive), then the evaluation function JeK of e is expansive
(respectively upward-expansive, respectively downward-expansive) in Vars(e).

In the remainder of this article we are in particular interested in operators that are monotone
and expansive. The operators +−∞,+∞, c+ (c ∈ Z), and c· (c ∈ N>0), are important examples
for operators that are monotone and expansive.

5

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

3.3 Systems of integer equations

Let X be a set of variables and F be a set of operators. We denote the set of all expressions
that can be built up using variables from X and operators from F by E(F ,X). Moreover,
we identify constants with nullary operators. For instance, we have x + 2 ∈ E(Z ∪ {+}, {x}).
An expression from E(F ,X) is called a E(F ,X)-expression. An equation x = e is called a
E(F ,X)-equation iff x ∈ X and e ∈ E(F ,X). We define the sets F , F l and Fs of operators as
follows:

F := {∧,∨} ∪ {f : Z
k
→ Z | f is monotone and expansive} (15)

F l := {∧,∨,+−∞,+∞} ∪ {c· | c ∈ N>0} (16)

Fs := {∧,∨} ∪ {c+ | c ∈ Z} (17)

Let X be a set of variables. An E(Z ∪ F ,X)-expression is called integer expression, an E(Z ∪
F ,X)-equation is called integer equation, and an E(Z∪F l ,X)-expression is called linear integer
equation. Accordingly, an E(Z ∪ F l ,X)-equation is called linear integer equation, an E(Z ∪
Fs ,X)-expression is called simple integer expression, and an E(Z ∪ Fs ,X)-equation is called
simple integer equation.

Every system of simple integer equations can be identified with a system of linear integer
equations. The Knaster-Tarski fixpoint theorem implies that every system of integer equations
has a least and a greatest solution.

Example 1. The system E = {x1 = (x2 ∨ x1 + 1)∧ 100, x2 = 0} is a system of simple integer
equations. The least solution is µJEK = {x1 7→ 100, x2 7→ 0}.

As the following example shows, Kleene fixpoint iteration is not an effective method for com-
puting least solutions of systems of integer equations.

Example 2 (Kleene Fixpoint Iteration). The least solution of the system E = {x = 1∨ x+ 1}
of simple integer equations is µJEK = {x 7→ ∞}. For i ≥ 1, the i-th Kleene approximate is
JEKi(−∞) = {x 7→ i} < {x 7→ ∞}. Thus, there does not exists an i ∈ N such that JEKi(−∞) =
µJEK.

For every system E of linear integer equations, we can compute bounds for the finite values of
the least solution. That is, we can (even in polynomial time) compute some B(E) ∈ N such
that |µJEK(x)| ≤ B(E) for every variable x ∈ X with µJEK(x) ∈ Z. We can then compute the
least solution using a modified Kleene fixpoint iteration that sets the value of a variable to ∞
as soon as it is known to be greater then B(E). However, the number of iterations then depends
on the sizes of the constants that occur in the equation system, i.e., this method is not uniform.

3.4 Duality

Since −(−x) = x, −(x ∨ y) = −x ∧ −y and −(x ∧ y) = −x ∨ −y for all x, y ∈ Z, the unary
minus − : Z → Z is a negation. The dual f δ of a k-ary operator f on Z is defined by
f δ(x1, . . . , xk) := −f(−x1, . . . ,−xk) for all x1, . . . , xk ∈ Z. The operators ∨ and ∧ are dual
to each other, +−∞ and +∞ are dual to each other, and c· (c ∈ N>0) is self-dual, i.e., c·
is the dual of c·. The dual eδ of an integer expression e is inductively defined by xδ := x,
and f(e1, . . . , ek) := f δ(eδ1, . . . , e

δ
k), where x is a variable, f is a k-ary operator, and e1, . . . , ek

are integer expressions. Finally, the dual Eδ of a system E of integer equations is defined by
Eδ := {x = eδ | x = e ∈ E}.

6

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

The class of systems of integer equations (resp. linear integer equations, resp. simple integer
equations) is closed under dualization. Moreover, we have νJEK = −µJEδK for every system E
of integer equations.

Example 3. The dual Eδ of the system E = {x1 = (2 ·x1∧100)∨1} of linear integer equations
is Eδ = {x1 = (2 · x1 ∨−100) ∧ −1}. Indeed, we have

µJEK = {x1 7→ 100} = −{x1 7→ −100} = −νJEδK. (18)

3.5 Strategies

A ∨-strategy σ (resp. ∧-strategy π) for a system E of equations is a function that maps every
expression e1∨· · ·∨ek (resp. e1∧· · ·∧ek) occurring in E to one of the immediate subexpressions
ej , j ∈ {1, . . . , k}. We denote the set of all ∨-strategies (resp. ∧-strategies) for E by ΣE (resp.
ΠE). We drop subscripts, whenever they are clear from the context. For all ∨-strategies σ ∈ Σ,
the expression eσ is inductively defined by

(e1 ∨ · · · ∨ ek)σ := (σ(e1 ∨ · · · ∨ ek))σ, (19)

(f(e1, . . . , ek))σ := f(e1σ, . . . , ekσ), (20)

where f 6= ∨ is some operator. Finally, we set

E(σ) := {x = eσ | x = e ∈ E}. (21)

The definitions of eπ and E(π) for a ∧-strategy π are dual.
There exists a ∧-strategy π for every system E of integer equations such that µJE(π)K = µJEK.

However, an analogous statement does not hold for ∨-strategies, i.e., there does not always exist
a ∨-strategy σ for E such that µJE(σ)K = µJEK — even if we restrict ourselves to systems of
simple integer equations.

Example 4. We consider the system E = {x1 = x1 + 1 ∨ 0} of simple integer equations. Let
σ1 := {x1 +1∨ 0 7→ x1 + 1} and σ2 := {x1 +1∨ 0 7→ 0} be the ∨-strategies for E, i.e., we have
Σ = {σ1, σ2}. We have

µJE(σ1)K = {x1 7→ −∞} 6= µJEK = {x1 7→ ∞} 6= {x1 7→ 0} = µJE(σ2)K. (22)

Thus, there does not exist a ∨-strategy σ for E such that µJE(σ)K = µJEK.

Because of duality, the existence of a ∧-strategy π for E such that νJE(π)K = νJEK is also not
ensured in general.

4 Adaption of the Bellman-Ford Algorithm

In this section we present an adaption of the Bellman-Ford algorithm. Later, we will use this
algorithm for computing least solutions of systems of disjunctive integer equations, or dually
for computing greatest solutions of systems of conjunctive integer equations. Recall that an
equation x = e is called disjunctive (resp. conjunctive) iff the right-hand side e does not contain
the operator ∧ (resp. the operator ∨). The Bellman-Ford algorithm is a graph algorithm
for solving the single source shortest path problem for edge-weighted directed graphs (see e.g.
Cormen et al. [6]). An edge-weighted directed graph together with a source can be represented

7

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

by a system of conjunctive simple integer equations whose greatest solution corresponds to the
solution of the single source shortest path problem.

The adaption of the Bellman-Ford algorithm we present in this section can be applied
to compute least solutions of systems of disjunctive integer equations. However, in order to
simplify the argumentations, we consider a more general class of equations, which we will call
BF-eqautions.

Let X be a set. A monotone function f : (X → Z) → Z is called Bellman-Ford function
(BF-function for short) iff the following holds for all ρ, ρ′ : X → Z with ρ′ ≥ ρ: If f(ρ′) > f(ρ),
then there exists some x ∈ X and some δ ∈ Z \ {−∞} such that the following properties are
fulfilled:

1. ρ′(x) > ρ(x).

2. f(ρ′) = ρ′(x) + δ.

3. f(ρ′′) ≥ ρ′′(x) + δ for all ρ′′ ≥ ρ′.

Such an x is called relevant for the statement f(ρ′) > f(ρ).
The above definition also makes sense in its dual form. Using the dual form it is possible

to compute greatest solutions of systems of conjunctive integer equations directly. We will
not discuss these aspects in detail. Instead we will compute greatest solutions of systems of
conjunctive integer equations by using duality as discussed in Subsection 3.4.

The above definition can also be applied to k-ary operators, since the set Z
k

can be identified

with the set Z
{1,...,k}

= {1, . . . , k} → Z of all functions from {1, . . . , k} to Z. Every nullary
operator is a BF-operator. Moreover, all operators that occur in systems of disjunctive integer
equations are BF-operators:

Lemma 2. The operator ∨ and all operators that are monotone and upward-expansive are
BF-operators.

An expression e (resp. an equation x = e) is called BF-expression (resp. BF-equation) iff
all operators occurring in e are BF-operators. Since the set of BF-functions is closed under
composition, JeK is a BF-function for all BF-expressions e.

The most important step for the adaption of the Bellman-Ford algorithm consists in showing
that, for a system E of BF-equations with n variables, the value µJEK(x) for a variable x, whose
value changes after the n-th Kleene iteration, must be ∞:

Lemma 3. Let E be a system of BF-equations with n variables. Let ρ(i) := JEKi(−∞) for
all i ∈ N. The following holds for every variable x ∈ X: If there exists some k > n with
ρ(k)(x) > ρ(n)(x), then µJEK(x) =∞.

Proof. See Appendix B. The proof is based on a pumping lemma argument. If there exists
some k > n with ρ(k)(x) > ρ(n)(x), then there exists some cyclic dependency with a positive
weight that can be iterated.

As a corollary of Lemma 3 we get the following theorem which enables us to use more so-
phisticated fixpoint iteration schemas, whenever the least solution does not contain the value
∞.

Theorem 1. Let E be a system of BF-equations with n variables. Assume further that µJEK✁∞.
Then µJEK = JEKn(−∞).

8

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

Proof. Let ρ(i) := JEKi(−∞) for all i ∈ N and ρ∗ := µJEK. For the sake of contradiction assume
ρ∗ 6= ρ(n). Then ρ∗ > ρ(n). In particular ρ(n) /∈ Sol(E). Thus, there exists a variable x ∈ X

with ρ(n+1)(x) > ρ(n)(x). Using Lemma 3 we get ρ∗(x) =∞— contradiction to the assumption
that ρ∗(x) <∞.

