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Abstract

In this paper we examine two cases where solutions to one system of constraints can be
used or adapted to solutions to others, for free. We first revisit a method by Bromberger
for lifting solutions to systems over linear real arithmetic to solutions over integers. We
extend it by identifying several scenarios where solutions over reals can be directly used to
establish solutions over integers. Our second case discusses model-based projection, which
was introduced in two different places with different, dual, definitions. It turns out that
one can typically use the same underlying engines to compute both versions of model based
projection and we characterize when this is the case. We extend projection with model-
based realization. When used for quantifier reasoning, it serves a complementary purpose
than projection. While projection can be used for computing conflict clauses, realizers may
be used for forward pruning.

1 Introduction

Z3 [7] has found several applications that involve program analysis, testing and verification. It
integrates several theories that are commonly encountered in these domains. While recognized
as all round efficient the quest for scale and further efficiency remains. We are currently revising
Z3’s arithmetic solver addressing long standing limitations: the new arithmetic solver comes
with a scalable revised Simplex implementation that can switch between arbitrary precision
arithmetic, for certified results, and floating point arithmetic, for efficiency. It includes also a
solver based on dual Simplex which remains the engine that is most effective on typical ap-
plications from the SMT domain. For linear real arithmetic, the new solver has been used as
default in Z3’s distribution since spring of 2017 and solves overall 40% more problems that the
previous version. We are currently extending the improvements to linear integer arithmetic.
Furthermore, in contrast to the previous solver, it now supports an integration with non-linear
polynomial arithmetic which is complete for signature disjoint theory combinations. One of the
deciding factors in leapfrogging the previous solver in number of benchmarks solved included
so far an integration with the method by Bromberger and Weidenbach [3],[4] to detect integer
feasible solutions from strengthened inequalities. We observed that the default strengthening
proposed by Bromberger and Weidenbach can often be avoided: integer solutions can be guar-
anteed from weaker systems. We conjecture that polynomial time decidable fragments of integer
linear arithmetic are generally amenable to elementary conversions from real solutions to either
integer solutions or polynomial size certificates that there are no integer solutions. We prove
this conjecture in the cases of bounded variables, difference arithmetic, unit two variables per
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inequality (often called the octagon domain), and for unit horn inequalities. We leave the more
general cases of (non-unit) two-variable per inequalities and non-unit Horn inequalities open.

2 Cubes

In the following we let A,A′ range over integer matrices and a, b, c over integer vectors. The
1-norm ||A||1 of a matrix is a column vector, such that each entry i is the sum of the absolute
values of the elements in the corresponding row Ai. We write ||Ai||1 to directly access the 1-norm
of a row.

A (unit) cube is a polyhedron that is a Cartesian product of intervals of length one for each
variable. Since each variable therefore contains an integer point, the interior of the polyhedron
contains an integer point. The condition for a convex polyhedron to contain a cube can be
recast as follows:

Proposition 1 ([3]). If Ax ≤ b − 1
2 ||A||1 has a solution over the reals, then Ax ≤ b has an

integer solution.

Proof. Given a feasible solution to the strengthened system we extract integer values that satisfy
the original constraints as follows.

x̂ =

{
bxc if x− bxc ≤ 1

2
dxe otherwise

(1)

The original constraints Ax ≤ b are satisfied because the value at each row i is shifted by at
most 1

2 ||Ai||1, that is, Ax̂ ≤ Ax+ 1
2 ||A||1, and therefore if Ax ≤ b− 1

2 ||A||1, then Ax̂ ≤ b.

Example 1. Suppose we have 3x+ y ≤ 9∧−3y ≤ −2 and wish to find an integer solution. By
solving 3x+ y ≤ 9− 1

2 (3 + 1) = 7,−3y ≤ −2− 1
23 = −3.5 we find a model where y = 7

6 , x = 0.
After rounding y to 1 and maintaining x at 0 we obtain an integer solution to the original
inequalities.

2.1 Special Inequalities

Definition 1 (Difference Matrix). We say that D is difference matrix if it comprises of entries
over −1, 0, 1 and every row contains at most one entry with value −1 and at most one entry
with value 1.

Proposition 2. If Ax ≤ b− 1
2 ||A||1, Dx ≤ c has a solution over the reals, then Ax ≤ b,Dx ≤ c

has a solution over the integers.

Proof. Given values for x that satisfy the inequalities Ax ≤ b − 1
2 ||A||1, Dx ≤ c we use the

same rounding as in the proof of Proposition 1. The updated values to x satisfy the difference
constraints because for each row di in D, the difference between dix and dix̂, that is |di ·(x− x̂)|,
is strictly less than 1 (to achieve a maximal value, one coordinate has to be rounded down, while
the other is rounded up, their net difference is below 1). As the result of rounding is integral,
the same integral inequalities with c are satisfied.

