
EPiC Series in Computing

Volume 81, 2022, Pages 1–11

Proceedings of 11th International Congress
on Advanced Applied Informatics

Exploring the limits of an RBSC-based approach in solving

the subset selection problem

Kohei Furuya1, Zeynep Yücel1, Parisa Supitayakul1, Akito Monden1, and
Pattara Leelaprute2

1 Department, Faculty, University, City, Country
author1@mail.com, author2@mail.com, author3@mail.com, author4@mail.com

2 Department, Faculty, University, City, Country
author5@mail.com

Abstract

This study focuses on the subset selection problem of computational statistics and de-
ploys the rank-biserial correlation (RBSC) based deck generation algorithm (RBSC-SubGen)
[1] in solving it. RBSC-SubGen is originally designed for automatically building a desired
number of vocabulary decks (out of a large corpus) with a desired level of word frequency
relation, which shares many common aspects with the generic subset selection problem. In
this article, we consider applying it not only on word corpora but any set of ranked items
and study its resilience against various hyper-parameters, which are not treated in previ-
ous studies. Namely, based on simulations we test RBSC-SubGen under various constraints
and indicate the vulnerable aspects in terms of rate of saturation, computational cost and
accuracy of obtained solution.

1 Introduction and motivation

Most real-life processes involve a certain degree of randomness, the simplest example being
rolling a die. The observations obtained from such processes are treated as random variables
and represented in terms of stochastic models. The conventional research problem of Ranking-
and-selection (R&S) of the research field of computational statistics, focuses on such processes
involving random factors [2]. Specifically, R&S problem is the problem of choosing the best
of two (or sometimes more) processes (or items) which bear a certain degree of randomness,
according to a given performance measure. In solving the R&S problems, due to the stochastic
nature of the systems, it is desirable to take as many measurements as possible and increase
the reliability of decisions. This implies that numerous physical experiments need to be carried
out. However, in certain cases (e.g. vehicular traffic safety analysis), it may not possible to
make physical experiments. In addition, in certain other cases (e.g. pharmacological studies),
physical experiments might cost a long time and financial resources.

In that respect, simulation is considered to be a suitable tool for the exploration of process
performance. Simulations enable extension of the data set, investigation of complex phenom-
ena without the need of analytical solutions as well as assessment of decision paradigms and

T. Matsuo (ed.), IIAI AAI 2021-Winter (EPiC Series in Computing, vol. 81), pp. 1–11

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

algorithms [3]. However, although computer simulations are easier to perform than physical
experiments, they are not zero-cost. Namely, since the stochastic models corresponding to the
system in focus tend to be highly complex, simulations may cost significant time and compu-
tational resources. Therefore, R&S algorithms try to find good solutions in an efficient way,
namely, without making an excessive number of simulations.

Most of the R&S algorithms aim choosing the (single) best process out of two or more
processes according to a certain performance measure [2]. On the other hand, certain R&S
algorithms search for a subset of processes rather than a single one, which are termed as subset
selection problems [4].

In this article, we focus on the subset selection problem and deploy the RBSC-based deck
generation algorithm offered by [1] (henceforth, referred to as RBSC-SubGen) to solve it using
a variety of hypothetical data sets under diverse constraints. By changing the underlying
distribution (e.g. Normal, uniform etc.) and number of samples, we obtain various hypothetical
data sets and investigate the resilience of the algorithm against such factors. In addition, by
relaxing and tightening the desired specifications of the selected subset, we obtain a variety of
constraints and assess the feasibility of the problem, rate of saturation and accuracy of obtained
solution. Specifically, we show that the algorithm of [1] can be applied on the subset selection
problem. The feasibility of the problem is inferred based on the sizes of the (original) data
set and its subsets, while the underlying distribution is observed not to make a significant
impact on the results. On the other hand, rate of saturation and accuracy are seen to depend
considerably on the pre-defined constraints.