In our applications, the pre-conditions of Theorem 1 are mostly fulfilled. Since then the Kleene
fixpoint iteration always terminates, it is also possible to use fixpoint iteration schemes that
perform their evaluations according to the variable dependencies, e.g. Charlier and Hentenryck
[4, 5], Fecht and Seidl [12], Kildall [20]. Although these methods are not an improvement for
the worst case, in practice theses methods are mostly vastly superior to the Kleene fixpoint
iteration.

We are now prepared to present the main result of this section which states that the least
solution of a system E of BF-equations can be computed using the following adaption of the
Bellman-Ford algorithm:

Algorithm 1 Adaption of the Bellman-Ford Algorithm

Input: A system E of BF-equations with n variables

Output: The least solution µJEK of E

ρ← −∞

for i = 1 to n do ρ← JEKρ

ρ← ρ′ where ρ′(x) =

{

ρ(x) if (JEKρ)(x) ≤ ρ(x)
∞ if (JEKρ)(x) > ρ(x)

for all x ∈ X

for i = 1 to n− 1 do ρ← ρ ∨ JEKρ

return ρ

The first loop of the algorithm performs n least fixpoint iteration steps. It then sets the values
of variables that are not stable to ∞. The second loop propagates the value ∞.

Theorem 2 (Adaption of the Bellman-Ford Algorithm). Let E be a system of BF-equations
(for instance a system of disjunctive integer equations) with n variables. The least solution
µJEK of E can be computed using the adaption of the Bellman-Ford algorithm (Algorithm 1).
The algorithm performs 2n evaluations of the operator JEK.

Proof. See Section B.

Example 5. We use Algorithm 1 to compute the least solution of the system

E = {x = 1, y = y + x ∨ −10, z = x·+y} (23)

of disjunctive integer equations, where the monotone and expansive operator ·+ is defined by

x·+y :=

{

x · y if x, y > 0
−∞ if x ≤ 0 or y ≤ 0

for all x, y ∈ Z. (24)

After the execution of the first for-loop we obtain the pre-solution

ρ0 := JEK3(−∞) = JEK2 {x 7→ 1, y 7→ −10, z 7→ −∞} (25)

9

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

= JEK {x 7→ 1, y 7→ −9, z 7→ −∞} = {x 7→ 1, y 7→ −8, z 7→ −∞}. (26)

Since (JEKρ0)(y) = −7 > ρ0(y) = −8 holds, it follows µJEK(y) =∞. The value of the variable
y is thus set to ∞, i.e.,

ρ1 := {x 7→ 1, y 7→ ∞, z 7→ −∞} (27)

is the value of the program variable ρ before the first execution of the body of the second for-loop.
After the first execution of the body of the second for-loop we obtain

ρ2 := ρ1 ∨ JEKρ1 = {x 7→ 1, y 7→ ∞, z 7→ ∞}. (28)

After the second and last execution of the body of the second for-loop we finally obtain

µJEK = ρ3 := ρ2 ∨ JEKρ2 = {x 7→ 1, y 7→ ∞, z 7→ ∞}. (29)

5 The Max-Strategy Improvement Algorithm

In this section, we present and discuss our max-strategy improvement algorithm. Our goal is
to compute least solutions of systems of monotone equations over a complete linearly ordered
set. We afterwards specialize the algorithm in order to compute least solutions of systems of
integer equations.

5.1 The general framework

Our algorithm iterates over ∨-strategies. It maintains a current ∨-strategy and a current
approximate to the least solution. A so called ∨-strategy improvement operator is used to
determine a next, improved ∨-strategy. Whether or not a ∨-strategy represents an improvement
may depend on the current approximate. It can indeed be the case that a switch from one ∨-
strategy to another ∨-strategy is only then profitable, when it is known that the least solution is
of a certain size. Hence, we talk about an improvement of a ∨-strategy w.r.t. an approximate:

Let E be a system of monotone equations over a complete linearly ordered set. Let σ be a
∨-strategy for E and ρ be a pre-solution of E(σ). The ∨-strategy σ′ is called an improvement
of σ w.r.t. ρ iff the following conditions are fulfilled:

1. If ρ /∈ Sol(E), then JE(σ′)Kρ > ρ.

2. For all ∨-expressions e ∈ S∨(E) the following holds: If σ′(e) 6= σ(e), then Jeσ′Kρ > JeσKρ.

A function P∨ which assigns an improvement of σ w.r.t. ρ to every pair (σ, ρ) is called a ∨-
strategy improvement operator for E . An improvement of a ∧-strategy π w.r.t. a post-solution
of E(π) and a ∧-strategy improvement operator for E are defined dually.

The first condition ensures a progress in the case that ρ is not yet a solution. The second
condition ensures that the ∨-strategy σ may only modified in such a way that every modification
ensures a local progress that is strict. This will later be important in order to ensure that the
∨-strategy improvement algorithm stays in a feasible area. We illustrate the definitions by an
example:

Example 6 (Improvement of a ∨-Strategy). We consider the system

E = {x = (2 · x ∧ 10) ∨ 1 ∨ −∞}

10

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

of linear integer equations. The mapping σ := {(2 · x ∧ 10) ∨ 1 ∨ −∞ 7→ 1} is a ∨-strategy
for E and ρ := {x 7→ 1} is a pre-solution (even a solution) of E(σ) = {x = 1}. However,
the variable assignment ρ is not a solution of E. An improvement of σ w.r.t. ρ is the ∨-
strategy σ′ = {(2 · x ∧ 10) ∨ 1 ∨ −∞ 7→ (2 · x ∧ 10)}, since JE(σ′)Kρ = {x 7→ 2} > ρ and
J((2 · x ∧ 10) ∨ 1 ∨ −∞)σ′Kρ = 2 > 1 = J((2 · x ∧ 10) ∨ 1 ∨ −∞)σKρ. The ∨-strategy σ′ is the
only improvement of σ w.r.t. ρ.

An improvement σ′ of a ∨-strategy σ w.r.t. a pre-solution ρ of E(σ) is, locally at the approximate
ρ, at least as good as the ∨-strategy σ. That is, if σ′ is an improvement of σ w.r.t. ρ, then
JE(σ′)Kρ ≥ JE(σ)Kρ. We in particular have ρ ∈ PreSol(E(σ′)). A dual statement holds for
∧-strategies.

In many cases, there exist several, different improvements of a ∨-strategy σ w.r.t. a pre-
solution ρ of E(σ). Accordingly, there exist several, different possibilities for defining a ∨-
strategy improvement operator. Under the assumption that the operator ∨ is only used in
its binary version, one possibility is known as all profitable switches (see e.g. Björklund et al.
[2], Bjorklund et al. [3]). Carried over to the case considered here, this means that the ∨-strategy
σ will be modified at any ∨-expression e1∨ e2 with Je1 ∨ e2Kρ > Jσ(e1 ∨ e2)Kρ. According to the
definition, the selection must be preserved at the other ∨-expressions. If ∨ is not only used in
its binary version, we can think of σ′ = P eager

∨ (σ, ρ) as some arbitrary improvement of σ w.r.t.
ρ that satisfies JE(σ′)Kρ = JEKρ. One consequence is that a ∨-strategy iteration based on the
∨-strategy improvement operator P eager

∨ converges at least as fast as a Kleene fixpoint iteration.
Note that σ′ = P eager

∨ (σ, ρ) is not necessarily uniquely determined.

Example 7 (The ∨-Strategy Improvement Operator P eager

∨). The function

σ = {10 ∨ x1 7→ x1, x2 + 1 ∨ x1 7→ x2 + 1} (30)

is a ∨-strategy for the system

E = {x1 = 10 ∨ x1, x2 = x2 + 1 ∨ x1} (31)

of simple integer equations. The variable assignment ρ = {x1 7→ 0, x2 7→ −∞} is a pre-solution
of E(σ) = {x1 = x1,x1 = x2 + 1}. We have

σ′ := P eager

∨ (σ, ρ) = {10 ∨ x1 7→ 10, x2 + 1 ∨ x1 7→ x1} (32)

and thus E(σ′) = {x1 = 10, x2 = x1}. In this example, the ∨-strategy σ′ is not the only
improvement of σ w.r.t. ρ. The ∨-strategies

σ1 = {10 ∨ x1 7→ 10, x2 + 1 ∨ x1 7→ x2 + 1}, and (33)

σ2 = {10 ∨ x1 7→ x1, x2 + 1 ∨ x1 7→ x1} (34)

are also improvements of σ w.r.t. ρ. However,

JEKρ = JE(σ′)Kρ > JE(σ1)Kρ, JE(σ2)Kρ > JE(σ)Kρ. (35)

Thus, locally at ρ, σ′ is the best possible improvement.

We can now formulate the ∨-strategy improvement algorithm for computing least solutions of
systems of monotone equations over complete linearly ordered sets. This algorithm is param-
eterized with a ∨-strategy improvement operator P∨. The input is a system E of monotone
equations over a complete linearly ordered set, a ∨-strategy σinit for E , and a pre-solution ρinit

11

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

of E(σinit). In order to compute the least and not some arbitrary solution, we additionally
require that ρinit ≤ µJEK holds. The algorithm maintains a current ∨-strategy σ and a current
approximate ρ to the least solution µJEK. During the computation, the current approximate
ρ remains smaller than or equal to the least solution µJEK. Furthermore, ρ will grow in each
iteration until the least solution of E is found. In each iteration we compute an improvement
σ′ of the current ∨-strategy σ w.r.t. ρ using the ∨-strategy improvement operator P∨, provided
that ρ does not solve E . The improvement σ′ will be the new current ∨-strategy σ for the next
iteration. Then, we will consider the system E(σ) of conjunctive monotone equations for which
ρ is a pre-solution. The next current approximate ρ is then the least solution of E(σ) that is
greater than or equal to ρ:

Algorithm 2 The ∨-Strategy Improvement Algorithm

Parameter : A ∨-strategy improvement operator P∨

Input :

A system E of monotone equations over a complete linearly ordered set
A ∨-strategy σinit for E
A pre-solution ρinit of E(σinit) with ρinit ≤ µJEK

Output : The least solution µJEK of E

σ ← σinit

ρ← ρinit

while (ρ /∈ Sol(E)) {
σ ← P∨(σ, ρ)
ρ← µ≥ρJE(σ)K

}

return ρ

In order to execute the ∨-strategy improvement algorithm (Algorithm 2), we need a method
for computing µ≥ρJE(σ)K for the ∨-strategies σ and the approximates ρ that occur during the
execution. Which method we have to use for that purpose depends on the class of systems of
monotone equations under consideration. So far, we have:

Lemma 4. Let E be a system of monotone equations over a complete linearly ordered set. For
i ∈ N, let ρi be the value of the program variable ρ and σi be the value of the program variable
σ in the ∨-strategy improvement algorithm (Algorithm 2) after the i-th evaluation of the loop-
body. The following statements hold for all i ∈ N: (1) ρi ≤ µJEK. (2) ρi ∈ PreSol(E(σi+1)).
(3) If ρi < µJEK, then ρi+1 > ρi. (4) If ρi = µJEK, then ρi+1 = ρi.

