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Abstract

We provide the first proof of confluence for cut elimination in multiplicative-exponential
linear logic proof-nets that is not based on Newman’s lemma or strong normalization,
not even indirectly. To achieve our goal, we take inspiration from Tait and Martin-Lof’s
method based on parallel reduction for the lambda-calculus, even though the wilder realm
of untyped proof-nets makes the proof subtler and more challenging.

1 Introduction

A rewriting system is confluent if, for every term 𝑡, any two reduction sequences from 𝑡 can
be extended with some additional (possibly none) reduction steps to reach a common result.
Confluence simplifies the study of the convergence of programs (represented by terms in the
rewriting system) because it ensures that the ordering in which reductions are chosen does not
make a difference to the result: of any two possible redexes in a term, the reduction of one
instead of the other will never preclude the possibility of eventually reaching the same final
result (a normal form), if any. In a way, confluence ensures the modularity of computation.

The Curry-Howard correspondence [6, 19] relates proofs to programs, and cut elimination
(a proof rewriting technique to show the coherence of a proof system) to program execution.
Thus, confluence of cut elimination has a computational relevance. It is well-known that the
𝛽-reduction of the 𝜆-calculus is confluent, both in the typed and the untyped (hence non normal-
izing) settings: by the Curry-Howard correspondence, this gives confluence for cut elimination
in natural deduction for intuitionistic logic. Cut elimination in intuitionistic sequent calculus
LJ is also essentially confluent, but only up to structural commutations of rules due to the
more bureaucratic nature of sequent calculus; by contrast, cut elimination in classical sequent
calculus LK is fundamentally non confluent.

Girard [14] introduced linear logic (LL), a refinement of LJ and LK allowing a finer analysis of
the use of hypotheses/resources in proofs/programs via the introduction of two dual modalities,
the exponentials ! and ?. In LL (more precisely, in its one-sided sequent presentation) a proof
of a formula of the form !𝐴 (representing a resource available at will in cut elimination) can
be deduced from a proof of 𝐴, provided the other formulas in the conclusion sequent are all of
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the form ?𝐵. Girard also gave a graphical syntax to represent LL proofs via special directed
graphs whose edges are labeled by LL formulas: proof nets. These are the analogue of natural
deduction for LL, in the sense that they quotient out the bureaucracy of sequent calculus: the
confluence of cut elimination is thus naturally expressed on proof nets. In LL proof nets, a
formula !𝐴 is introduced by means of a “box” marking the context of ?-formulas. Boxes are the
only sub-graphs of a proof net that can be erased or duplicated at will during cut elimination.

Proof nets belong to a wider set of directed graphs labeled by LL formulas: proof structures.
Not all proof structures are proof nets (that is, represent a proof in LL), but a geometrical
criterion characterizes all and only the proof nets among the proof structures. Such a criterion,
called AC boils down to an acyclicity property of proof structures. Cut elimination steps for
LL can be defined on proof structures. And being AC (which is preserved by cut elimination
steps) guarantees that cut elimination has good rewriting properties, such as strong normaliza-
tion (every reduction sequence is finite), confluence and the fact that normal forms (the proof
structures where no cut elimination step can be applied) are cut-free [14, 7, 11, 21].

Cut elimination actually generalizes to untyped proof structures, where edges are not labeled
by LL formulas: for AC untyped proof structures, cut elimination is still confluent, and hence
it has a clear computational meaning (despite their lack of a logical content), but weak—and
hence strong—normalization fails (see [21, Fig. 9–10]) and normal forms are not necessarily cut-
free [21, 10]. However, dropping AC, cut elimination for (typed or untyped) proof structures is
not confluent (a counterexample is in [21, Figure 12]), not even in the multiplicative-exponential
fragment of LL (MELL), in which the untyped 𝜆-calculus can be encoded.

Goal. In the literature, for instance [7, 21], all the proofs of confluence of cut elimination for
(typed or untyped) AC proof structures rely on Newman’s lemma, which states that a reduction
is confluent if it is strongly normalizing and locally confluent (that is, whenever two distinct
reduction steps are applied to the same term, there is a term that is reachable from both, by
applying some additional—possibly none—reduction steps). Newman’s lemma can be applied
directly to cut elimination for typed AC proof structures, but not to cut elimination for the
untyped ones, since it is not strongly normalizing, as we have mentioned. In the untyped
case, Newman’s lemma is applied to some variant of cut elimination (finite development [7], or
some subsets of the cut elimination steps that are separately strongly normalizing [21, 2]), and
confluence of cut elimination is then deduced from confluence of the variant.