2 Background and related work

Historically, R&S problems are often formulated in agricultural and clinical scenarios (e.g. grain
yields, drug treatments) [5]. However, recently their application has expanded to a large domain
involding judicial system [6], traffic safety [7], digital photo selection [8] among many others.

As mentioned in Section 1, while most of the R&S algorithms aim choosing the (single)
best process [2, 9], certain others search for a subset of processes [10, 11, 4]. Subset selec-
tion is essential in evaluating the performance of complex systems using stochastic simulation.
Namely, when optimizing system performance with such simulations, the final decision is taken
by considering various simulation results. However, since simulations of complex systems are
computationally expensive and time-consuming, it is desirable to first eliminate non-competitive
designs and then study the remaining ones in detail [12], which can be addressed by subset se-
lection.

Subset selection problems may have various purposes. For instance, if the measurements
are known to contain noise, the solution chosen as the single best performing process may
not be the true best solution, thus choosing a subset and studying them deeper may yield
better results [13]. Another potential purpose of subset selection can be post-hoc analysis. For
instance, suppose that a group of patients are found to react to a test drug in a certain way
based on a set of low-cost medical exams. If one wants to investigate better the pharmacological
effects with a reasonable cost, he/she may carry out additional high-cost medical exams on a
proper (i.e. diverse as well as representative) subset of patients and achieve reliable results,
while keeping cost efficiency. Moreover, a second-stage algorithm or a follow-up simulation of
a subsequent process can be tested in conjunction with a subset of solutions (of a preceding
process) to achieve more accurate and realistic results (i.e. more robust against measurement
noise or variations due to stochasticity).

The chosen subsets are often required to attain the largest or smallest performance measures

2

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

and be homogenous [12]. Neveretheless, depending on the application, various other conditions
can be imposed as in [1] and [14]. Namely, in [1] the chosen subsets of vocabulary are desired to
be uniform within the subset and diverse between the varying subsets, whereas in [14] the chosen
subsets are desired to be as diverse and inclusive as possible to satisfy the ethical requirements
on fairness.

Various R&S algorithms and subset selections approaches have been proposed including
indifference-zone approach (IZ), maximization of the probability of correct selection (PCS),
optimal computing budget allocation (OCBA) and expected value of information (EVI) [15],
[16], [9]. Since R&S requires pairwise comparison of performance metrics [17], some studies
focus on this aspect and try to optimize R&S further by decreasing the number of pairwise
comparisons [18].

3 Overview of the algorithm

3.1 Fundamentals of simple difference formula

Essentially, RBSC defines the correlation relating a dichotomous variable and a ranking variable.
As an example, consider two track-and-field teams as Team-A and Team-B. For testing the
hypothesis that Team-A is faster than Team-B, it is an alternative to use RBSC. Suppose
that in order to judge the speed of an individual athlete, we use the time it takes him/her to
run a track of a certain length. Here, the statement that Team-A is faster than Team-B is a
dichotomous variable (rated as either True or False). On the other hand, the time it takes the
athletes to run the track can easily be transformed into a ranking variable.

Variable-1: Team-A is faster than Team-B.
⇒ Dichotomous variable (True/False)

Variable-2: The time it takes the athletes to run a track of certain length.
Question 2: ⇒ Transformed into a ranking variable

To evaluate the validity of the above-mentioned hypothesis based on RBSC, initially the
times of each pair of athletes from different teams (i.e. one athlete from Team-A and one athlete
from Team-B) are compared. Suppose that it takes a particular athlete from Team-A ta seconds
to run the track, where ta is a real number. Similarly, let a particular athlete from Team-B run
the same track in tb seconds. Let S stand for the number of evidence supporting the hypothesis,
(i.e. an athlete from Team-A runs faster than an athlete from Team-B),

S = 0.5 ·
∑
∀a,b

(sign (tb − ta) + 1) ,

where sign(·) denotes signum. Similarly, let C represent the number of evidence contradicting
the hypothesis (i.e. an athlete from Team-B runs faster than an athlete from Team-A),

C = 0.5 ·
∑
∀a,b

(sign (ta − tb) + 1) .