As an immediate consequence of Lemma 4, we obtain:

Lemma 5. Whenever the ∨-strategy improvement algorithm (Algorithm 2) terminates, it re-
turns the least solution µJEK of E.

If we use the ∨-strategy improvement operator P eager

∨ , then the i-th approximate ρi is greater
than or equal to the i-th Kleene approximate JEKi(⊥).

Example 8 (A Run of the ∨-Strategy Improvement Algorithm). Let us compute the least
solution of the system

E = {x1 = 0 ∨ x1 + x2 − 4, x2 = −10 ∨ ((x1 + 1 ∨ 2 · x2) ∧ 5)} (36)

12

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

of linear integer equations using our ∨-strategy improvement algorithm. We will use the ∨-
strategy improvement operator P eager

∨ . Assume that the first ∨-strategy σinit leads to the system

E(σinit) = {x1 = 0, x2 = −10}. (37)

The variable assignment ρinit = {x1 7→ 0, x2 7→ −10} is a pre-solution (even a solution) of
E(σinit). The first application of P eager

∨ leads to the ∨-strategy σ1 := P eager

∨ (σinit, ρinit) with

E(σ1) = {x1 = 0, x2 = x1 + 1 ∧ 5}. (38)

In the next step, we get ρ1 := µ≥ρinit
JE(σ1)K = {x1 7→ 0, x2 7→ 1}. Within the next iteration,

we obtain the ∨-strategy σ2 := P eager

∨ (σ1, ρ1) with

E(σ2) = {x1 = 0, x2 = 2 · x2 ∧ 5}. (39)

Therefore, we obtain ρ2 := µ≥ρ1
JE(σ2)K = {x1 7→ 0, x2 7→ 5}. In the last iteration, we finally

obtain σ3 := P eager

∨ (σ2, ρ2), which leads to the system

E(σ3) = {x1 = x1 + x2 − 4, x2 = 2 · x2 ∧ 5}. (40)

Hence, ρ3 := µ≥ρ2
JE(σ3)K = {x1 7→ ∞, x2 7→ 5}. Since ρ3 is a solution of E, the algorithm

terminates and returns µJEK = ρ3.

It remains to explain how to compute µ≥ρJE(σ)K for the ∨-strategies σ and the approximates
ρ that occur during the execution of our ∨-strategy improvement algorithm. How this can be
done depends on the properties of the systems of equations under consideration.

Similar to the well-known simplex algorithm for linear programming our ∨-strategy im-
provement algorithm must be started in a feasible area. It then stays in the feasible area.

5.2 Feasibility

In this subsection, we define our notion of feasibility. In order to do so, we first define derived
equations for systems of basic integer equations as follows:

Let E be a system of basic integer equations and ρ be a pre-solution of E . The set Dρ(E)
of all w.r.t. ρ derived equations of E is the smallest set of basic integer equations such that the
following statements hold:

1. If x = e ∈ E with −∞ < ρ(x) = JeKρ <∞, then x = e ∈ Dρ(E).

2. If x = e[x′] ∈ Dρ(E) and x′ = e′ ∈ Dρ(E), then x = e[e′] ∈ Dρ(E).

In the above definition e[x′] denotes an expression which contains the variable x′ at the position
denoted by e[]. e[] itself is a single hole context . The expression e[e′] finally denotes the
expression which contains the expression e′ instead of the variable x′ at the position denoted
by e[].

Example 9 (Derived Equations). The set Dρ(E) of all w.r.t. ρ = {x1 7→ 1} derived equations
of the system E = {x1 = 2 · x1} of basic integer equations is Dρ(E) = ∅, because 1 = ρ(x1) <
J2 · x1Kρ = 2.

We are now prepared to define our notion of feasibility: A pre-solution ρ of a system E of basic
integer equations is called (E-)feasible iff the following statements are fulfilled:

13

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

1. There does not exist an equation x = e in E with JeKρ = −∞ and e 6= −∞.

2. There does not exist a derived equation x = e ∈ Dρ(E) with x ∈ Vars(e).

A pre-solution ρ of a system E of conjunctive integer equations is called (E-)feasible iff it is
E(π)-feasible for all π ∈ Π. A system of conjunctive integer equations is called feasible iff it has
a feasible pre-solution.

Example 10 (Feasibility). We consider the system E = {x1 = 2 ·x1∧10} of conjunctive linear
integer equations. Let π1 := {2 · x1 ∧ 10 7→ 2 · x1} and π2 := {2 · x1 ∧ 10 7→ 10} be the ∧-
strategies for E. The solution ρ0 := {x1 7→ 0} of E is not feasible, since x1 = 2 ·x1 ∈ Dρ0

(E(π1))
and thus ρ0 is not E(π1)-feasible. The pre-solution ρ1 := {x1 7→ 1} of E is E-feasible, since
Dρ1

(E(π1)) = Dρ1
(E(π2)) = ∅. The greatest solution ρ2 := {x1 7→ 10} of E is also E-feasible,

since Dρ2
(E(π1)) = ∅ and Dρ2

(E(π2)) = {x = 10}.

The set of feasible pre-solutions is upward closed in the following sense:

Lemma 6. Let E be a system of conjunctive integer equations and ρ be a feasible pre-solution
of E. Every pre-solution ρ′ of E with ρ′ ≥ ρ is feasible.

Proof. See Section C.

Since the greatest solution νJEK of a system E of conjunctive integer equations (by the Knaster-
Tarski fixpoint theorem) is greater than or equal to any pre-solution of E , we can in particular
conclude (using Lemma 6) that the greatest solution νJEK is feasible, whenever E is feasible. In
the next step, we show that every feasible system E of conjunctive integer equations has exactly
one feasible solution. Thus, this solution must be the greatest solution νJEK of E .

Lemma 7. Let E be a system of basic integer equations and ρ be a feasible solution of E. Then
ρ = νJEK.

Proof. We do induction on Vars(E). If Vars(E) = ∅, then the statement is fulfilled, since E
has exactly one solution and this solution is feasible. Thus, we assume that Vars(E) 6= ∅. Let
x ∈ Vars(E) and x = e ∈ E be the equations for the variable x.

Case 1: x /∈ Vars(e). Let E ′ := E [e/x]. Since Dρ(E ′) ⊆ Dρ(E), ρ is a feasible solution of E ′.
Since Vars(E ′) ⊂ Vars(E), it follows ρ = νJE ′K using the induction hypothesis. In order
to show ρ = νJEK, let ρ′ ∈ Sol(E). Then ρ′ ∈ Sol(E ′). Hence, we obtain ρ′ ≤ νJE ′K = ρ.

Case 2: x ∈ Vars(e). Since ρ is a feasible solution of E , we have ρ(x) = ∞. Let E ′ :=
(E ⊕ {x = ∞})[∞/x]. Since Dρ(E

′) ⊆ Dρ(E), ρ is a feasible solution of E ′. Since
Vars(E ′) ⊂ Vars(E), we get ρ = νJE ′K using the induction hypothesis. In order to show
ρ = νJEK, let ρ′ ∈ Sol(E). Thus, ρ′ ∈ PreSol(E ′). Hence, ρ′ ≤ νJE ′K = ρ.

We now generalize the statement of Lemma 7:

Theorem 3 (Uniqueness of Feasible Solutions). Let E be a system of conjunctive integer equa-
tions and ρ be a feasible solution of E. Then ρ = νJEK.

Proof. There exists a ∧-strategy π ∈ Π for E such that JE(π)Kρ = JEKρ = ρ. Hence, ρ ∈
Sol(E(π)) and ρ is by definition a feasible solution of E(π). By Lemma 7, we get ρ = νJE(π)K.
Since by the Knaster-Tarski fixpoint theorem νJE(π)K ≥ νJEK and ρ is a solution of E , we get
ρ = νJEK.

14

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

By Theorem 3, the (uniquely determined) feasible solution of a feasible system E of conjunctive
integer equations is the greatest solution νJEK of E . Thus, we can compute it through our
adaption of the Bellman-Ford algorithm (see Theorem 2).

In order to show that our ∨-strategy improvement algorithm stays in the feasible area, it
remains to show that every ∨-strategy improvement step preserves feasibility:

Lemma 8 (∨-Strategy Improvement Steps Preserve Feasibility). Let E be a system of integer
equations, σ ∈ Σ a ∨-strategy for E and ρ be a feasible pre-solution of E(σ). Let σ′ be an
improvement of σ w.r.t. ρ. Then ρ is also a feasible pre-solution of E(σ′).

Proof. See Section C.

It remains to show how we can benefit from the above result in order to compute µ≥ρJE(σ)K
within the ∨-strategy improvement algorithm. For that, let E be a system of integer equations.
Assume that σinit is a ∨-strategy for E and ρinit is a feasible pre-solution of E(σinit) with
ρinit ≤ µJEK. For i ∈ N, let σi and ρi denote the values of the program variables σ and ρ after
the i-th evaluation of the body of the loop in the ∨-strategy improvement algorithm (Algorithm
2). We getx:

Lemma 9. For all i ∈ N, ρi is a feasible pre-solution of E(σi+1). Moreover, ρi+1 = νJE(σi+1)K.

It remains to show that the ∨-strategy improvement algorithm terminates at the latest after
considering all ∨-strategies σ ∈ Σ for E . For the sake of contradiction assume that this is not
the case, i.e., assume that ρ|Σ| /∈ Sol(E). By Lemma 4, we get

ρi+1 > ρi for all i ∈ {0, . . . , |Σ|}. (41)

Using the pigeonhole principle, we get that there exists a ∨-strategy σ ∈ Σ which occurs twice in
the sequence σ1, . . . , σ|Σ|+1, i.e., there exist k1, k2 ∈ {1, . . . , |Σ|+1} with k1 < k2 and σk1

= σk2
.

