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Products were introduced in the 1970s as a natural type of combined modal logics. They
arise in different areas of pure and applied logics — spatial reasoning, multi-agent systems,
quantified modal and intuitionistic logics etc. The theory of products was systematized and
essentially developed first in the paper [GS98] and then in the book [GKWZ03], but during the
past 10 years new important results were proved and the research is going on, cf. [Kur07].

Recall that the product of modal logics is defined as the logic of the class of products of their
Kripke frames. On the one hand, this definition is quite natural, and in some cases products can
be simply axiomatized and have nice properties. On the other hand, products are always Kripke
complete. However, Kripke semantics sometimes may be inadequate. So different logics L1,L

′
1

can have the same frames; then L1 × L2 = L′1 × L2 for any L2 — which looks strange. Another
peculiarity is logical non-invariance: it may happen that for some frames Log(F) = Log(F′),
while Log(F× G) 6= Log(F′ × G). Also, if logics L1 and L2 are consistent, but L1 has an empty
class of frames, then L1 × L2 is inconsistent.

To amend the situation, we can try to define products of Kripke of models (or, equivalently,
general Kripke frames or modal algebras). The following problem was mentioned in [Kur07, p.
877]: There are several attempts for extending the product construction from Kripke complete
logics to arbitrary modal logics, mainly by considering product-like constructions on Kripke
models. All the suggested methods so far result in sets of formulas that are not closed under the
rule of Substitution.

Nevertheless, by that time a possible answer already existed (but was unnoticed): it was
given by Yasusi Hasimoto in [Has00], who introduced so-called shifted products of modal alge-
bras. In this paper we show that a shifted product acts on Boolean algebras exactly as a tensor
product (an observation first made by Dov Gabbay [GSS]). So now we call this operation a
tensor product of modal algebras. We also propose a filtration technique for models based on
tensor products and obtain some decidability results.

1 Tensor products and chequered valuations

It is well known that we can regard every Boolean algebra as a Boolean ring. Every Boolean
ring is a commutative algebra with an idempotent multiplication over the two-element field F2.
So the standard tensor product construction is applicable here [AM69].

Viz., the tensor product of algebras A,B is the pair (π,A⊗B), where π : (a, b) 7→ a⊗ b is a
bilinear map A×B → A⊗B such that every bilinear f : A×B → C uniquely factors through
π, i.e., f = g ·π for a unique linear g. The multiplication in A⊗B is defined in such a way that
(a⊗ b)(c⊗ d) = ac⊗ bd.

Proposition 1.1. The tensor product of Boolean rings is a Boolean ring.

Our aim is to define tensor products of modal algebras. To this end, let us describe the
tensor product construction for Boolean rings more explicitly.
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Definition 1.2. A set U×V , where U ⊆ X, V ⊆ Y , is called a rectangle in X×Y . A chequered
subset of X × Y is a finite union of rectangles.

Proposition 1.3. [Has00] The set of all chequered subsets of W1×W2 is closed under Boolean
operations. Moreover, if Ai is a subalgebra of 2Wi , i = 1, 2, then the set of all finite unions of
rectangles V1 × V2, where Vi ∈ Ai, is closed under Boolean operations as well.

For nonempty sets X,Y let ch(X,Y ) be the Boolean algebra of all chequered subsets of
X × Y .

Theorem 1.4. [GSS] Let X,Y be nonempty sets, A,B subalgebras of 2X , 2Y respectively, C
the Boolean algebra of finite unions of rectangles U × V , where U ∈ A, V ∈ B. Consider the
map π : 2X × 2Y −→ ch(X,Y ) such that π(U, V ) = U × V . Then (π|(A×B), C) is the tensor
product of Boolean algebras A and B. In particular, (π, ch(X,Y )) is the tensor product of 2X

and 2Y .

Proposition 1.5. [Has00] Consider Kripke frames F1 = (W1, R1), F2 = (W2, R2) and their
product [GS98] F1 × F2 = (W1 ×W2, R

×
1 , R

×
2 ). Then

(1) for any rectangle U × V we have

R×1
−1

(U × V ) = R−1
1 (U)× V, R×2

−1
(U × V ) = U ×R−1

2 (V );

(2) if (F1, A1) and (F2, A2) are general 1-frames, then (F1×F2, A1⊗A2) is a general 2-frame.
In particular, (F1 × F2, ch(W1,W2)) is a general 2-frame.

Definition 1.6. The frame (F1 × F2, A1 ⊗ A2) is called the tensor product of general frames
(F1, A1) and (F2, A2):

(F1, A1)⊗ (F2, A2) := (F1 × F2, A1 ⊗A2).

In particular, we have the tensor product of Kripke frames F1 ⊗ F2 = (F1 × F2, ch(W1,W2)).
Tensor products of Kripke frames are also called chequered frames.