After obtaining the number of evidence supporting and contradicting the hypothesis in
this manner, we employ Simple Difference Formula proposed by Kerby [19] to compute the
RBSC coefficient. According to Kerby [19], the non-parametric correlation equals the simple
difference between the proportion of “favorable” and “unfavorable” evidence, where favorable

3

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

stands for the pairs supporting the hypothesis and unfavorable for the ones disagreeing with
the hypothesis. In explicit terms, RBSC coefficient ρ is computed simply as,

ρ =
S − C

S + C
.

The values of ρ are bounded in the range -1 to 1. If the data are all favorable, then the
correlation is exactly 1. On the contrary, if the data are all unfavorable, the correlation will be
-1, whereas a correlation of 0 indicates equal amount of favorable and unfavorable evidence. In
that respect, if ρ > 0, then it can be said that the hypothesis holds, and otherwise it does not.

3.2 Outline of RBSC-SubGen

The objective of RBSC-SubGen is to automatically build a desired number of subsets (out of
a large set) with a desired level of ranking relation. Since the purpose of our work is not to
adapt RBSC-SubGen to a certain data set or to try it with a certain set of constrains, in what
follows, we avoid any specifics on the elements of data set and how they are ranked. Suppose
that we have a set with a large amount of items (henceforth, referred to as the universal set).
Let each item to be associated with a score, which can be an objective value (e.g. the time to
run a certain track as in the aforementioned example) or a subjective value (e.g. evaluation of
a product in an online retail store).

Suppose that our task it is to pick two representative subsets out of the universal set with
a desired ranking relation between the items. For assuring that the chosen items are actually
representative, they are required to have two properties as (i) uniformity and (ii) diversity1.
To assess uniformity and diversity, [1] deploys rank-biserial correlation and updates the ran-
domly chosen subsets in an iterative manner (by adding and removing items, see Alg. 1), until
satisfactory levels of uniformity and diversity are attained2.

Algorithm 1: RBSC-SubGen

Input: Universal set X, size of target subsets S, desired RBSC coefficient ρ∗, tolerable
disparity ϵ

Output: Subsets A, B
1 sample(A ⊂ X,B ⊂ X | |A| = S, |B| = S) // Build potential subsets

2 X ′ = X −A−B // Available items X ′

3 ρAB = RBSC(A,B)
4 while |ρ∗ − ρAB | ≥ ϵ do
5 UA, UB = GetRequiredUpdate(A, B, ρ∗, ϵ)
6 A, X ′ = UpdateSubset(A, UA, X

′)
7 B, X ′ = UpdateSubset(B, UB , X

′)
8 ρAB = RBSC(A,B)

9 return A, B

The most essential step of RBSC-SubGen is this iterative update (see Lines 4-8 of Alg. 1).
Initially, the current state of the subsets is assessed and the sort of necessary update is de-

1Uniformity refers to a state, in which the scores of the items in the same subset are uniform enough so
that they can be grouped together. In addition, diversity refers to a state, in which the scores of the items in
different decks are diverse enough so that they can be grouped in different decks.

2In case of [1], the large set is a lexicon, the subsets are vocabulary decks and the scores are the number of
occurrences of the words collected from Wiktionary.

4

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

termined as illustrated in Alg. 2. Suppose that between the subsets A and B, the one with
lower scores (on the average) is A. Further suppose that ρAB is lower than the desired value ρ∗

than a maximum permissible disparity ϵ, i.e. ρ∗ − ρAB > ϵ. In this case, A has to be updated
such that an item with a relatively low score needs to be appended to it and an item with a
relatively high score needs to be returned from A to the universal set. Moreover, B has to
be updated such that an item with a relatively high score needs to be appended to it and an
item with a relatively low score needs to be returned from B to the universal set. We code
the aforementioned update on A and B with UA = −1 and UB = 1. If ρAB is higher than
the desired value ρ∗ beyond ϵ (i.e. ρAB − ρ∗ > ϵ), the updates will be opposite. However, if
ρAB is between an interval of ±ϵ around ρ∗ (|ρAB − ρ∗| ≤ ϵ), no action is necessary (coded as
UA = UB = 0).