Using Lemma 9 we finally get ρk1
= νJE(σk1

)K = νJE(σk2
)K = ρk2

. This is in contradiction to
(41).

The number |Σ| of all ∨-strategies is exponential in the number of ∨-expressions. Whether
or not there exist systems of linear integer equations, for which, when we use the ∨-strategy
improvement operator P eager

∨ , we in fact have to do exponentially many ∨-strategy improvement
steps for computing least solutions, is not known.

It remains to estimate the worst case running time of the loop-body w.r.t. the uniform
cost measure. Since, by Lemma 9, ρi+1 = νJE(σi+1)K for all i ∈ N, we have to compute the
greatest solution of a system of conjunctive integer equations. By Theorem 2, this can be
done through our adaption of the Bellman-Ford algorithm. In practice we can compute ρi+1

more efficiently. Since E(σi+1) is feasible, the greatest solution ρi+1 = νJE(σi+1)K of E(σi+1) is,
because of Theorem 1, the |X|-th Kleene approximate. Therefore, we can compute it using an
arbitrary generic fixpoint algorithm. Algorithms that take variable dependencies into account
[4, 5, 12, 20] have proven themselves good. Summarizing, we have shown the following result:

Theorem 4. Let E be a system of integer equations. Let σinit be a ∨-strategy for E and ρinit
be a feasible pre-solution of E(σinit) with ρinit ≤ µJEK. The ∨-strategy improvement algorithm
(Algorithm 2) computes the least solution µJEK of E. At most |Σ| ∨-strategy improvement steps
are performed. Each ∨-strategy improvement step can be carried out by performing a greatest
fixpoint iteration that terminates after at most |X| steps.

15

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

5.3 Determining a feasible ∨-strategy

Until now, we have assumed that σinit is a ∨-strategy for E and ρinit is a feasible pre-solution
of E(σinit) with ρinit ≤ µJEK. We are now going to explain how to abandon this precondition.
For a system E of integer equations, we set

E ∨ −∞ := {x = e ∨ −∞ | x = e ∈ E}.

Obviously, E and E ∨ −∞ have the same least solution, i.e., we have µJE ∨−∞K = µJEK. Thus
we can solve the system E ∨−∞ instead of the system E . The advantage of considering E ∨−∞
instead of E is that −∞ is a feasible pre-solution of (E ∨ −∞)(σ−∞). Here, the ∨-strategy
σ−∞ is an arbitrary ∨-strategy for E ∨−∞ that assigns the expression −∞ to every expression
e ∨ −∞, i.e., σ−∞(e ∨ −∞) = −∞ holds for all equations x = e of E . Hence, Algorithm 2 can
be started with σinit := σ−∞ and ρinit := −∞ for computing µJE ∨ −∞K = µJEK.

For the complexity estimation it is important to note that, since E ∨ −∞ is considered
instead of E , the number of ∨-expressions increases by the number |X| of variables of E . Thus,
we have |ΣE∨−∞| = 2|X| · |ΣE |. However, all right-hand sides of E ∨−∞ are of the form e∨−∞.
It can be shown that σj(e ∨ −∞) = e holds for all j ≥ i, if σi(e ∨ −∞) = e holds for i ∈ N. In
consequence, we need at most |X| · |ΣE | ∨-strategy improvement steps. Summarizing, we have
shown the following main result:

Theorem 5. Let E be a system of integer equations. The least solution µJEK of E can be
computed using the ∨-strategy improvement algorithm (Algorithm 2). At most |X| · |Σ| ∨-
strategy improvement steps are performed. Each ∨-strategy improvement step can be carried
out by performing a greatest fixpoint iteration that terminates after at most |X| steps.

Proof. See Section C.

6 Systems of Extended Integer Equations

In this section, we extend the applicability of our ∨-strategy improvement algorithm by allowing
operators that are not expansive but at least equivalent to expansive operators on the regions
where they evaluate to a value greater than −∞.

An operator f : (X → Z) → Z is called quasi-expansive iff there exists some X ′ ⊆ X and
some expansive operator f>−∞ : (X ′ → Z)→ Z such that f(ρ) = f>−∞(ρ|X′) for all ρ : X → Z

with f(ρ) > −∞.
The binary operators ; and ≥z? (for z ∈ Z) that are defined by

x; y :=

{

−∞ if x = −∞
y otherwise

for all x, y ∈ Z, and (42)

x ≥z? y :=

{

−∞ if x < z
y otherwise

for all x, y, z ∈ Z (43)

are important instances of monotone and quasi-expansive. However, they are not expansive.
Thus, they are not allowed to occur within systems of integer equations.

Every expansive function is quasi-expansive, but not vice-versa. We extend integer expres-
sions (resp. integer equations) to extended integer expressions (resp. extended integer equations)
by allowing monotone and quasi-expansive operators instead of monotone and expansive oper-
ators.

16

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

We now show that our ∨-strategy improvement algorithm is also capable of solving systems
of extended integer equations. For that, we define the transformation [·]>−∞ as follows:

[−∞]>−∞ := −∞ (44)

[x]>−∞ := x (45)

[f(e1, . . . , ek)]
>−∞ := f>−∞([e1]

>−∞, . . . , [ek]
>−∞) (46)

[e1 ∧ · · · ∧ ek)]
>−∞ := [e1]

>−∞ ∧ · · · ∧ [ek]
>−∞ (47)

Here, x is a variable, f /∈ {−∞,∧} is a k-ary operator (recall that constants are nullary
operators), and e1, e2, . . . , ek are conjunctive extended integer expressions. If e is a conjunctive
extended integer expression, then [e]>−∞ is a conjunctive integer expression. Finally, we set

[E]>−∞ := {x = [e]>−∞ | x = e ∈ E} (48)

for every system E of conjunctive extended integer equations. [E]>−∞ is then a system of
conjunctive integer equations. Using the results of Section 5, we can straightforwardly prove
the following statement:

Lemma 10. Assume that each equation of the system E of extended integer equations is of
the form x = −∞ ∨ e and that the ∨-strategy σinit maps every right-hand side to −∞. For
i ∈ N, let σi and ρi denote the values of the program variables σ and ρ after the i-th evaluation
of the body of the loop of the ∨-strategy improvement algorithm (Algorithm 2). For all i ∈ N,
µ≥ρi

JE(σi+1)K = µ≥ρi
J[E(σi+1)]

>−∞K and ρi is a feasible pre-solution of [E(σi+1)]
>−∞. Thus,

ρi+1 = µ≥ρi
JE(σi+1)K = νJ[E(σi+1)]

>−∞K = νJE(σi+1)K (49)

for all i ∈ N.

Because of Lemma 10, we can, for all i ∈ N, compute ρi+1 by performing a greatest fixpoint
computation on JE(σi+1)K which terminates at the latest after |X| fixpoint iteration steps, i.e.,
ρi+1 = νJE(σi+1)K = JE(σi+1)K

|X|(∞). Hence, we have shown the following theorem:

Theorem 6. Let E be a system of extended integer equations. The least solution µJEK of E can
be computed through our ∨-strategy improvement algorithm (Algorithm 2). At most |X| · |Σ|
∨-strategy improvement steps are performed. Each ∨-strategy improvement step can be carried
out by performing a greatest fixpoint iteration that terminates after at most |X| steps.

Example 11. Let us compute the least solution µJEK of the system

E = {x = −∞∨ 0 ∨ x+ y, y = −∞∨ x; 1} (50)

of extended integer equations. For i ∈ N, let σi and ρi denote the values of the program variables
σ and ρ after the i-th evaluation of the body of the loop in the ∨-strategy improvement algorithm
(Algorithm 2). We get

E(σ0) = {x = −∞, y = −∞} E(σ1) = {x = 0, y = −∞} (51)

E(σ2) = {x = 0, y = x; 1} E(σ3) = {x = x+ y, y = x; 1} (52)

Since ρ3 = νJE(σ3)K = JE(σ3)K
2∞ = {x 7→ ∞, y 7→ 1} solves E, we finally get µJEK = {x 7→

∞, y 7→ 1}.

17

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

7 Abstract Interpretation over Intervals and Zones

We now apply our techniques to perform static program analysis by abstract interpretation
over integer intervals as studied by Cousot and Cousot [8, 9]. That is, for each program point,
we aim at computing small upper bounds for expressions of the form x and −x, where x is a
program variable. We then extend this to work over the abstract domain of integer zones (cf.
Miné [22]). That is, we additionally aim at computing small upper bounds for expressions of
the form x− y, where x and y are program variables.

7.1 Notations

The transpose of a matrix A is denoted by A⊤. The i-th row (resp. j-th column) of a matrix
A is denoted by Ai· (resp. A·j). Accordingly, Ai·j denotes the component in the i-th row
and the j-th column. This notation is also used for vectors and functions f : X → Y k, i.e.,
fi·(x) = (f(x))i· for all x ∈ X and all i ∈ {1, . . . , k}. For x, y ∈ R

n
, we write x ≤ y iff xi· ≤ yi·

for all i ∈ {1, . . . , n}. Partially ordered by ≤, R
n

is a complete lattice. Hence, the operators ∨
and ∧ are well-defined on R

n
.

7.2 Programs and their collecting semantics

In this article, a program is given by a control flow graph G = (N,E, st) that consists of a
finite set N of control points, a finite set E ⊆ N × Stmt × N of (control flow) edges and a
special start control point st ∈ N . Stmt is a set of statements. We assume that the program G
uses n ∈ N>0 variables that take values from Z. We fix a so-called template constraint matrix
T ∈ {−1, 0, 1}m×n. Each row of the template constraint matrix represents a template (here: a
linear function). We restrict ourselves to the case where we can only talk about upper and lower
bounds for program variables and upper bounds for the differences of program variables. That
is, we assume that each row of T contains at most one 1 and at most one −1. For simplicity,
we further assume w.l.o.g. that each row of T contains at least one non-zero entry.

Example 12. For n = 2 we might, for instance, choose

T =

1 0
0 1
−1 1

 . (53)

This template constraint matrix allows us to reason about upper bounds on the program variables
x1 and x2, as well as upper bounds on the difference x2 − x1.