Our goal is to give a proof of confluence for MELL AC untyped proof structures that is not
based on Newman’s lemma and strong normalization, not even indirectly. We have chosen:

• MELL because it is expressive enough and its proof structures are easier to define than in LL;

• AC proof structures because otherwise confluence fails, as we have mentioned;

• untyped proof structures because cut elimination is strongly normalizing in the typed setting,
and we do not want to use this property, not even surreptitiously; of course, the fact that
our proof works for untyped proof structures means that it also works in the typed case.

This way, we disentangle confluence from strong normalization for MELL AC proof structures,
which is a conceptual achievement and a technical simplification of the proof of confluence.

Method. To achieve our goal we use a basic result in rewriting theory. Given a reduction
→ and its reflexive-transitive closure →∗ (the iteration of → an arbitrary—possibly zero—
number of times), to prove that → is confluent it is enough to have a reduction d such that
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Figure 1: A chain of exponential cuts (box/box).
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Figure 2: A chain of exponential cuts (box/box and box/contraction).

→ ⊆ d ⊆ →∗ and d is diamond : whenever two distinct reduction steps can be applied to the
same term, there is a term that is reachable from both, by applying a single reduction step.

Let us see how this method had been successfully applied to the untyped 𝜆-calculus: there,
𝛽-reduction→𝛽 is neither strongly normalizing (indeed, 𝛿𝛿→𝛽 𝛿𝛿→𝛽 . . . for 𝛿 = 𝜆𝑥.𝑥𝑥) nor dia-
mond. For a counterexample to the diamond, consider the span below, where 𝑡 has two redexes:

𝑡1 = (𝜆𝑥.𝑥𝑥)𝑧 𝛽← 𝑡 = (𝜆𝑥.𝑥𝑥) ((𝜆𝑦.𝑦)𝑧) →𝛽 ((𝜆𝑦.𝑦)𝑧) ((𝜆𝑦.𝑦)𝑧) = 𝑡2

The terms 𝑡1 and 𝑡2 have a common reduct 𝑧𝑧, but it cannot be reached in one single →𝛽 step.
Indeed, the step 𝑡 →𝛽 ((𝜆𝑦.𝑦)𝑧) ((𝜆𝑦.𝑦)𝑧) duplicates the rightmost redex in 𝑡.

To prove that →𝛽 is confluent, Tait and Martin-Löf solved the problem introducing a tech-
nique, later simplified by Takahashi [23], based on parallel 𝛽-reduction ⇒𝛽: in a single step,
parallel 𝛽-reduction can reduce an arbitrary number (possibly zero) of existing redexes in a term.
This leads to the desired properties: ⇒𝛽 is diamond and→𝛽 ⊆ ⇒𝛽 ⊆ →∗𝛽. Note how⇒𝛽 solves

the problem presented above in just one (parallel) step: (𝜆𝑥.𝑥𝑥)𝑧 ⇒𝛽 𝑧𝑧 𝛽⇐ ((𝜆𝑦.𝑦)𝑧) ((𝜆𝑦.𝑦)𝑧).
This proof of confluence of →𝛽 is one of the simplest and most elegant: it does not need to
resort to Newman’s lemma, and only relies on the two key properties of ⇒𝛽.

Our approach to prove confluence of cut elimination for MELL AC untyped proof structures
is then to adapt the notion of parallel reduction to this framework, in the spirit of what was
done in [5] for the multiplicative fragment of LL (MLL).