Algorithm 2: GetRequiredUpdate

Input: Subsets A and B, desired RBSC coefficient ρ∗, permissible disparity ϵ
Output: Required updates UA and UB

1 UA, UB = 0, 0
2 ρAB = RBSC(A,B)
3 if ρAB < ρ∗ − ϵ then UA, UB = -1, 1
4 else if ρAB > ρ∗ + ϵ then UA, UB = 1, -1
5 return UA, UB

For updating a subset, the procedure illustrated in Alg. 3 is followed. At every iteration, a
single item is removed from the subset and returned to the universal set, while a single item
from the universal set is appended to the subset. The item to be added or removed is chosen
such that it provides a change on ρAB in the desired direction (i.e. increasing or decreasing).
The random sampling of an item a with a high score from the subset A is represented with
sample(a ∈ A | sa > mA), where sa denotes the score of the item a and mA is the median score
of the items in A. Obviously, an arbitrary sample a may not satisfy sa > mA, and the sampling
operation may need to be repeated several times. In addition, in order to avoid extremely long
running times (or divergence), a maximum number of iterations Nmax needs to be defined.
After repeating the update operation illustrated in Alg. 3 for the two subsets A and B (see
Lines 6, 7 in Alg. 1), the new value of RBSC coefficient is computed. Should it turn out be
within the satisfactory range (|ρAB − ρ∗| < ϵ), the updates are terminated and the subsets are
returned.

Algorithm 3: UpdateSubset

Input: Subset A, required update UA, available items in the universal set X ′

Output: Updated subset A, available items in the universal set X ′

1 if UA = −1 then // Decrease scores in A
/* Pick a high-score item a from A and a low-score item x from X ′ */

2 sample(a ∈ A, x ∈ X ′ | sa > mA, sx < mA)

3 else if UA = 1 then // Increase scores in A
/* Pick a low-score item a from A and a high-score item x from X ′ */

4 sample(a ∈ A, x ∈ X ′ | sa < mA, sx > mA))

5 A = A
⋃
{x} \ {a} /* Move a from A to X ′ and x from X ′ to A */

6 X ′ = X ′ ⋃ {a} \ {x}

5

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

4 Investigation of convergence properties of the algorithm

In this section, we examine RBSC-SubGen in relation to a set of hyper-parameters and elaborate
on quantification of its convergence properties based on a set of performance measures.

4.1 Hyper-parameters

The hyper-parameters which are considered to have a direct impact on the operation of the
algorithm are presented in Table 1. In what follows, we give a brief description of each hyper-
parameter and discuss the anticipated impacts against changes on its values.

The desired value of the RBSC coefficient between two subsets is denoted with ρ∗. Obviously,
as ρ∗ increases there will be a larger margin between the scores of the items in the subsets.
Thus, higher values of ρ∗ indicate more challenging problems, which are likely to terminate
after a larger number of iterations. If ρ∗ is significantly high, the algorithm is likely to get
saturated, i.e. reach the maximum number of iterations before achieving convergence.

Table 1: Hyper-parameters of the algorithm.