We assume that each statement s ∈ Stmt is of the form

Tx ≤ c;x := Ax+ b, (54)

where c ∈ Z
m

, A ∈ Z
n×n, and b ∈ Z

n (recall that T is the template constraint matrix we
have fixed beforehand). Hence, a statement combines a guard (Tx ≤ c) with an assignment
(x := Ax+ b).

The collecting semantics JTx ≤ c;x := Ax + bK : 2Z
n

→ 2Z
n

of the statement Tx ≤ c;x :=
Ax + b is defined by

JTx ≤ c;x := Ax+ bKX = {Ax+ b | x ∈ X, Tx ≤ c} for all X ⊆ Z
n. (55)

18

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

st 1
(x1,x2) := (0, 1)

x1 ≤ 8; (x1,x2) := (x1 + 2,x2 + 2)

Figure 1: A simple program

In order to model user inputs we could additionally allow non-deterministic assignments, i.e.,
statements of the form xi := ?, where the collecting semantics Jxi := ?K : 2Z

n

→ 2Z
n

of xi := ?
is defined by Jxi := ?KX = {(x1, . . . , xi−1, y, xi+1, . . . , xn)

⊤ | (x1, . . . , xn)
⊤ ∈ X, y ∈ Z} for all

X ⊆ Z
n. However, we abandon this, because these statements can be simulated by introducing

new program variables or additional loops.
The collecting semantics V of a non-deterministic program G finally associates a set of

vectors from Z
n to each control point v ∈ N . It is defined as the least solution of the following

constraint system:

V[st] ⊇ Z
n (56)

V[v] ⊇ JsK(V[u]) for each control-flow edge (u, s, v) ∈ E (57)

The unknowns V[v], v ∈ N take values in 2Z
n

. We denote the components of the collecting
semantics V by V [v] for v ∈ N .

Example 13. Figure 1 shows a program G with the two integer variables x1 and x2. The
collecting semantics V of G is given by V [st] = Z

2, and V [1] = {(0, 1), (2, 3), (4, 5), (6, 7), (8, 9),
(10, 11)}.

7.3 The program’s abstract semantics

We use the abstract domain of integer zones as studied by Miné [22] to define the program’s
abstract semantics. In this article we restrict ourselves to the integer zones that can be expressed
through the template constraint matrix T . That is, the abstract elements are vectors from Z

m

and the concretization γ : Z
m
→ 2Z

n

and the abstraction α : 2Z
n

→ Z
m

are defined by

γ(d) := {x ∈ Z
n | Tx ≤ d} for all d ∈ Z

m
, and (58)

α(X) := min {d ∈ Z
m
| γ(d) ⊇ X} for all X ⊆ Z

n. (59)

Each abstract value d ∈ Z
m

represents the set γ(d) of concrete values. The abstraction α and
the concretization γ form a Galois connection (see e.g. Sankaranarayanan et al. [26]). Recall
that the template constraint matrix T is an element of the set {−1, 0, 1}m×n and each row
contains at most one −1 and at most one 1.

Example 14. Figure 2 shows γ(d) for d = (3, 2, 1)⊤, where T is defined as in Example 12.

The abstract semantics JsK♯ : Z
m
→ Z

m
of a statement s ∈ Stmt is defined by JsK♯ := α◦JsK◦γ.

Hence, we are concerned with best abstract transformers (cf. Cousot and Cousot [8]). The
abstract semantics V ♯ of a program G is then defined as the least solution of the following
constraint system:

V♯[st] ≥ α(Zn) (60)

V♯[v] ≥ JsK♯(V♯[u]) for each control-flow edge (u, s, v) ∈ E (61)

Here, the variables V♯[v], v ∈ N take values in Z
m

. We denote the components of the abstract
semantics V ♯ by V ♯[v] for all v ∈ N . The abstract semantics V ♯ safely over-approximates the
collection semantics V , i.e., V ♯[v] ⊇ V [v] for all v ∈ N .

19

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

x1-axis

x2-axis

x2 ≤ 2

x2 ≤ 1+x1
x1 ≤ 3

Figure 2: γ(d)

7.4 Intervals

Before dealing with the full domain of integer zones, we consider the simpler abstract domain
of integer intervals. This case is obtained, if the matrix T provides rows with single non-zero
entries 1 or −1 only. Let us for simplicity assume that Ti· contains a 1 in column i and Tn+i·

contains a −1 in column i. Hence, T ∈ Z
2n×n. Assume that d = (d1, . . . , d2n)

⊤ ∈ Z
2n

is an
abstract value. Then the entries di and dn+i provide upper and negated lower bounds for the
possible values of the program variable xi. The concretization γ(d) of d is non-empty iff the
interval [−dn+i, di] is non-empty for all i, i.e., di + dn+i ≥ 0 for all i.

Now consider a statement s = (Tx ≤ c;x:=Ax + b) and let d ∈ Z
2n

denote an abstract
value. If γ(d ∧ c) = ∅, then JsK♯(d) = (−∞, . . . ,−∞)⊤. In order to deal with the other cases,
we define matrices A+, A− ∈ Z

n×n by:

A+
i·j := Ai·j ∨ 0 A−

i·j := −Ai·j ∨ 0 for all i, j ∈ {1, . . . , n} (62)

Thus, the matrix A+ collects the positive entries of A whereas the matrix A− collects the
negated negative entries of A. The other entries are set to 0. We in particular have A = A+−A−.
Finally, we set

A± :=

(

A+ A−

A− A+

)

, and b± :=

(

b
−b

)

. (63)

Then

α({Ax+ b}) = A±

(

x
−x

)

+ b± for all x ∈ Z
n. (64)

We now develop an explicit representation of the best abstract transformer. That is, we verify
the following equality under the assumption that γ(c ∧ d) 6= ∅ holds:

JsK♯(d) = α(JsK(γ(d)))

=
∨

{α({Ax + b}) | Tx ≤ c, x ∈ γ(d)}

=
∨

{

α({Ax+ b}) |

(

x
−x

)

≤ c,

(

x
−x

)

≤ d

}

=
∨

{

A±

(

x
−x

)

+ b± |

(

x
−x

)

≤ c ∧ d

}

(because of (64))

= A± (c ∧ d) + b± (because A± is monotone)

20

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

The last equation holds, since the matrix A± contains non-negative entries only, which implies
that the linear operator A± is monotone.

In order to practically determine the abstract semantics w.r.t. the interval domain, we
decompose the constraint system for the abstract semantics into a constraint system over the
integers alone. For that, we introduce unknowns xv,i for every program point v ∈ N and i ∈
{1, . . . , 2n}. The unknown xv,i stands for the i-th component of the vector V♯[v]. Accordingly,
each unknown takes values in Z. Each constraint V♯[v] ≥ JsK♯(V♯[u]) and each i ∈ {1, . . . , 2n}
gives rise to the following constraint:

xv,i ≥ ((xu,1 ∧ c1·) + (xu,n+1 ∧ cn+1·)) ≥0? (65)

· · · (66)

((xu,n ∧ cn·) + (xu,n+n ∧ cn+n·)) ≥0? (67)

A±
i·1(xu,1 ∧ c1·) + · · ·+A±

i·2n(xu,2n ∧ c2n·) + b±i· (68)

The tests at the beginning ensure that the right-hand sides only evaluate to a value greater
than −∞ if the guard Tx ≤ c can be fulfilled.

Let ρ♯ denote the least solution of the resulting constraint system. By construction, V ♯
i· [v] =

ρ♯(xv,i) for all program points v ∈ N and all i = {1, . . . , 2n}.
The resulting constraint system is a system of constraints over the integers using binary

operators +, multiplication with non-negative constants and the binary operator ≥0?. Hence,
it can be formulated as a system of extended integer equations (cf. Section 6). Therefore,
Theorem 6 can be applied, i.e., ∨-strategy iteration together with the generalized Bellman-Ford
algorithm is applicable to determine its least solution. Accordingly, we obtain:

Theorem 7 (Interval Analysis). The abstract semantics V ♯ of G w.r.t. the interval domain can
be computed using our ∨-strategy improvement algorithm. The number of ∨-strategy improve-
ment steps is bounded by 2n · |N | ·

∏

v∈N (max {1, indeg(v)})2n. Each ∨-strategy improvement
step can be performed in strongly polynomial time. More precisely: the algorithm performs at
most O(|N |2 · n3) arithmetic operations for each ∨-strategy improvement step.

Instead of proving Theorem 7 for intervals, we turn to a treatment of the more general domain
of integer zones. Analogously as for intervals, we aim at reducing the computation of the
abstract semantics over integer zones to computing the least solution of a suitable system of
extended integer constraints. In presence of bounds to variable differences, however, the abstract
transformers for program statements are more involved. In Subsection 7.6, we show that these
can be reduced to solving (uncapacited) minimum cost flow problems. This reduction allows
us to use our ∨-strategy improvement algorithm developed in Sections 5 and 6 to compute the
abstract semantics V ♯ of a program G over integer zones efficiently. The resulting algorithm is
uniform, i.e., its running-time is independent of the sizes of involved numbers, since minimum
cost flow problems can be solved in strongly polynomial time [25].

7.5 Minimum cost flow problems

A (uncapacitated) minimum cost flow problem is a linear programming problem of the form

z = inf {c⊤x | x ∈ R
n
≥0, Ax = b} (69)

where the following conditions are fulfilled: (1) c ∈ Z
n. (2) b ∈ Z

m with
∑m

i=1 bi· = 0. (3)
A ∈ {−1, 0, 1}m×n, where each column A·j contains exactly one −1 and exactly one 1. All
other entries of A·j are 0.

21

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

The above linear programming problem represents a directed graph (the matrix A) together
with a function that assigns supplies (the bi·’s) to nodes and a function that assigns costs (the
cj·’s) to edges. Each i ∈ {1, . . . ,m} represents a node that supplies bi· packages (per time unit).
A negative supply is a demand. Each j ∈ {1, . . . , n} represents an edge. A transmission of one
package (per time unit) over this edge induces the cost cj· (per time unit). The source (resp.
target) of the edge j is k iff Ak·j = 1 (resp. Ak·j = −1). Note that each edge j has exactly one
source and one target.