Theorem 1.7. [GSS] If (A,♦1), (B,♦2) are normal 1-modal algebras, then there exists a unique
2-modal algebra structure on A⊗B such that for any a ∈ A, b ∈ B

♦×1 (a⊗ b) = ♦1a⊗ b, ♦×2 (a⊗ b) = a⊗ ♦2b.

Proof. Due to the Jónsson–Tarski representation theorem [CZ96], this follows from Proposition
1.5; the operations ♦×1 and ♦×2 are introduced according to (1).

For classes of algebras (general frames) A, B, put A⊗B := {A⊗B | A ∈ A, B ∈ B}.

Definition 1.8. The tensor product of logics L1 and L2 is the logic

L1 ⊗ L2 := Log(Alg(L1)⊗Alg(L2)).

Clearly, L1 ⊗ L2 = Log(GFr(L1)⊗GFr(L2)).

The next proposition easily follows from this definition.

Proposition 1.9. 1. L1 ⊗ L2 is consistent iff L1 and L2 are consistent.

2. If L1 and L2 are consistent, then L1 ⊗ L2 is conservative over L1 and L2.

3. If L1 ⊗ L2 is consistent and Kripke complete, then L1 and L2 are Kripke complete.
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2 Logical invariance

This section contains some important basic properties of tensor products. The results of this
section were obtained in [Has00].

Theorem 2.1. Let A, A′, B, B′ be classes of 1-modal algebras, and Log(A) = Log(A′),
Log(B) = Log(B′). Then Log(A⊗B) = Log(A′ ⊗B′).

Corollary 2.2. Let C1, C2 be classes of 1-modal algebras or general frames, L1 = Log(C1),
L2 = Log(C2). Then L1 ⊗ L2 = Log(C1 ⊗ C2). In particular, if L1 and L2 are Kripke complete
then for any classes of Kripke frames F1,F2 such that Li = Log(Fi), i = 1, 2, we have that
L1 ⊗ L2 = Log(F1 ⊗ F2) is a logic of a class of chequered frames.

For classes of Kripke frames F, G, F × G := {F × G | F ∈ F, G ∈ G}. For logics L1,L2,
L1×finL2 := Log(Frfin(L1)×Frfin(L2)), where Frfin(L) denotes the class of all finite L-frames.
Recall that L has the finite model property (the fmp, for short) if L = Log(Frfin(L)). A logic
L1 × L2 has the product fmp if L1 × L2 = L1 ×fin L2.

Corollary 2.3. 1. For any L1, L2, L1⊗L2 = Log((FL1
, AL1

)⊗(FL2
, AL2

)), where FL denotes
the canonical frame of a logic L, and (FL, AL) denotes its general canonical frame.

2. If L1, L2 are canonical, then L1 ⊗ L2 = Log(FL1
⊗ FL2

).

3. If L1, L2 are Kripke complete, then L1 × L2 ⊆ L1 ⊗ L2 ⊆ L1 ×fin L2.

4. Let L1, L2 be Kripke complete logics. L1 × L2 has the product fmp iff

L1 × L2 = L1 ⊗ L2 = L1 ×fin L2;

it follows that if L1 × L2 has the product fmp, then for any Fi such that Li = Log(Fi),
i = 1, 2, we have L1 × L2 = Log(F1 × F2).

5. Suppose L1 and L2 have the fmp. Then L1 ⊗ L2 = L1 ×fin L2, and

L1 × L2 has the product fmp iff L1 × L2 = L1 ⊗ L2.

It follows that usually modal and tensor products are different. In fact, modal products of
logics with the fmp in many cases do not have the product fmp [GKWZ03]. Rare exceptions
are K×K and S5× S5 [GS98], [GKWZ03]. Further on we describe some other cases.

3 Filtrations of chequered models

Recall the standard construction of filtration of Kripke models [CZ96].

Definition 3.1. Let M = (W,R, θ) be a model, Φ a set of formulas.
Consider the equivalence relation ∼Φ:= {(x, x′) | ∀ϕ ∈ Φ (M, x � ϕ⇔ M, x′ � ϕ)}.
[x] denotes the equivalence class of x w.r.t. ∼Φ. Consider relations RM,Φ

min and RM,Φ
max on the

quotient set W/∼Φ:

RM,Φ
min := {([x], [y]) | ∃x′ ∈ [x]∃y′ ∈ [y] x′Ry′},

RM,Φ
max := {([x], [y]) | ∀ϕ(♦ϕ ∈ Φ&M, y � ϕ⇒ M, x � ♦ϕ)}.

They are called the minimal and the maximal filtrating relations. A model M̄ = (W/∼Φ, R̄, θ̄)

is called a filtration of M through Φ, if for any p ∈ Φ θ̄(p) = {[x] | M, x � p}, and RM,Ψ
min ⊆ R̄ ⊆

RM,Ψ
max.
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For models M1, M2, the notation M1, x ∼Φ M2, y means ∀ϕ ∈ Φ(M1, x � ϕ⇔ M2, y � ϕ).