Variable Description Min Max Step size Default

ρ∗ Desired value of RBSC coefficient 0.3 0.7 0.04 0.5
ϵ Maximum permissible disparity on ρ∗ 0.05 0.15 0.01 0.1
L Size of the universal set X 100 900 50 500
S Size of subsets A, B 100 500 20 300

In most real-world problems, the universal (i.e. source) set (collected through physical or
simulated experiments) has a limited size. This implies that there may not always be enough
freedom (in choosing the scores) for achieving the exact value of ρ∗. In that case, it is necessary
to define a maximum permissible value ϵ for the disparity on ρ∗, ∆ρ = |ρ∗ − ρ|. Provided that
ρ is in the range [ρ∗ − ϵ, ρ∗ + ϵ,], or equivalently ∆ρ ≤ ϵ, it is considered to be sufficiently close
to the desired value. Clearly, if the maximum permissible disparity ϵ is low, a more accurate
solution is desired, which may require a larger number of iterations, or may even result in a
failure in achieving convergence.

Since the universal set is likely to have a limited size, it is worth devoting a hyper-parameter
to account for this challenge. In this study, the size of universal set is denoted with L. If L
is large, the algorithm is expected to have sufficient freedom in choosing the scores and to be
likely to converge, provided that the other hyper-parameters are not too strict. Nevertheless,
if L is too small, even if the other hyper-parameters are not too strict, the algorithm is likely
to terminate without achieving convergence.

In this work, RBSC-SubGen [1] is confined to generate a pair of target subsets A and B,
where the size of each subset is denoted with S3. Here, it is important to note that if L is lower
than 2 · S, then there is no solution, since the problem is inherently not workable. In addition,
although an increase on S has a limiting effect on the freedom of choosing the scores, provided
that L is large enough, this effect can be expected to diminish.

It is also interesting that an increase on S can somewhat make the effect of individual scores
less significant. Namely, since the number of possible pairs is proportional to S2, as S increases,

3In practice, RBSC-SubGen can be executed to generate any desired number of subsets. Here, we consider
generating a pair of (i.e. 2) subsets as an initial step in investigating its feasibility.

6

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

the number of possible pairs increase even with a larger margin4. In that respect, the potential
impact of a single modification decreases with increasing S.

4.2 Several other specifics of testing

RBSC-SubGen is tested with several sets of hyper-parameter values. Specifically, we consider the
hyper-parameters to take the values presented in Table 1. In this table, Min and Max denote the
lowest and highest values assumed by each hyper-parameter, where certain intermediate values
at given step sizes are also used in testing to observe the evolution of performance. In addition,
in order to visualize the pair-wise relations (i.e. the interplay of two hyper-parameters), the
remaining two hyper-parameters are set to certain default values. For instance, while examining
the interaction of universal set size L and subset size S, desired value of RBSC coefficient ρ∗

and disparity on the desired RBSC coefficient ϵ are fixed at 0.5 an 0.1, respectively. In specific,
each default value is set to the median of the corresponding range.

Note that provided that L > 2 · S, there is always some item which is not yet assigned to
any of the subsets A, B. If ρAB does not satisfy |ρAB − ρ∗| ≤ ϵ, then such items can be used to
update the subsets. However, in certain cases (e.g. too little freedom in sampling or too little
impact of modifying a single item), the algorithm may go into an infinite loop with no avail, if
one does not define a limit on the number of such iterations (see Line-4 of Alg. 1). Therefore, it
is necessary to limit the maximum number of iterations for identifying such bottlenecks. Here,
the maximum of iterations is denoted with M . If the algorithm reaches M iterations without
achieving an RBSC coefficient within the range [ρ∗ − ϵ, ρ∗ + ϵ], it is said to get saturated.

In addition, regarding each set of hyper-parameters the algorithm is executed I times, such
that at each execution a fresh universal set is generated randomly. In addition, concerning
each execution we compute the performance indicators described in Section 4.3 and report the
relating statistics in Section 5.

4.3 Quantification of performance

For assessing the performance of RBSC-SubGen, several indicators are considered such as rate of
saturation, number of iterations until convergence and disparity on desired RBSC coefficient.