Challenges. Choosing the right syntax for proof structures to obtain the diamond property
for parallel reduction turned out to be a nontrivial problem. Examples in Figures 1 and 2,
both involving the exponential cut elimination steps, show how the choice of standard syntax
(with different ?-nodes for dereliction, weakening and contraction) prevents parallel reduction
from being diamond. In Figure 1 the topmost proof structure can be reduced to the one on the
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Figure 3: 𝑄 and 𝑃 are MELL proof structures: 𝑃 is AC but 𝑄 is not. 𝑃 can be decomposed into
the prestructure 𝐵 (the content of the green box of 𝑃) and the prestructure 𝐶 (the context).

right, eliminating the box/box cut 2, or in the one on the left, eliminating the box/box cuts
1 and 3: the only way to close this pair is to reduce to the net where the four boxes are fully
nested, but to do so requires boxes to cross more than one border in a single step. In Figure 2
the topmost proof structure has a box/box cut 1 and a box/contraction cut 2 : to be diamond,
parallel reduction from the right proof structure needs to duplicate the violet box and to put
each copy inside the pink boxes.

These problems vanish by choosing a different syntax, namely the one introduced by Regnier
[22, 9] with generalized ?-nodes (an arbitrary number—possibly zero—of premises of type 𝐴,
one conclusion of ?𝐴). Exponential cut elimination simultaneously duplicates and opens boxes
making them cross arbitrarily many box borders: exactly what we need.

Another difficulty is the fact that, unlike 𝜆-terms, (typed or untyped) proof structures are
not defined inductively. A 𝜆-term 𝑡 can be seen as a tree whose root allows one to identify its
subterms, providing a decomposition of 𝑡 so that parallel cut elimination can be easily defined
inductively. On the other hand, an MELL proof structure is a graph without a clear notion
of root, thus it is not evident how to decompose it, so as to define parallel cut elimination
similarly to the 𝜆-calculus. As boxes represent sub-proof structures, we exploit them: the idea
is to decompose an MELL proof structure 𝐺 with a box of content 𝐵, as the union of 𝐵 and a
context 𝐻 in which 𝐵 is pluggable in a specific way. However, in the syntax with generalized
?-nodes the content of a box is not necessarily a proof structure. In 𝑃 in Figure 3, the content
of the green box is the graph 𝐵 in Figure 3: the blue box in 𝐵 has a conclusion (denoted by ∗
in the figure) that is not plugged to a ?-node: this is not an MELL proof structure. Thus we
consider a more general notion, called MELL prestructures: in these, exactly one conclusion of
each box is linked to a !-node but the other conclusions are either linked to ? (as is required in
proof structures), or left dangling as conclusions of the prestructure (as in the above example).

A third challenge comes with the fact that not every choice of a box is suitable for the purpose
of defining parallel cut elimination. It is necessary to identify a box that is computationally
independent of its context, meaning that cut elimination outside of the box does not change
its content. In the 𝜆-calculus the inductive term syntax eases the identification of an external
redex, but this is trickier in MELL (pre)structures because of their inherent parallelism as graphs.
Anyway, it is still possible to identify dependencies between boxes. A box 𝐵1 (computationally)
depends on a box 𝐵2 if one of the non-! conclusions of 𝐵1 is cut with the !-node of 𝐵2. To
define parallel cut elimination for MELL prestructures, we need to identify a box that has no
dependencies with other boxes, that is, none of its non-! conclusions is itself a premise of a
cut. We say that such a box is external. For example, in the proof structure 𝑃 in Figure 3,
the green box is external while the violet is not; in the proof structure 𝑄 in Figure 3, both the
green and violet boxes are not external. Again we can find an analogy with the 𝜆-calculus. In
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particular, consider the inductive step below in the definition of parallel 𝛽-reduction:

𝑠⇒𝛽 𝑠′ 𝑢 ⇒𝛽 𝑢′
★

(𝜆𝑥.𝑠)𝑢 ⇒𝛽 𝑠′ [𝑢′/𝑥]

Let 𝑡 be the MELL untyped proof structure encoding the 𝜆-term 𝑡. The external redex (𝜆𝑥.𝑠)𝑢
fired in ★ corresponds to a cut between a conclusion of 𝜆𝑥.𝑠 and the !-node in the border of
a box containing the translation of 𝑢. This box is always external. In every proof structure
that is the image of some 𝜆-term, there always exists an external box, which is not necessarily
unique. More generally, what about MELL (untyped) proof structures, not necessarily in the
image of the translation from the 𝜆-calculus? A condition that guarantees the existence of an
external box is being AC. In Figure 3, the proof structure 𝑃 is AC and contains one external
box, the green one, while 𝑄 is not AC and is with no external box.