Lemma 3.2 (Filtration Lemma). [CZ96] Consider a set of formulas Φ closed under subformu-
las. If M̄ is a filtration of M through Φ, then M, x ∼Φ M̄, [x] for any x in M.

Definition 3.3. [Gab72] A logic L admits filtration if it is Kripke complete and for any L-
frame (W,R), for any model M = (W,R, θ), and for any finite set of formulas Ψ closed under
subformulas, there exists a filtration (W̄ , R̄, η̄) of M through Ψ such that (W̄ , R̄) is an L-frame.

It is well known that many logics admit filtration (for example, K,K4,T,S4,S5).
It follows that if a logic L admits filtration, then it has the fmp. Moreover, to check the

L-satisfiability of a formula ϕ, it is sufficient to consider L-frames of cardinality not greater then
2#ϕ, where #ϕ denotes the cardinality of sub(ϕ), sub(ϕ) denotes the set of all subformulas of
ϕ. Our aim is to formulate an analogous result for chequered frames.

Definition 3.4. Consider Kripke frames F1,F2, Fi = (Wi, Ri), a model M = (F1 × F2, θ), and
a set of formulas Φ. Consider relations ∼i on Wi:

∼1 := {(x, x′) | (x, y) ∼Φ (x′, y) for all y ∈W2};
∼2 := {(y, y′) | (x, y) ∼Φ (x, y′) for all x ∈W1}.

The pair (∼1,∼2) is called the Φ-granulation of M. Obviously, ∼i is an equivalence relation on
Wi.

Proposition 3.5. Consider a model M = ((W1, R1)⊗ (W2, R2), θ), a finite set of formulas Φ,
and the Φ-granulation (∼1,∼2). Then the quotient sets W1/∼1 and W2/∼2 are finite.

Lemma 3.6. Suppose L admits filtration, F,G are Kripke frames, F � L, ϕ is true at some
point in a chequered model M = (F⊗G, θ), (∼1,∼2) is the sub(ϕ)-granulation of M. Then there
exists a Kripke frame F̄ such that F̄ � L, ϕ is satisfiable in F̄ × G, and the cardinality of F̄ is
not greater than

2#ϕ·|W2/∼2|.

Unlike the usual filtration technique, this lemma does not estimate the size of a counter-
model, since the upper bound depends on W2/∼2. However, in some cases it implies decidability
results for tensor and modal products.

Theorem 3.7. If L1 is Kripke complete, L2 is tabular, then L1 × L2 = L1 ⊗ L2.

Proof. L1×L2 is complete with respect to the class C = {F×G | F � L1, G � L2, G is rooted},
see e.g. [GKWZ03]. If G � L2 and G is rooted, then by tabularity of L2, G is finite [CZ96]. So
all frames in the class C are chequered, and L1 × L2 = L1 ⊗ L2.

Hence we readily obtain the following properties of modal products with tabular logics.

Corollary 3.8. For a class of frames F, and a finite frame G, Log(F)×Log(G) = Log(F×{G}).
Corollary 3.9. The modal product of tabular logics is tabular: if F and G are finite, then

Log(F)× Log(G) = Log(F× G).

Theorem 3.10. Suppose L1 admits filtration, L2 is tabular. Then:

1. L1 × L2 has the exponential product fmp;

2. if the finite frame problem is decidable for L1, then L1 × L2 is decidable.

Proof. Let L2 = Log(G) for a finite G of size n. By Lemma 3.6, ϕ is L1 × L2-satisfiable iff ϕ is
satisfiable in a frame F× G, where F � L1 and the size of F is not greater than 2#ϕ·n.

202



Tensor products of modal logics I. Shapirovsky, V. Shehtman

4 Open questions

The above considerations can be easily transferred to the polymodal case. In particular, logical
invariance holds for the polymodal case. One of the corollaries is associativity of the tensor
products. Note that this question for modal products is open, see e.g. [Kur07, p. 877].

Still there are many open questions about tensor products of modal logics, for example:

1. Does Kripke completeness transfer from L1 and L2 to L1 ⊗ L2?

2. Do there exist L1,L2 such that L1 × L2=L1 ⊗ L2, but L1 × L2 lacks the product fmp and
L1,L2 are non-tabular?

3. Do there exist L1,L2 such that L1 × L2 is undecidable, but L1 ⊗ L2 is decidable?

4. Do there exist L1,L2 such that L1×L2 is not finitely axiomatizable, but L1⊗L2 is finitely
axiomatizable?

5. Suppose that L1 is decidable, L2 is tabular; is L1 ⊗ L2(=L1 × L2) decidable?
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