
Formal Requirements Capturing using VRS

system

Alexander Letichevsky1, Alexander Kolchin1, Oleksandr Letychevskyy jr.1,

Stepan Potiyenko1, Vlad Volkov1 and Thomas Weigert2

1 Glushkov Institute of Cybernetics, Ukraine
2 Missouri University, USA

We present system VRS (Verification of Requirements Specifications) designed for develop-
ment of formal specification and verification. This system has been developed by VRS Kiev
group during last 10 years to support requirements capturing in Motorola and then Uniquesoft
projects. As its input language VRS uses parameterized MSCs (Message Sequence Charts)
with pre- and postconditions interpreted on the states of an environment with inserted agents.
Such small MSC we call : Basic Protocols. Semantically basic protocol can be considered as a
statement ∀x(α →< u > β) of some kind of dynamic logic [2]. In this statement x is a (typed)
list of parameters, α and β are precondition and postcondition, correspondingly, and u is a
process defined by the MSC diagram.

There are three main methods of verification in VRS supported by appropriate tools. The
system provides static requirement checking on the base of automatic theorem proving; symbolic
and deductive model checking, and generation of traces for testing with different coverage
criteria.

Concrete trace generator (CTG) of VRS system provide checking the reachability of
properties, detecting deadlocks, non-determinisms, safety violations, unreachable requirements,
usage of uninitialized attributes and admitted range attribute overflow on a base of a concrete
model of formal requirement specification in the form of basic protocols. The problems above
are solved by means of generating traces reachable from the initial state of a model. The
generated traces can also be used for test generation.

Symbolic Trace Generator (STG) deals with the same iput data as for CTG. The
difference is that an abstract model of a system specified by a set of basic protocols is considered
instead of a concrete one. The state of a model has the form γ[u1...un] where γ is a formula over
attributes which coincides with the attributed label of the environment state and u1...un are
agents inserted into environment. The deductive system is used for checking the applicability
of basic protocol and predicate transformer is used to obtain the next state.

Static requirement checking (SRC) tools allow to solve verification problems without
generating traces and exploring the state space. The deductive system is based on the prover
for the first order predicate calculi with equality extended by some special provers and solvers.
THe last ones support proving and solving linear numerical constraints for integers (Presburger
algorithm) and for reals (Fourier-Motzkin algorithm), proving and solving formulas for enumer-
ated and symbolic data types. There is a possibility to generate invariants then SRC technique
can be improved by iterative steps in sense that if F is not safety then VRS can generate an
invariant G, improve safety property to F&G, and check safety repeatedly.

In the last years this approach has been successfully applied to the problems of the veri-
fication of requirement specifications [1, 3] for about 30 distributed concurrent systems from
different subject domains including Telecommunications, Telematics, distributed computing
and others.

148 A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 148–149



Formal Requirements Capturing . . . Letichevsky, Kolchin, Letychevskyy jr., Potiyenko, Volkov, and Weigert

References

[1] A. Letichevsky Jr. V. Volkov S. Baranov V.Kotlyarov T. Weigert. A.Letichevsky, J. Kapitonova.
Basic protocols, message sequence charts, and the verification of requirements specifications. Com-

puter Networks, (47):662–675, 2005.

[2] Dexter Kozen David Harel and Jerzy Tiuryn. Dynamic Logic, page 400, 2000.

[3] V. Kotlyarov A. Letichevsky S. Baranov, C. Jervis and T. Weigert. Leveraging uml to deliver correct
telecom applications. In L. Lavagno, G. Martin, and B.Selic, editors. UML for Real: Design of

Embedded Real-Time Systems. Kluwer Academic Publishers, Amsterdam, 2003.

149