We can extend the result from difference constraints to Horn constraints.

Definition 2 (Integer Horn Matrix). An integer matrix H is said to be Horn if every row
contains at most one negative entry. The only legal value to negative entries is the value −1.
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Example 2. 3x+3y−z ≤ 7 and 3x+y ≤ 7 are Horn, but 3x+3y−z−u ≤ 7 and 3x+3y−2z ≤ 7
are not.

Proposition 3. If Ax ≤ b− ||A||1, Hx ≤ c has a solution over the reals, then Ax ≤ b,Hx ≤ c
has a solution over the integers.

Proof. We have tightened bounds on non-Horn constraints as our proof requires adapting a
strategy of always rounding non-integral values down. By consistently rounding down, the
contributions from non-negative coefficients in H are reduced. The contribution from the
negative coefficients in H may be increased, but only by values strictly below 1. As the result
of rounding is integral, and is shifted by a value less than 1 upwards, the integral bounds c,
remain upper bounds. Formally, we have Hbxc < Hx+1 and since Hx ≤ c, where c is integral,
it follows that Hbxc < c+ 1 and therefore Hbxc ≤ c.

A minimal scenario where the difference |aix − aix̂| is not strictly less than 1 is the case
where ai contains two entries that are 1 and all other are 0. For example x+ y ≥ 1 is satisfied
by x = y = 1

2 , but rounding x and y produces values for x and y that no longer satisfy the
inequality. We will establish that this minimal case can also be saved, but this time requires
to sometimes round up instead of down from values that are at the mid-point between two
integers.

Definition 3 (Octagon Matrix). We say that O is an octagon matrix if it comprises of entries
over −1, 0, 1 and every row has at most two non-zero entries.

Example 3. x− y ≤ 2, z + u ≤ 4,−x− z ≤ −2 are octagon inequalities.

Definition 4 (Alternating rounding). An alternating rounding justification is an inequality
±x + ±y ≤ k, such that both x and y have values at the midpoint 0.5 and rounding x up
requires rounding y down and conversely.

A notation that suggests the dependencies is as follows: x
−x+y≤k−→ y is used to track when

rounding x down forced y to be rounded down. Similarly, y
−x+y≤k−→ x, and x

x+y≤k−→ y, etc.

Definition 5 (Infeasible Cycle). Given an octagon matrix O and a valuation of v satisfying
Ov ≤ c, we say v certifies an infeasible cycle if

1. v satisfies all inequalities.

2. There is a subset of tight inequalities where both values are at the midpoint 0.5.

3. The subset labels a cycle that contain vertices labeled by both x and x for some x.

Example 4. Suppose we have inequalities 0 ≤ x−y ≤ 0, 1 ≤ x+y ≤ 1. They have the rational
solution x = y = 1

2 , but no integer solution. The corresponding dependencies are

x
x−y≤0−→ y x

x+y≤1−→ y y
x−y≤0−→ x y

x+y≤1−→ x x
0≤x−y−→ y x

1≤x+y−→ y y
0≤x−y−→ x y

1≤x+y−→ x

and we see they contain an infeasible cycle as follows:

x
x+y≤1−→ y

x−y≤0−→ x
1≤x+y−→ y

0≤x−y−→ x
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Example 5. Let us weaken the inequalities by removing 1 ≤ x + y. That is, we are given the
inequalities 0 ≤ x− y ≤ 0, x+ y ≤ 1 and dependencies

x
x−y≤0−→ y x

x+y≤1−→ y y
x−y≤0−→ x y

x+y≤1−→ x x
0≤x−y−→ y y

0≤x−y−→ x

There is a path from x to x, but no path in the reverse direction.

x
x+y≤1−→ y

x−y≤0−→ x

Suppose we are given the values x = y = 1
2 . We can round both x and y down to 0 and still

satisfy the inequalities.

Proposition 4. If Ax ≤ b− 1
2 ||A||1, Ox ≤ c has a solution over the reals, then Ax ≤ b,Ox ≤ c

has a solution over the integers, or the real solution to Ox ≤ c contains an integer infeasible
cycle.

Proof. To prove the proposition we describe a procedure that computes a rounding for x or
fails with an integer infeasible cycle. We start with an evaluation x̂ that rounds down when
x−bxc = 1

2 . If there is an octagon inequality in Ox ≤ c that is not satisfied by this assignment, it
must necessarily be due to two values that are at the mid-point. Choose one of the two variables
and round it up instead and record the inequality where it occurred as the justification for this
change in rounding strategy. Perform these flips repeatedly. Every time a choice has to be
taken between two variables to flip, choose the least recently flipped variable; the justification
for flipping the least recently used variable includes the inequality and the justification for
flipping the other variable. An infeasible cycle establishes integer infeasibility.

