Extensions of ordering sets of states from effect algebras onto their MacNeille completions

Jiří Janda¹ and Zdenka Riečanová²

 ¹ Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic. 98599@mail.muni.cz
² Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak

University of Technology, Ilkovičova 3, SK-812 19 Bratislava, Slovak Republic. zdenka.riecanova@stuba.sk

Keywords: effect algebra, MV-effect algebra, MacNeille completion, positive linear operators in Hilbert space, Hilbert space effect-representation.

Mathematics Subject Classification (2000): 06F05, 03G25, 81P10, 08A55.

1 Introduction

The notion of an effect algebra was presented by Foulis and Bennett in (Foulis, Bennett, [3] 1994). The definition was motivated by giving an algebraic description of a logic of quantum effects $\mathcal{E}(\mathcal{H})$, i.e. the set of all positive self-adjoint operators between zero and identity operator I in a separable complex Hilbert space \mathcal{H} . On $\mathcal{E}(\mathcal{H})$ was defined a partial operation $A \oplus B = A + B$ iff $A + B \leq I$ with meaning of an orthogonal disjunction. Quantum effects in studies of quantum mechanics correspond to yes-no measurements that may be unsharp. An equivalent structure called *D*-poset has been introduced by Kôpka and Chovanec ([7] 1992, [6] 1994).

Definition 1 ([3]). A partial algebra $(E; \oplus, 0, 1)$ is called an *effect algebra* if $0, 1 \in E$ are two distinguished elements and \oplus is a partially defined binary operation on E which satisfy the following conditions for any $x, y, z \in E$:

- (Ei) $x \oplus y = y \oplus x$ if $x \oplus y$ is defined,
- (Eii) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,
- (Eiii) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$ (we put x' = y),
- (Eiv) if $1 \oplus x$ is defined then x = 0.

In every effect algebra E a relation \leq can be defined by

(PO) $x \leq y$ iff $x \oplus z$ is defined and $x \oplus z = y$ for any $x, y, z \in E$.

Then \leq is a partial order on E.

Definition 2. Let $(E; \oplus, 0_E, 1_E)$ be an effect algebra and $\omega : E \to [0, 1] \subseteq \mathbb{R}$ be a map such that $\omega(1_E) = 1$ and $\omega(x \oplus y) = \omega(x) + \omega(y)$ whenever $x \oplus y$ is defined. Then we call ω a state on E. A set \mathcal{M} of states on E is called an *ordering set of states* if for any $x, y \in E$ condition $x \leq y$ iff $\omega(x) \leq \omega(y)$ for all $\omega \in \mathcal{M}$ is satisfied.

101

N. Galatos, A. Kurz, C. Tsinakis (eds.), TACL 2013 (EPiC Series, vol. 25), pp. 101–104

Extensions of Ordering Sets of States

Assume that $(E; \oplus, 0, 1)$ is an effect algebra possessing an ordering set $\mathcal{M} = \{\omega : E \to [0, 1] \mid \omega \text{ is a state on } E\}$ of states on E. Let $l_2(\mathcal{M}) = \{(x_\omega)_{\omega \in \mathcal{M}} \mid x_\omega \in \mathbb{C}, \sum_{\omega \in \mathcal{M}} |x_\omega|^2 < \infty\}$ be a complex Hilbert space with the usual inner product $\langle (x_\omega)_{\omega \in \mathcal{M}}, (y_\omega)_{\omega \in \mathcal{M}} \rangle = \sum_{\omega \in \mathcal{M}} \overline{x_\omega} \cdot y_\omega$.

In [9] it was proved that: Every effect algebra $(E; \oplus, 0, 1)$ with ordering set \mathcal{M} of states on E can be EA-embedded into the Hilbert space effect algebra $\mathcal{E}(l_2(\mathcal{M})) = [\mathbf{0}, I]_{\mathcal{B}^+(l_2(\mathcal{M}))}$. We call this embedding a Hilbert space effect-representation of E and E is called Hilbert space effect-representation.