As mentioned in Section 4.2, if the algorithm reaches M iterations without achieving an
RBSC coefficient within the range [ρ∗ − ϵ, ρ∗ + ϵ], it is said to get saturated. One of the
performance indicators in assessing the performance of the algorithm is the rate of saturation
denoted with βo. Namely, the ratio of the number of saturated runs to the number of all runs
is registered as rate of saturation. This value indicates how often RBSC-SubGen fails to build
the subsets.

If the algorithm achieves an RBSC coefficient satisfying ∆ρ ≤ ϵ and in less thanM iterations,
it is said to converge. Here, the number of iterations until convergence denoted with Mo is
considered as another performance indicator. This value indicates how quickly RBSC-SubGen

builds the subsets.
Note that if the algorithm gets saturated, it does not converge and thus the number of

iterations (i.e. M) is not considered in computing Mo. Moreover, in the case that the algorithm
gets constantly saturated for a certain set of hyper-parameters, Mo is not available.

As explained in Section 4.1, ϵ defines the maximum permissible disparity on ρ∗. Here also
the observed value of disparity ∆ρ is considered as a performance indicator. Note that the
observed disparity on the desired value of RBSC ∆ρ ideally depends strictly on ϵ5.

4In other words, the modification of an individual score may affect at most S cases.
5In that respect, the reason for computing ∆ρ is for making sure that the number of epochs I is sufficiently

7

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

5 Results and discussion

In this section, the observations relating each performance indicator are illustrated and a dis-
cussion is provided on the sensitivity of the algorithm to the modifications on their values.

5.1 Results and discussion relating rate of saturation

Rate of saturation is considered to be the most challenging aspect of the performance of
RBSC-SubGen. Namely, saturation implies that an RBSC coefficient cannot be achieved within
the permissible range and the algorithm is considered to fail. It can be seen in Figure 1 that
such a serious case occurs most often when the hyper-parameter pair (ρ∗, S) pose a challenge.
Specifically, if both the desired value of RBSC coefficient ρ∗ and the size of target subsets S
are large, then there is risk that the algorithm gets saturated. One may see that large values of
ρ∗ pose a risk of saturation also when they are coupled with small values of ϵ and small values
of L, where the algorithm is observed to be more sensitive to the former (see Figure 1-(d)) as
compared to the latter (see Figure 1-(b)). The same holds also for S. In other words, when
large values of S are coupled with small values of ϵ or small values of L, a risk of saturation
emerges. Nevertheless, comparing ϵ and L, one may notice that the risk is more serious for
ϵ than L. As for the pair (ϵ, L), it can be seen in Figure 1 that the risk of saturation is not
serious and the algorithm is likely to yield the outcome satisfying the desired properties.

100 200 300 400 500 600 700 800 900
L

0.06

0.08

0.10

0.12

0.14

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500 600 700 800 900
L

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500 600 700 800 900
L

100

150

200

250

300

350

400

450

500

S

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.06

0.08

0.10

0.12

0.14

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250 300 350 400 450 500
S

0.06

0.08

0.10

0.12

0.14

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250 300 350 400 450 500
S

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.0

0.2

0.4

0.6

0.8

1.0

(d) (e) (f)

Figure 1: The effect of each possible hyper-parameters pair on rate of saturation βo.

high. In other words, if it can be observed that ∆ρ depends solely on ϵ, it can be claimed that the values βo and
Mo are likely to grasp the general characteristics and are reliable, and additional test runs are not necessary.

8

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

5.2 Results and discussion relating number of iterations

Subsequently, we examine the number of iterations Mo that it takes RBSC-SubGen to terminate
successfully. We report our observations in Figure 2, where the dark blue regions signify either
(i) the cases where the problem is not feasible (i.e. L < 2 · S) or (ii) that all I runs are found
to be saturated. If (i) is the case, there exists no solution, but if (ii) is the case one may try to
improve the algorithm. In particular, the dark blue regions in Figures 2-(a), (b), (c) arise due to
an infeasibility. On the other hand, certain sets of hyper-parameter values seen in Figures 2-(e),
(f), end up in saturation since it is not possible to find a solution within computation limits.