Note that our procedure is näıve as it does not provide a small bound on the number of
flips. We can do better by flipping variables along a topological sort. We omit the details.

There are several other classes of linear arithmetic that would merit examination: can one
extract, cheaply, an integral solution from a rational solution without strengthening bounds?
The class of non-unit two-variable per inequality (TVPI) was solved in a low order polynomial
time in [5]. While their result speaks for the case where variables range over reals, the same
phenomena that are crucial for the algorithm are replicated for integers: upper and lower bounds
on variables can be computed from loops (and it is not necessary to examine all exponentially
bounded number of loops). We also leave extracting integer solutions for the related class of
non-unit Horn inequalities open.

2.2 On the complexity of solving linear integer arithmetic

The original argument that establishes NP membership of ILP shows directly that every solvable
set of inequalities have a small (polynomial size) solution. We can use bound strengthening as a
tool to establish NP membership by guessing a solution of bounded polynomial size or creating
an LP problem.

1. Given a set of inequalities Ax ≤ b, guess a subset A′, b′, and constants k such that
A′x = b′ − k. We bound the size of the constants to (||A||1)n, where n are the number of
variables.

2. The selected equalities are solved by computing a matrix H in Hermite normal form and
totally uni-modular matrix U , such that H = A′U−1, thus Hx = U−1b′.
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3. The lower triangular matrix H provides solutions for a subset of variables from x. The
coefficients in H’s diagonal need not be integral, for example it may solve for x0 as
3x0 = 5x1 + 8x2 + 2. We can remove the non-unit coefficient to x0 by replacing x1 by
3x′1 + k1 and x2 by 3x′2 + k2, where 0 ≤ k1, k2 ≤ 2 are guessed. This transformation
increases the coefficients in the linear system by (||A||1)n.

4. The remaining linear system is a set of inequalities A′′x ≤ b′′. For those we check for a
solution to A′′x ≤ b− 1

2 ||A
′′||1.

Note that the approach splits solutions to inequalities into two camps: those that are between
b− 1

2 ||A
′′||1 and b and those that are below.

3 Universal and Existential Model-based projection

We will now switch gears and examine procedures for computing quantifier free formulas, or
as we will say, projecting variables. We are interested in compute under-approximations of
projections for both universally and existentially quantified formulas. Projections of universal
formulas correspond to half-interpolants and are instrumental for model-based search techniques
where it is convenient to extract conflict clauses based on a subset of variables. Existential
projection is useful when checking satisfiability of quantified formulas [1] and satisfiability of
Horn clauses, or more generally, when constructing a sequence of resolutions. Both scenarios
engage in a model construction search and have a candidate partial model available to focus
the search for relevant under-approximations.

Example 6. In the following we will introduce the function Mbp(M,x,L) by example, where
M is an interpretation, x a variable and L a conjunction of literals containing x. Want to
compute small formula that implies ∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z). First note that the
formula is equivalent to the quantifier-free version as follows:

∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z) ≡ (y − z ≤ 2y ≤ z) ∨ (2y ≤ y − z ≤ z)

Suppose we have a model M = [x 7→ 3, y 7→ 1, z 7→ 6] and we wish to compute

Mbp(M,x, 2y ≤ x ∧ y − z ≤ x ∧ x ≤ z)

In this case 2yM = 2, (y − z)M = −5. So 2y > y − z is true under M . Then

Mbp(M,x, 2y ≤ x ∧ y − z ≤ x ∧ x ≤ z) = y − z ≤ 2y ≤ z

Note that the result satisfies our desired property

y − z ≤ 2y ≤ z ⇒ ∃x . (2y ≤ x ∧ y − z ≤ x ∧ x ≤ z)

3.1 Model-based Projection for Linear Real Arithmetic

MBP is particularly easy to define for linear real arithmetic. It works as a specialization of
the Loos-Weispfenning [9] quantifier elimination procedure by selecting a conjunction that is
satisfied under M . It can be defined by cases:

Eliminate ', 6' from conjunction of literals L:
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Mbp(M,x, x ' t ∧ L) = L[t/x] if x 6∈ FV (t)

Mbp(M,x, x 6' t ∧ L) = Mbp(M,x, x > t ∧ L) where M(x) > M(t)

We can use infinitesimals, ε, to turn > into ≥.