Each x ∈ R
n
≥0 represents a flow, where xj· is the number of packages (per time unit)

transmitted over the edge j. A flow x ∈ R
n
≥0 is called a feasible flow iff Ax = b, i.e., all supplies

and all demands are fulfilled. The value c⊤x is the cost (per time unit) of the flow x. The
minimum cost flow problem is called infeasible iff there does not exists a feasible flow. If this
is the case, then z =∞. Another corner case is that the problem is unbounded, i.e., for every
z′ ∈ Z, there exists some feasible flow x such that c⊤x ≤ z′. If this is the case, then the
problem is called unbounded and z = −∞. If the problem is feasible and bounded, then z ∈ Z

and moreover there exists a feasible flow x ∈ R
n
≥0 such that c⊤x = z and all entries of x are

integral, i.e., natural numbers.
Since every minimum cost flow problem is a linear programming problem, it can be solved in

polynomial time through interior point methods (see e.g. Karmarkar [19], Schrijver [27], Wright
[30]). However, the worst-case running-times of these algorithms depend on the sizes of the
numbers occurring in the input. In this context this is called a weak polynomial-time algorithm.
Whether or not there exist strongly polynomial-time algorithms for linear programming is a
long outstanding question. A strongly polynomial time algorithm is an algorithm where (1)
the number of arithmetic operations is bounded by a polynomial that does not depend and the
sizes of the occurring numbers (i.e., the polynomial only depends on the number of nodes m
and the number of edges n) and (2) each arithmetic operation can be performed in polynomial
time. For the special case of minimum cost flow problems there exist several algorithms that
make use of the special structure of these linear programming problems. In contrast to the
general case, there indeed exist strongly polynomial algorithms [25]. The enhanced capacity
scaling algorithm of Orlin [25], for instance, requires O(m · logm · (n +m · logm)) arithmetic
operations. For more information regarding minimum cost flow problems, we refer to Ahuja
et al. [1]. In order to simplify notations, we denote the number of arithmetic operations required
for solving a minimum cost flow problem with m nodes and n edges by MCF(m,n).

7.6 Computing JsK♯(d)

In this subsection, we aim at computing JsK♯(d) for a given statement s and a given abstract
value d ∈ Z

m
. For k ∈ {1, . . . ,m}, we are hence interested in computing the k-th component

of JTx ≤ c;x := Ax + bK♯(d), i.e., we aim at computing the value

z := JTx ≤ c;x := Ax+ bK♯k·(d) (70)

We get:

z = sup {Tk·(Ax + b) | x ∈ Z
n, T x ≤ (c ∧ d)} (71)

= Tk·b+ sup {Tk·Ax | x ∈ Z
n, T x ≤ (c ∧ d)} (72)

= Tk·b+ sup {Tk·Ax | x ∈ R
n, T x ≤ (c ∧ d)} (73)

The last equality holds, because the matrix T is totally unimodular (this implies that all
optimal solutions of the linear programming problem (73) are integral). Observe that z > −∞

22

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

iff {x ∈ R
n | Tx ≤ (c ∧ d)} 6= ∅. Whether or not {x ∈ R

n | Tx ≤ (c ∧ d)} 6= ∅ holds can be
determined in strongly polynomial time (using e.g. the Floyd–Warshall algorithm (cf. e.g. Miné
[22])). Therefore, we from now on assume that z > −∞, i.e., the linear programming problem
is feasible. Hence, the strong duality theorem for linear programming can be applied. We get

z = Tk·b+ inf {(c ∧ d)⊤y | y ∈ R
m
≥0, T

⊤y = (Tk·A)
⊤}. (74)

Our goal is to compute z by solving a minimum cost flow problem. Each row of T and thus
each column of T⊤ has at most two non-zero entries. These entries are distinct and in the set
{−1, 1}. Therefore, each column of the matrix

B :=

(

T⊤

−(1, . . . , 1)T⊤

)

(75)

contains exactly one −1 and exactly one 1. All other entries are 0. Further, for

g :=

(

(Tk·A)
⊤

−(1, ..., 1) (Tk·A)
⊤

)

, (76)

we have
∑m

i=1 gi· = 0. If we now replace T⊤ by B and (Tk·A)
⊤ by g, then we do not modify

the feasible space of the linear programming problem, i.e., T⊤y = (Tk·A)
⊤ iff By = g for all

y ∈ R
m
≥0. Therefore, we are now faced with the problem of computing

z = Tk·b+ inf {(c ∧ d)⊤y | y ∈ R
m
≥0, By = g}. (77)

This is a minimum cost flow problem (cf. Subsection 7.5). Note that, for some edges j, the cost
(c ∧ d)j· might be ∞. If this is the case, then we remove these edges from the minimum cost
flow problem, since these edges will never be used by an optimal flow. We get:

Lemma 11. Let d ∈ Z
m

be an abstract value and k ∈ {1, . . . ,m}. Then:

1. JTx ≤ c;x := Ax + bK♯k·(d) can be computed in strongly polynomial time through a
polynomial-time reduction to a minimum cost flow problem.

2. There exists some finite set M ⊆ N
m such that

JTx ≤ c;x := Ax+ bK♯k·(d) = Tk·b+min{a⊤(c ∧ d) | a ∈M} (78)

for all d ∈ Z
m

with JTx ≤ c;x := Ax+ bK♯k·(d) > −∞.

Proof. The first statement is already shown. The second statement follows from the fact that
all edges of the convex polyhedron {y ∈ R

m
≥0 | By = g} (with B and g as in (77)) are from N

m.
This is a consequence of the fact that B is totally unimodular.

Part 2 of Lemma 11 states that the operator JsK♯k· is a conjunctive extended integer expression.
Hence, we can use it within our ∨-strategy improvement algorithm (cf. Section 6).

23

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

7.7 Computing the program’s abstract semantics through ∨-strategy

iteration

In order to compute the abstract semantics V ♯, we construct a system C of inequalities as
follows: For each k ∈ {1, . . . ,m}, we add the inequality

xst,k ≥ ∞ (79)

These inequalities correspond to inequality (60). For each control-flow edge (u, s, v) ∈ E and
each k ∈ {1, . . . ,m}, we add the inequality

xv,k ≥ JsK♯k·(xu,1, . . . ,xu,m) (80)

These inequalities correspond to inequality (61). The Knaster-Tarski fixpoint theorem implies
that E := {x =

∨

x≥e is an inequality from C e | x is a variable of C} has the same least solution as
C. By construction, we get:

Lemma 12. (V ♯[v])i· = (µJEK)(xv,i) for all v ∈ N and all i ∈ {1, . . . ,m}.

Since E is a system of extended integer equations, we can apply our ∨-strategy improvement
algorithm. The equation system E has |N | ·m variables. Each expression JsK♯k·(xu,1, . . . ,xu,m)
can be evaluated in strongly polynomial time using MCF(n + 1,m) operations. Therefore, we
finally get the following main result:

Theorem 8. The abstract semantics V ♯ of G w.r.t. the integer zone template constraint matrix
T ∈ Z

m×n can be computed through our ∨-strategy improvement algorithm. The number of
∨-strategy improvement steps is bounded by m · |N | ·

∏

v∈N (max {1, indeg(v)})m. Each ∨-
strategy improvement step can be performed in strongly polynomial time. More precisely: the
algorithm performs at most O(|N |2·m2 ·MCF(n+1,m)) arithmetic operations for each ∨-strategy
improvement step.

Example 15. We continue Examples 12 and 13. In order to determine the abstract seman-
tics V ♯ of the program G, we have to compute the least solution of the following system of
inequalities:

xst,i ≥ ∞ i = 1, 2, 3 (81)

x1,i ≥ J(x1, x2) := (0, 1)K♯i·(xst,i,xst,2,xst,3) i = 1, 2, 3 (82)

x1,i ≥ Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯i·(x1,1,x1,2,x1,3) i = 1, 2, 3 (83)

For simplicity, we replace the variables xst,i (i = 1, 2, 3) by their values. Since

J(x1, x2) := (0, 1)K♯1·(∞,∞,∞) = 0, J(x1, x2) := (0, 1)K♯2·(∞,∞,∞) = 1, and (84)

J(x1, x2) := (0, 1)K♯3·(∞,∞,∞) = 1, (85)

we have to compute the least solution of the following system E of extended integer equations:

x1,1 = −∞∨ 0 ∨ Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯1·(x1,1,x1,2,x1,3) (86)

x1,2 = −∞∨ 1 ∨ Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯2·(x1,1,x1,2,x1,3) (87)

x1,3 = −∞∨ 1 ∨ Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯3·(x1,1,x1,2,x1,3) (88)

24

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

Our ∨-strategy improvement algorithm starts with the ∨-strategy σ0 that corresponds to the
following system E(σ0) of conjunctive extended integer equations:

x1,1 = −∞ x1,2 = −∞ x1,3 = −∞ (89)

The first ∨-strategy improvement step can, for instance, result in the ∨-strategy σ1 that corre-
sponds to the following system E(σ1) of conjunctive extended integer equations:

x1,1 = 0 x1,2 = 1 x1,3 = 1 (90)

The second ∨-strategy improvement step can, for instance, result in the ∨-strategy σ2 that
corresponds to the following system E(σ2) of conjunctive extended integer equations:

x1,1 = Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯1·(x1,1,x1,2,x1,3) (91)

x1,2 = Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯2·(x1,1,x1,2,x1,3) (92)

x1,3 = 1 (93)

We can switch to this ∨-strategy, since

Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯1·(0, 1, 1) = 2 > 0 (94)

Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯2·(0, 1, 1) = 3 > 1 (95)

Jx1 ≤ 8; (x1, x2) := (x1 + 2, x2 + 2)K♯3·(0, 1, 1) = 1 (96)

We now have to compute the greatest solution νJE(σ2)K of E(σ2). From the results of Section
5 and 6, we know that this can be done by a greatest fixpoint iteration that reaches the greatest
fixpoint at the latest after 3 iterations, i.e., JE(σ2)K

3(∞) is the greatest fixpoint. Because of
Lemma 11, we can perform each iteration in strongly polynomial time through a reduction to
minimum cost flow problems. The following table illustrates the greatest fixpoint iteration:

0 1 2 3
x1,1 ∞ 10 10 10
x1,2 ∞ ∞ 11 11
x1,3 ∞ 1 1 1

(97)

Observe that νJE(σ2)K = {x1,1 7→ 10,x1,2 7→ 11,x1,3 7→ 1} is a solution of E and hence the least
solution of E. Therefore, V ♯[st] = (∞,∞,∞), and V ♯[1] = (10, 11, 1). That is, 10 is an upper
bound on the value for the variable x1 at program point 1, 11 is an upper bound on the value
for the variable x2 at program point 1, and 1 is an upper bound on the difference x2 − x1 at
program point 1. Observe that the obtained result cannot be established if we use intervals as
the abstract domain.