Next, omitting the aforementioned cases (i) and (ii), we focus on successful executions.
Here, it is interesting that although the hyper-parameter pair of (ρ∗, S) has the largest number
of saturations, a higher number of iterations are required to solve most problems relating the
hyper-parameter pair of (ϵ, S). This observation is somewhat valid also for the hyper-parameter
pair of (ϵ, ρ∗). Namely, in the overall, the number of iterations are higher for most (ϵ, S) and
(ϵ, ρ∗) pairs, although saturation is not as common as in the case of (ρ∗, S).

100 200 300 400 500 600 700 800 900
L

0.06

0.08

0.10

0.12

0.14

0

10

20

30

40

50

100 200 300 400 500 600 700 800 900
L

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0

10

20

30

40

50

100 200 300 400 500 600 700 800 900
L

100

150

200

250

300

350

400

450

500

S
0

10

20

30

40

50

(a) (b) (c)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.06

0.08

0.10

0.12

0.14

0

10

20

30

40

50

100 150 200 250 300 350 400 450 500
S

0.06

0.08

0.10

0.12

0.14

0

10

20

30

40

50

100 150 200 250 300 350 400 450 500
S

0.06

0.08

0.10

0.12

0.14

0

10

20

30

40

50

(d) (e) (f)

Figure 2: The effect of each possible hyper-parameters pair on number of iterations Mo.

5.3 Results and discussion relating disparity on desired RBSC

We also investigated the evolution of disparity ∆ρ on the desired RBSC coefficient ρ∗ relating
to the same six hyper-parameters pairs. It is observed that as long as ϵ is one of the hyper-
parameters under investigation, ∆ρ depends solely on it and the other hyper-parameter under
investigation does not introduce a prominent effect on the rate of saturation or the number of
iterations necessary to find a solution. This is not surprising since termination of iterations is
decided based on ϵ (see Line-4 of Alg. 1).

9

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

6 Conclusion

We considered RBSC-SubGen, which is originally designed for automatically building a desired
number of vocabulary decks (out of a large corpus) with a desired level of word frequency re-
lation. Exploiting the fact that this objective shares many common aspects with the generic
subset selection problem, we tried RBSC-SubGen in generating subsets out of universal sets
coming from different underlying distributions 6 and of different size. We also imposed vary-
ing constraints on subset size, desired ranking relation and permissible disparity. Our results
indicate that RBSC-SubGen can be used in subset selection, provided that it is formulated as a
ranking relation. In addition, RBSC-SubGen is found to be sensitive to subset size S, followed
by desired RBSC coefficient ρ∗, permissible disparity ϵ and, finally, universal set size L.

Acknowledgements

The codes developed for the analysis reported in this article are released in our repository [20].

References

[1] Z. Yücel, P. Supitayakul, A. Monden, and P. Leelaprute, “An algorithm for automatic collation
of vocabulary decks based on word frequency,” IEICE Tran. Information and Systems, vol. 103,
no. 8, pp. 1865–1874, 2020.

[2] L. J. Hong, W. Fan, and J. Luo, “Review on ranking and selection: A new perspective,” arXiv
preprint arXiv:2008.00249, 2020.

[3] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study of the model evaluation
criterion MMRE,” IEEE Tran. Software Engineering, vol. 29, no. 11, pp. 985–995, 2003.

[4] D. J. Eckman, M. Plumlee, and B. L. Nelson, “Revisiting subset selection,” in Proc. Winter
Simulation Conf., pp. 2972–2983, IEEE, 2020.

[5] S. S. Gupta, “On some multiple decision (selection and ranking) rules,” Technometrics, vol. 7,
no. 2, pp. 225–245, 1965.

[6] L. Huang, J. Wei, and E. Celis, “Towards just, fair and interpretable methods for judicial subset
selection,” in Proc. AAAI/ACM Conf. AI, Ethics, and Society, pp. 293–299, 2020.