Mbp(M,x, x > t ∧ L) = Mbp(M,x, (x ≥ t+ ε) ∧ L)

Having applied the previous steps exhaustively we can now assume x occurs only as upper or
lower bounds:

Mbp(M,x,
∧
i

tmi ≤ x ∧
n∧
j

x ≤ sj) =
∧
i

ti ≤ t0 ∧
∧
j

t0 ≤ sj

where m ≤ n, M(t0) ≥M(ti)∀i

3.2 Model-based projections, two lenses

The formal requirements for MBP are provided in the following. Sat based (existential) MBP [8]
requires:

• Given: M |= `1[x] ∧ . . . ∧ `n[x]

• Find: M |= s1 ∧ . . . ∧ sm, free for x

• Such that: |= (s1 ∧ . . . ∧ sm)→ ∃x . `1[x] ∧ . . . ∧ `n[x]

Contrast this with Core-based (universal) MBP [6], where the requirements are:

• Given: M |= ∀x . `1[x] ∨ . . . ∨ `n[x].

• Find: M |= s1 ∧ . . . ∧ sm, free for x

• Such that: |= (s1 ∧ . . . ∧ sm)→ ∀x . `1[x] ∨ . . . ∨ `n[x]

Sat- and core-based MBP are not vacuously interchangeable. For example ∀x . y ≤ x ∨ u ≤
x ∨ y < z has the projection y < z (which does not contain x), but a related existential
projection would need a relation between y and u. The condition for when one can use the same
projection method for both cases is spelled out in the proof of the following (easy) proposition.

Proposition 5. The same projection operator can be used in both cases if x occurs in all literals
and the operator is stable under changes to the value of x.

Proof. We can assume a quantifier elimination procedure that takes a conjunction and elimi-
nates variables producing a DNF as follows

∃x .
∧
i

`i ≡
∨
i

∧
j

sij (2)

6



Theorem recycling for Theorem Proving Nikolaj Bjørner and Lev Nachmanson

thus, equivalently

∀x .
∨
i

¬`i ≡
∧
i

∨
j

¬sij (3)

In the existential case, model-based projection selects a conjunction i, such that ∧jsij is true.
In the universal case, model-based projection selects one disjunct from every conjunct i, such
that ¬sij is true under the model. The resulting selections imply the existential, respectively,
universal formulas.

Could conversely extract consequences true in M by selecting sij , respectively ¬sij from (3),
that are true under M .

3.3 Model-based Realization

In addition to projection, a closely related concept of realization can be used to solve quantified
formulas. It was proposed under the guise of strategies in [1, 2], and a clever and performant
method for extracting strategies was developed for 2-QBF in [10]. The starting point for
realization is a setting where we are faced with solving a formula with alternating quantifiers

∀x . ∃y . F [x, y] or ∃x . ∀y . G[x, y] .

When establishing satisfiability, a solver produces in the limit a realizer function f(x) such that
∀x . F [x, f(x)], or a function g(x) such that ∀x . ¬G[x, g(x)]. We will show how portions of a
realizer can be extracted using models.

Define model-based realizer Mbr similar to Mbp, but with the main case as follows:

Mbr(M,x,

m∧
i

ti ≤ x ∧
n∧
j

x ≤ sj) =

{
t0 where m ≤ n, M(t0) ≥M(ti) ∀i
s0 where m > n, M(s0) ≤M(sj) ∀j

alternatively to take into account strict inequalities,

Mbr(M,x,

m∧
i

ti ≤ x ∧
n∧
j

x ≤ sj) =
t0 + s0

2
M(t0) ≥M(ti)∀i, M(s0) ≤M(sj)∀j

and alternatively, a stronger realizer is given by:

Mbr(M,x,

m∧
i

ti ≤ x ∧
n∧
j

x ≤ sj) =
maxi ti + minj sj

2

As with quantifier elimination, the size of the such a realizer grows proportional to the product
of number of inequalities and variables. The realizer that projects either t0 or s0 does not incur
this overhead.

Suppose M |= F [x0, y] for some fixed x0 and let L[x, y] be an implicant (conjunction) that
implies F [x, y] for x = x0. Set f(x) := Mbr(M,y, L). The universal player will have to solve
¬F [x, f(x)] instead of the easier to satisfy formula ¬F [x, y].

On the other hand, suppose M |= ¬G[x0, y] for some fixed x0. Then let L[x, y] be an
implicant for ¬G[x, y] for x = x0. Set g(x) := Mbr(M,y, L) and the existential player will have
to solve G[x, g(x)] instead of the easier G[x, y].
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4 Summary

We examined two topics in decision procedures that involve integer linear arithmetic and quan-
tifier reasoning, respectively. They shared a common theme of having transfer properties:
theorems established in one setting were applicable in a wider scope. We demonstrated how
conditions for integer feasibility from [3] could be relaxed for inequalities coming from spe-
cial fragments of arithmetic. We examined two related notions of model-based projection and
characterized the case where they coincide. Finally, a first attempt was outlined for formu-
lating model-based realization with an example in the context of linear real arithmetic. As
demonstrated in the case of 2-QBF in [10], model-based realizers have a potential to advance
scalability of quantifier reasoning.
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