8 Conclusion

We presented a practical algorithm for computing least solutions of systems of (extended)
integer equations. This algorithm is based on iteration over ∨-strategies. While the required
number of arithmetic operations is independent of the sizes of occurring numbers, the practical
complexity crucially depends on the number of strategies encountered during iteration. We
indicated how this algorithm can be applied to perform precise interval analysis. We further
indicated how this algorithm can also be applied to perform precise program analysis based
on integer zones. For that analysis, we provided that the basic step, the application of the
best abstract transformer corresponding to guards and assignments, can be implemented by
reduction to a minimum cost network flow problem, for which fast polynomial algorithms exist.

25

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

Acknowledgement We thank Riko Jakob from the Technical University of Munich for the
reduction to minimum cost flow problems.

References

[1] Ravindra K. Ahuja, Thomas L. Magnati, and James B. Orlin. Network Flows. Prentice
Hall, 1993.

[2] H. Björklund, S. Sandberg, and S. Vorobyov. Optimization on completely unimodal hy-
percubes. Technichal report 2002-18, Department of Information Technology, Uppsala
University, 2002.

[3] Henrik Bjorklund, Sven Sandberg, and Sergei Vorobyov. Complexity of Model Checking by
Iterative Improvement: the Pseudo-Boolean Framework . In Proc. 5th Int. Andrei Ershov
Memorial Conf. Perspectives of System Informatics, pages 381–394. LNCS 2890, Springer,
2003.

[4] Baudouin Le Charlier and Pascal Van Hentenryck. A Universal Top-Down Fixpoint Algo-
rithm. Technical Report CS-92-25, Brown University, Providence, RI 02912, 1992.

[5] Baudouin Le Charlier and Pascal Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions of Programming Lan-
guages and Systems (TOPLAS), 16(1):35–101, 1994.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company,
2001. ISBN 0-262-03293-7, 0-07-013151-1.

[7] Alexandru Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie Putot.
A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs. In
Computer Aided Verification, 17th Int. Conf. (CAV), pages 462–475. LNCS 3576, Springer
Verlag, 2005.

[8] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In 6th
ACM Symp. on Principles of Programming Languages (POPL), pages 238–352, 1979.

[9] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252, 1977.

[10] Patrick Cousot and Radhia Cousot. Comparison of the Galois Connection and Widening/-
Narrowing Approaches to Abstract Interpretation. JTASPEFL ’91, Bordeaux. BIGRE, 74:
107–110, October 1991.

[11] N. Dor, M. Rodeh, and M. Sagiv. Cleanness Checking of String Manipulations in C
Programs via Integer Analysis. In 8th Int. Static Analysis Symposium (SAS’01), pages
194–212. LNCS 2126, Springer Verlag, 2001.

[12] C. Fecht and H. Seidl. A Faster Solver for General Systems of Equations. Science of
Computer Programming (SCP), 35(2):137–161, 1999.

[13] Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static analysis by policy
iteration on relational domains. In Nicola [24], pages 237–252. ISBN 978-3-540-71314-2.

26

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

[14] Thomas Gawlitza and Helmut Seidl. Precise relational invariants through strategy itera-
tion. In Jacques Duparc and Thomas A. Henzinger, editors, CSL, volume 4646 of Lecture
Notes in Computer Science, pages 23–40. Springer, 2007. ISBN 978-3-540-74914-1.

[15] Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy itera-
tion. In Nicola [24], pages 300–315. ISBN 978-3-540-71314-2.

[16] Thomas Gawlitza and Helmut Seidl. Precise interval analysis vs. parity games. In Jorge
Cuéllar, T. S. E. Maibaum, and Kaisa Sere, editors, FM, volume 5014 of Lecture Notes in
Computer Science, pages 342–357. Springer, 2008. ISBN 978-3-540-68235-6.

[17] A.J. Hoffman and R.M. Karp. On Nonterminating Stochastic Games. Management Sci.,
12:359–370, 1966.

[18] R. Howard. Dynamic Programming and Markov Processes. Wiley, New York, 1960.

[19] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–396, 1984.

[20] Gary A. Kildall. A unified approach to global program optimization. In POPL, pages
194–206, 1973.

[21] Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient verifi-
cation of real-time systems: compact data structure and state-space reduction. In IEEE
Real-Time Systems Symposium, pages 14–24. IEEE Computer Society, 1997.

[22] Antoine Miné. A new numerical abstract domain based on difference-bound matrices.
In Olivier Danvy and Andrzej Filinski, editors, PADO, volume 2053 of Lecture Notes in
Computer Science, pages 155–172. Springer, 2001. ISBN 3-540-42068-1.

[23] Antoine Miné. The octagon abstract domain. In WCRE, pages 310–, 2001.

[24] Rocco De Nicola, editor. Programming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007, Held as Part of the Joint European Conferences on The-
ory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,
Proceedings, volume 4421 of Lecture Notes in Computer Science, 2007. Springer. ISBN
978-3-540-71314-2.

[25] James B. Orlin. A faster strongly polynominal minimum cost flow algorithm. In STOC,
pages 377–387. ACM, 1988.

[26] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis of linear
systems using mathematical programming. In Radhia Cousot, editor, VMCAI, volume 3385
of Lecture Notes in Computer Science, pages 25–41. Springer, 2005. ISBN 3-540-24297-X.

[27] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[28] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appications. Pac. J. Math.,
5:285–309, 1955.

[29] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem - overview of methods and survey of tools. ACM
Trans. Embedded Comput. Syst., 7(3), 2008.

27

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

[30] Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA, U.S.A.,
1997.

[31] Sergio Yovine. Model checking timed automata. In Grzegorz Rozenberg and Frits W.
Vaandrager, editors, European Educational Forum: School on Embedded Systems, volume
1494 of Lecture Notes in Computer Science, pages 114–152. Springer, 1996. ISBN 3-540-
65193-4.

28

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

A Additional Lemmata

Lemma 13. Let f : (X → Z) → Z be a BF-function. For all ρ : X → Z and all X ′ ⊆ X we
have: f(ρ⊕ {x 7→ ∞ | x ∈ X ′}) > f(ρ) implies f(ρ⊕ {x 7→ ∞ | x ∈ X ′}) =∞.

B Omitted Proofs: Section 4

of Lemma 2. First of all we consider the operator ∨. Let x = (x1, x2), y = (y1, y2), y ≥ x, and
y1 ∨ y2 > x1 ∨x2. We assume w.l.o.g. that y1 ≥ y2 holds. Let δ := 0. Then, we get (a) y1 > x1,
(b) y1 ∨ y2 = y1 + δ, and (c) z1 ∨ z2 ≥ z1 + δ for all (z1, z2) ≥ y.

We now consider an arbitrary monotone and upward-expansive operator f : (X → Z)→ Z.
Let ρ′ ≥ ρ, f(ρ′) > f(ρ), x ∈ X with ρ′(x) > ρ(x), and δ := f(ρ′) − ρ′(x). Here, we assume
that ρ′(x) < ∞ (otherwise it is trivial, since ρ′(x) = ∞ implies f(ρ′) = ∞). Requirement (a)
and (b) hold be definition. In order to prove requirement (c), let ρ′′ ≥ ρ′. We get:

f(ρ′′) ≥ f(ρ′ ⊕ {x 7→ ρ′′(x)}) (Monotonicity)

≥ f(ρ′) + ρ′′(x)− ρ′(x) (Upward-expansivity)

= ρ′′(x) + δ

This completes the proof.

of Lemma 3. Let ex denote the right hand-side of the equation for x in E , i.e., x = ex ∈ E
holds for all x ∈ X. Within this proof, for some i ≥ 2 and some variable x′ ∈ X, a variable x is
called relevant for ρ(i)(x′) > ρ(i−1)(x′) iff x is relevant for Jex′Kρ(i−1) > Jex′Kρ(i−2). Since Jex′K
is a BF-function, there always exists some variable x that is relevant for ρ(i)(x′) > ρ(i−1)(x′).

Note that ρ(i) ≤ ρ∗ := µJEK for all i ∈ N, since JEK is monotone. Let x ∈ X and k > n with
ρ(k)(x) > ρ(n)(x). Furthermore, assume w.l.o.g. that ρ(k)(x) > ρ(k−1)(x). If ρ(k)(x) =∞, then
we directly obtain ρ∗(x) =∞. Therefore, we assume ρ(k)(x) <∞.

Auxiliary Lemma 1. There exist variables x1, . . . ,xk ∈ X such that the following conditions
are fulfilled:

1. xk = x.

2. ρ(i)(xi) > ρ(i−1)(xi) for all i ∈ {1, . . . , k}.

3. xi−1 is relevant for ρ(i)(xi) > ρ(i−1)(xi) for all i ∈ {2, . . . , k}.

Proof. The statement can be shown by backward induction using the fact that E is a system of
BF-equations.

Auxiliary Lemma 2. Let i1, i2 ∈ {1, . . . , k} with i1 ≤ i2 and δ := ρ(i2)(xi2)−ρ(i1)(xi1). Then
(JEKi2−i1ρ)(xi2) ≥ ρ(xi1) + δ for all ρ ≥ ρ(i1).

Proof. Let ρ ≥ ρ(i1). We do induction on i2−i1. The statement is obviously fulfilled for i2−i1 =
0. Therefore, assume i2− i1 > 0. From the induction hypothesis we get (JEKi2−1−i1ρ)(xi2−1) ≥
ρ(xi1) + δ′, where δ′ := ρ(i2−1)(xi2−1) − ρ(i1)(xi1). We have ρ(i2)(xi2) = Jexi2

Kρ(i2−1) and,

by Auxiliary Lemma 1, xi2−1 is relevant for ρ(i2)(xi2) > ρ(i2−1)(xi2). Let δ′′ := ρ(i2)(xi2) −
ρ(i2−1)(xi2−1) and δ := δ′ + δ′′ = ρ(i2)(xi2)− ρ(i1)(xi1). Thus, we get:

(JEKi2−i1ρ)(xi2) = (JEK(JEKi2−1−i1ρ))(xi2) = Jexi2
K(JEKi2−1−i1ρ)

29

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

≥ (JEKi2−1−i1ρ)(xi2−1) + δ′′ ≥ ρ(xi1) + δ′ + δ′′ = ρ(xi1) + δ

This completes the proof of auxiliary lemma 2.