[7] G. C. McDonald, “Applications of subset selection procedures and Bayesian ranking methods in
analysis of traffic fatality data,” Computational Statistics, vol. 8, no. 6, pp. 222–237, 2016.

[8] C.-H. Yeh, B. A. Barsky, and M. Ouhyoung, “Personalized photograph ranking and selection
system considering positive and negative user feedback,” ACM Tran. Multimedia Computing,
Communications, and Applications, vol. 10, no. 4, pp. 1–20, 2014.

[9] C.-H. Chen, S. E. Chick, L. H. Lee, and N. A. Pujowidianto, “Ranking and selection: Efficient
simulation budget allocation,” Handbook of Simulation Optimization, pp. 45–80, 2015.

[10] S. H. Choi and T. G. Kim, “A heuristic approach for selecting best-subset including ranking within
the subset,” IEEE Tran. Systems, Man, and Cybernetics-A, vol. 50, no. 10, pp. 3852–3862, 2018.

[11] M. H. Alrefaei and M. Almomani, “Subset selection of best simulated systems,” Journal of the
Franklin Institute, vol. 344, no. 5, pp. 495–506, 2007.

[12] Y. Wang, L. Luangkesorn, and L. J. Shuman, “Best-subset selection procedure,” in Proc. Winter
Simulation Conf., pp. 4310–4318, IEEE, 2011.

[13] S. Gao, H. Xiao, E. Zhou, and W. Chen, “Robust ranking and selection with optimal computing
budget allocation,” Automatica, vol. 81, pp. 30–36, 2017.

6The figures presented in Section 5 are for standard Normal distribution. We examined the results concerning
other distributions and did not observe any significant differences.

10

Exploring the limits of RBSC-SubGen Furuya, Yücel, Supitayakul, Monden and Leelaprute

[14] M. Mitchell, D. Baker, N. Moorosi, E. Denton, B. Hutchinson, A. Hanna, T. Gebru, and J. Mor-
genstern, “Diversity and inclusion metrics in subset selection,” in Proc. AAAI/ACM Conf. AI,
Ethics, and Society, pp. 117–123, 2020.

[15] S. Gao and W. Chen, “A note on the subset selection for simulation optimization,” in Proc. Winter
Simulation Conf., pp. 3768–3776, IEEE, 2015.

[16] C.-H. Chen, D. He, M. Fu, and L. H. Lee, “Efficient simulation budget allocation for selecting an
optimal subset,” INFORMS Journal on Computing, vol. 20, no. 4, pp. 579–595, 2008.

[17] M. J. Groves, Efficient Pairwise Information Collection for Subset Selection. PhD thesis, Univer-
sity of Warwick, 2020.

[18] L. J. Hong, J. Luo, and Y. Zhong, “Speeding up pairwise comparisons for large scale ranking and
selection,” in Proc. Winter Simulation Conf., pp. 749–757, IEEE, 2016.

[19] D. S. Kerby, “The simple difference formula: An approach to teaching nonparametric correlation,”
Comprehensive Psychology, vol. 3, pp. 11–IT, 2014.

[20] Z. Yücel, “Solving the subset generation problem with RBSC-SubGen.” https://github.com/

yucelzeynep/Subset-generation-with-RBSC-SubGen, 2021. [Accessed 2021-10-18].

11

https://github.com/yucelzeynep/Subset-generation-with-RBSC-SubGen
https://github.com/yucelzeynep/Subset-generation-with-RBSC-SubGen

	Introduction and motivation
	Background and related work
	Overview of the algorithm
	Fundamentals of simple difference formula
	Outline of RBSC-SubGen

	Investigation of convergence properties of the algorithm
	Hyper-parameters
	Several other specifics of testing
	Quantification of performance

	Results and discussion
	Results and discussion relating rate of saturation
	Results and discussion relating number of iterations
	Results and discussion relating disparity on desired RBSC

	Conclusion