It is well known that for every poset (P, \leq) there exists a Dedekind-MacNeille completion MC(P), that is a complete lattice in which can P be order densely embedded. For the case of effect algebras, as partially ordered sets with respect to induced partial order, it may happened that for an effect algebra E a partial sum $\hat{\oplus}$ cannot be defined in MC(E) in the way that its restriction on E coincide with partial sum \oplus on E (see [8]). Whenever such partial operation $\hat{\oplus}$ exists on MC(E), we call $\hat{E} = (MC(E); \hat{\oplus}, 0, 1)$ an effect algebraic MacNeille completion (shortly EA-MacNeille completion).

We consider the problem for an effect algebra E which has an effect algebraic MacNeille completion \hat{E} and has a Hilbert space representation in $\mathcal{E}(l_2(\mathcal{M}))$ as well, in which cases we can represent \hat{E} in the same Hilbert space operator effect algebra $\mathcal{E}(l_2(\mathcal{M}))$. That is when the ordering set \mathcal{M} of states on E can be be extended to an ordering set $\hat{\mathcal{M}}$ of states on \hat{E} , hence $|\mathcal{M}| = |\hat{\mathcal{M}}|$ and $\mathcal{E}(l_2(\mathcal{M})) = \mathcal{E}(l_2(\hat{\mathcal{M}}))$.

2 Hilbert space effect-representation of an effect algebra and its EA-MacNeille completion

The following theorem states, that if extension of the system of the states on EA-MacNeille completion exists, than it preserves the ordering property.

Theorem 1. [5] Assume that $(E; \oplus, 0, 1)$ is an effect algebra possessing an ordering set \mathcal{M} of states on E. Further let E has an EA-MacNeille completion $\hat{E} = (MC(E), \oplus, 0, 1)$ and let E be identified with $\varphi(E)$, where $\varphi : E \to \hat{E}$ is supremum and infimum dense effect algebraic embedding of E into \hat{E} . Let for every state $\omega \in \mathcal{M}$ there exists an extension to a state $\hat{\omega}$ on \hat{E} . Then $\hat{\mathcal{M}} = \{\hat{\omega} \mid \hat{\omega} \text{ is a state on } \hat{E}, \hat{\omega}|_E = \omega \in \mathcal{M}\}$ is an ordering set of states on \hat{E} .

Corollary 1. [5] Under the assumptions of Theorem 1 on effect algebra $(E; \oplus, 0, 1)$ and its EA-MacNeille completion $\hat{E} = (MC(E), \hat{\oplus}, 0, 1)$, the following conditions are satisfied:

- (i) Effect algebras E and \hat{E} are Hilbert space effect-representable.
- (ii) l₂(M) = l₂(Â) and E and its EA-MacNeille completion Ê can be both embedded into
 \$\mathcal{E}(l_2(Â)) = [0, I]_{l_2(Â)}\$.
- (iii) $\varphi(\hat{E})$ is an EA-MacNeille completion of $\varphi(E)$ where $\varphi : \hat{E} \to \mathcal{E}(l_2(\hat{\mathcal{M}}))$ is the EAembedding in (ii) and $\varphi(E) \subseteq \varphi(\hat{E})$.

Elements of an effect algebra $(E; \oplus, 0, 1)$ are called *compatible* (we write $a \leftrightarrow b$) if there exists $a_1, c, b_1 \in E$ such that $a_1 \oplus c \oplus b_1$ is defined in E and $a = a_1 \oplus c, b = b_1 \oplus c$. A lattice effect algebra E with $a \leftrightarrow b$ for all $a, b \in E$ is called an *MV*-effect algebra and can be organized into an MV-algebra.

Theorem 2. [5] Let E be an Archimedean MV-effect algebra and \mathcal{M} be an ordering set of (o)-continuous states on E. Then

- (i) Every state $\omega \in \mathcal{M}$ can be extended to a state $\hat{\omega}$ on the EA-MacNeille completion \hat{E} of E.
- (ii) $\hat{\mathcal{M}} = \{\hat{\omega} \mid \hat{\omega} \text{ is a state on } \hat{E}, \, \hat{\omega}_{|E} = \omega \in \mathcal{M}\}$ is an ordering set of states on \hat{E} .