Since k > n, by the pigeon-hole principle, there exist k1, k2 ∈ N with 1 ≤ k1 < k2 ≤ k
such that y := xk2

= xk1
. Let δ := ρ(k2)(y) − ρ(k1)(y). Since ρ(k2)(y) > ρ(k1)(y), we have

δ = ρ(k2)(y) − ρ(k1)(y) > 0.

Next, we show ρ∗(y) =∞. For the sake of contradiction assume ρ∗(y) <∞. Since ρ∗ ≥ ρ(k1)

holds, (JEKk2−k1ρ∗)(y) ≥ ρ∗(y) + δ > ρ∗(y) holds by Auxiliary Lemma 2 — contradiction to
ρ∗ ∈ Sol(E). Thus, we have ρ∗(y) =∞. It remains to show ρ∗(x) =∞. Since ρ∗ ∈ Sol(E), we
have ρ∗(x) = (JEKk−k2ρ∗)(x) ≥ ρ∗(y) + (ρ(k)(x)− ρ(k2)(y)) =∞, because of Auxiliary Lemma
2.

of Theorem 2. Let ρ0 be the value of the program variable ρ after the execution of the first for-
loop, i.e., we have ρ0 = JEKn(−∞). We denote the value of the program variable ρ immediate
before the execution of the second for-loop by ρ1. For i = 2, . . . , n, we denote the value of the
program variable ρ after the (i−1)-th execution of the loop-body of the second for-loop by ρi.

Let ρ∗ ∈ PostSol(E). Since JEK is monotone, we have ρ0 ≤ ρ∗. Firstly, we show that ρi ≤ ρ∗

holds for all i = 1, . . . , n. By Lemma 3, ρ∗(x) = ∞, whenever (JEKρ0)(x) > ρ0(x). Hence, we
have ρ1 ≤ ρ∗, i.e., the statement holds for i = 1. Assume that the statement holds for i ∈
{1, . . . , n−1}, i.e., ρi ≤ ρ∗. Since JEK is monotone, we have ρi+1 = ρi∨ JEKρi ≤ ρi∨ JEKρ∗ ≤ ρ∗.
Thus, we have shown that ρi ≤ ρ∗ for all i = 1, . . . , n.

Finally, we show that ρn ∈ PostSol(E). For i = 0, . . . , n, let X∞
i := {x ∈ X | ρi(x) =∞}.

By construction we have ρ1 = ρ0 ⊕ {x 7→ ∞ | X∞
1 \ X

∞
0 }. By induction we show that

ρi = ρi−1 ⊕ {x 7→ ∞ | x ∈ X∞
i \ X

∞
i−1} for all i ∈ {2, . . . , n}. Because of Lemma 13, the

following holds for i = 2 and every equations x = e ∈ E :

ρi(x) = ρ2(x) = ρ1(x) ∨ JeKρ1 = ρ1(x) ∨

{

∞ if JeKρ1 > JeKρ0
JeKρ0 if JeKρ1 ≤ JeKρ0

=

{

∞ if JeKρ1 > JeKρ0
ρ1(x) if JeKρ1 ≤ JeKρ0

Let i > 2 and assume that the statement holds for i−1. Since JeK is a BF-function, the following
holds for every equation x = e ∈ E :

ρi(x) = ρi−1(x) ∨ JeKρi−1 = ρi−1(x) ∨

{

∞ if JeKρi−1 > JeKρi−2

JeKρi−2 if JeKρi−1 ≤ JeKρi−2

=

{

∞ if JeKρi−1 > JeKρi−2

ρi−1(x) if JeKρi−1 ≤ JeKρi−2

Thus, ρi = ρi−1 ⊕ {x 7→ ∞ | x ∈ X∞
i \X

∞
i−1} for all i ∈ {1, . . . , n}. Thus, for all i = 1, . . . , n,

either X∞
i ⊃ X∞

i−1 or ρi = ρi−1. If there exists some i = 1, . . . , n− 1 with ρi = ρi−1, then the
statement is proven, since then JEKρi−1 ≤ ρi−1 and thus ρn = ρi−1 ∈ PostSol(E). Otherwise,
i.e., if ρi > ρi−1 for all i ∈ {1, . . . , n}, then X∞

i ⊃ X∞
i−1 for all i ∈ {1, . . . , n}. Therefore, we

get ρn =∞. Thus, we have shown, that ρn ∈ PostSol(E).

We have ρ∗ ≥ ρn ∈ PostSol(E) for all ρ∗ ∈ PostSol(E), i.e., ρn is the least post-solution.
Thus, ρn is also the least solution of E .

30

Abstract Interpretation over Zones without Widening Thomas Martin Gawlitza and Helmut Seidl

C Omitted Proofs: Section 5

of Lemma 6. We only have to consider the case that E is a system of basic integer equations.
Thus, let E be a system of basic integer equations. For a pre-solution ρ′′ of E , let Mρ′′ be the
smallest set of of equations of the form x = e with the following properties:

1. If x = e ∈ E with ρ′′(x) < JeKρ′′ <∞, then x = e ∈Mρ′′ .

2. If (x = e[x′], x′ = e′) ∈Mρ′′×Mρ′′∪Mρ′′×Dρ′′(E)∪Dρ′′ (E)×Mρ′′ , then x = e[e′] ∈Mρ′′ .

Because of expansivity ρ′′(x) < JeKρ′′ < ∞ holds for all x = e ∈ Mρ′′ and all pre-solutions ρ′′

of E . Furthermore, Mρ ∪ Dρ(E) ⊇Mρ′ ∪ Dρ′(E), because of the feasibility of ρ.
We show that ρ′ is feasible. For the sake of contradiction we assume that ρ′ is not feasible.

Thus, there exists some x = e ∈ Dρ′(E) with x ∈ Vars(e). By definition, we have−∞ < ρ′(x) =
JeKρ′ < ∞. Since JeK is monotone and by Lemma 1 expansive, we have ρ(x) ≥ JeK(ρ′ ⊕ {x 7→
ρ(x)}) ≥ JeKρ. Since x = e ∈ Dρ′(E) ⊆ Mρ ∪ Dρ(E), we get ρ(x) ≤ JeKρ. We get ρ(x) = JeKρ.
Therefore, x = e ∈ Dρ(E). This contradicts the assumption that ρ is feasible.

of Lemma 8. For the sake of contradiction assume that ρ is not E(σ′)-feasible. Hence, there
exists a π′ ∈ ΠE(σ′) such that ρ is not E(σ′)(π′)-feasible. Thus, there exists an equation
x̄ = ē ∈ Dρ(E(σ′)(π′)) with x̄ ∈ Vars(ē). For all expressions e ∈ S(E), the following holds:
If ∞ > Jeσ′π′Kρ = JeσKρ > −∞ holds, then there exists a ∧-strategy π ∈ ΠE(σ), such that
eσ′π′ = eσπ holds. This holds, because, by Lemma 1, JeK is expansive in Vars(e) for every
basic integer expression and because σ′ is an improvement of σ w.r.t. ρ and thus we have
Jeσ′Kρ > JeσKρ for all e ∈ S∨(E) with σ′(e) 6= σ(e). From this it in particular follows the
validity of the following statement: If ∞ > Jeσ′π′Kρ = JeσKρ = ρ(x) > −∞ for an equation
x = e ∈ E , then there exists a ∧-strategy π for E(σ) such that eσ′π′ = eσπ. Thus, we can
construct a ∧-strategy π for E(σ) such that eσ′π′ = eσπ for all equations x = e ∈ E with
∞ > Jeσ′π′Kρ = ρ(x) > −∞. Let π be such a ∧-strategy for E(σ). We in particular also get
x̄ = ē ∈ Dρ(E(σ)(π)). This is a contradiction, since ρ is E(σ)-feasible and thus also E(σ)(π)-
feasible.

of Theorem 5. We show that at most |X| · |Σ| ∨-strategy improvement steps are preformed. As
input we have the system E ∨−∞, a ∨-strategy σinit with σinit(e∨−∞) = −∞ for all x = e ∈ E
and the variable assignment ρinit = −∞. For i ∈ N, let σi and ρi be the values of the program
variables σ and ρ after the i-th execution of the loop-body, respectively.

For the sake of contradiction assume that ρ|X|·|Σ| 6= µJEK holds. Thus, we have ρ0 < · · · <
ρ|X|·|Σ|+1. From σi(e ∨ −∞) = e we get σj(e ∨ −∞) = e for all j ≥ i ∈ N. Hence, at most
|X| · |Σ| different ∨-strategies occur in the sequence σ1, . . . , σ|X|·|Σ|+1. Because of the pigeon-
hole principle, there exists a ∨-strategy σ that occurs twice in the sequence σ1, . . . , σ|X|·|Σ|+1,
i.e., there exist i1, i2 ∈ {1, . . . , |X| · |Σ| + 1} with i1 < i2 and σi1 = σi2 . Thus, we have
ρi1 = νJE(σi1)K = νJE(σi2)K = ρi2 . This contradicts the fact that ρi1 < ρi2 holds.

31

	Introduction
	Preliminaries
	The max-strategy improvement approach by example
	Notations
	Monotone self-maps on complete lattices
	Systems of monotone equations

	Systems of Integer Equations
	Operators on integers
	Expansivity
	Systems of integer equations
	Duality
	Strategies

	Adaption of the Bellman-Ford Algorithm
	The Max-Strategy Improvement Algorithm
	The general framework
	Feasibility
	Determining a feasible max-strategy

	Systems of Extended Integer Equations
	Abstract Interpretation over Intervals and Zones
	Notations
	Programs and their collecting semantics
	The program's abstract semantics
	Intervals
	Minimum cost flow problems
	Computing the semantics of statements
	Computing the program's abstract semantics through max-strategy iteration

	Conclusion
	Additional Lemmata
	Omitted Proofs: Section 4
	Omitted Proofs: Section 5