Corollary 2. [5] Every Archimedean MV-effect algebra E and its EA-MacNeille completion \hat{E} have Hilbert space effect-representations in the same Hilbert space $l_2(\hat{\mathcal{M}})$ where $\hat{\mathcal{M}}$ is an ordering set of states on \hat{E} extending states form E.

2.1 Atomic lattice effect algebras

Theorem 3. [5] Let $(E; \oplus, 0, 1)$ be an (o)-continuous Archimedean atomic lattice effect algebra with an ordering set \mathcal{M} of (o)-continuous states. Let E has an EA-MacNeille completion \hat{E} . Then

- (i) To every $\omega \in \mathcal{M}$ there exists a unique (o)-continuous state $\hat{\omega}$ on \hat{E} such that $\hat{\omega}_{|E} = \omega$.
- (ii) $\hat{\mathcal{M}} = \{\hat{\omega} \mid \hat{\omega} \text{ is a state on } \hat{E}, \, \hat{\omega}_{\mid E} = \omega \in \mathcal{M}\}$ is an ordering set of states on \hat{E} .
- (iii) Both effect algebras E and \hat{E} have the Hilbert space effect-representations in $l_2(\mathcal{M}) = l_2(\hat{\mathcal{M}})$.

Theorem 4. [5] An Archimedean atomic distributive effect algebra $(E; \oplus, 0, 1)$ has a Hilbert space effect-representation if and only if $(E; \oplus, 0, 1)$ is an MV-effect algebra if and only if $(E; \oplus, 0, 1)$ is isomorphic to a sub-direct product of finite chains.

A lattice effect algebra $(E; \oplus, 0, 1)$ is called *modular* if and only if E as a poset is a modular lattice.

Theorem 5. [5] An Archimedean atomic modular lattice effect algebra $(E; \oplus, 0, 1)$ which is isomorphic to a sub-direct product of finite chains and modular diamonds as well as its MacNeille completion are Hilbert space effect-representable effect algebras.

Acknowledgement 1. Jiří Janda kindly acknowledges the support by Masaryk University, grant 0964/2009 and ESF Project CZ.1.07 /2.3.00/20.0051 Algebraic Methods in Quantum Logic of the Masaryk University. Zdenka Riečanová kindly acknowledges the support by the Science and Technology Assistance Agency under the contract APVV-0178-11 Bratislava SR, and VEGA-grant of MŠ SR No. 1/0297/11.

References

- Blank J., Exner P., Havlíček M., Hilbert Space Operators in Quantum Physics, 2nd edn. Springer, Berlin 2008.
- [2] Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht/Ister Science, Bratislava, 2000.
- [3] Foulis D. J., Bennett M. K., Effect Algebras and Unsharp Quantum Logics, Found. Phys., 24 (1994), 1331–1352.
- [4] Gudder S., *D-algebras*, Found. Phys. 26, no. 6, (1996), 813-822.
- [5] Janda, J., Riečanová Z., Extensions of ordering sets of states from effect algebras onto their Mac-Neille completions Inter. J.Theor. Phys., DOI 10.1007/s10773-013-1532-4.
- [6] Kôpka F., Chovanec F. D-posets, Math. Slovaca 44, 21, (1994).

Extensions of Ordering Sets of States

- [7] Kôpka F. D-posets of Fuzzy Sets, Tatra Mt. Math. Publ. 1, (1992), pp. 83-87.
- [8] Riečanová Z., MacNeille Completions of D-posets and Effect Algebras, Inter. J. Theor. Phys. 39, (2000), No.3., pp. 859–869.
- [9] Riečanová Z, Zajac M., Hilbert Space Effect-Representations of Effect Algebras, Rep. Math. Phys. 70, (2012), No. 2, pp. 283–290.