To properly define parallel cut elimination, we also need a formal description of the expo-
nential cut elimination step. We achieved this by defining a general notion of substitution of
prestructures 𝐻 [𝐵/𝑥]: this duplicates a prestructure 𝐵 and cuts its copies against a set 𝑥 of
conclusions of 𝐻. Considering an exponential cut in some structure 𝐺 between a box and a
?-node, and writing 𝐵 for the content of the box and 𝐻 for the context of the cut (that is, 𝐺
with the cut, the box and the ?-node removed), 𝐻 [𝐵/𝑥] is the result of eliminating the cut.

Summing up. Finally, we can define the analogue of ★ for parallel cut elimination on MELL
AC untyped prestructures as follows (this is the key ingredient in the definition):

𝐻 ⇒ 𝐻′ 𝐵⇒ 𝐵′

𝐻 [𝐵/𝑥] ⇒ 𝐻′ [𝐵′/𝑥]

Thanks to this, we can prove confluence of cut elimination for MELL AC untyped prestruc-
tures, in a way similar to Tait–Martin-Löf’s technique for the 𝜆-calculus [23].

2 Notations and Preliminaries on Hypergraphs

Notations. Let 𝑋 be a set. The cardinality of 𝑋 is |𝑋 |, and the powerset of 𝑋 is P(𝑋). A
function is empty if its domain is the empty set ∅. Given 𝑓 : 𝑋 → 𝑌 , 𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 , we set:

• 𝑓 ↾𝑋′ : 𝑋 ′ → 𝑌 is the restriction of 𝑓 to 𝑋 ′, i.e. 𝑓 ↾𝑋′ (𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 ′;

• 𝑓 (𝑋 ′) = { 𝑓 (𝑥) | 𝑥 ∈ 𝑋 ′} is the image of 𝑋 ′ via 𝑓 ;

• 𝑓 −1 (𝑌 ′) = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ∈ 𝑌 ′} is the preimage of 𝑌 ′ via 𝑓 ; and 𝑓 −1 (𝑦) = 𝑓 −1 ({𝑦}) for 𝑦 ∈ 𝑌 ;

• if 𝑔 : 𝑊 → 𝑍 with 𝑋 ∩𝑊 = ∅, then 𝑓 ∪ 𝑔 : (𝑋 ∪𝑊) → (𝑌 ∪ 𝑍) is the union of 𝑓 and 𝑔, i.e.
( 𝑓 ∪ 𝑔) (𝑎) = 𝑓 (𝑎) if 𝑎 ∈ 𝑋 and ( 𝑓 ∪ 𝑔) (𝑎) = 𝑔(𝑎) if 𝑎 ∈ 𝑊 .

For a partial function 𝑓 : 𝑋 ⇀ 𝑌 , its domain and image are noted dom( 𝑓 ) and im( 𝑓 )
respectively. Given 𝑅 ⊆ 𝐴×𝐵 and 𝐴 ⊆ 𝐴, the restriction of 𝑅 to 𝐴 is 𝑅↾

�̂�
= {(𝑎, 𝑏) ∈ 𝑅 | 𝑎 ∈ 𝐴}.

We identify nested tuples with their flattened version, e.g. (𝑎, 𝑏, 𝑐) = (𝑎, (𝑏, 𝑐)) = ((𝑎, 𝑏), 𝑐).
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Hypergraphs. For technical convenience, we represent LL proof structures by (directed, la-
beled, ordered) hypergraphs, instead of graphs usually used in the LL literature [9, 11, 20, 10, 21,
15, 17]. We recall some basic notions about hypergraphs, as they may differ from the literature
[12, 13]. We fix a countably infinite set V of names for the nodes and edges of our hypergraphs.

Definition 2.1 (Hypergraph). A (undirected) hypergraph is a triple (N , E, hyper), where
N ⊆ V and E ⊆ V are disjoint finite sets of nodes and (hyper)edges respectively, hyper : E →
P(N) ∖ {∅} and N =

⋃
𝑒∈E hyper(𝑒). If 𝑛, 𝑚 ∈ hyper(𝑒) for some 𝑒 ∈ E, then 𝑒 links 𝑛 to 𝑚.

This definition allows multiple edges (hyper may not be injective) and dangling edges (𝑒 ∈ E
with |hyper(𝑒) | = 1, which we do not consider as loops in the definition of path, see Footnote 2 on
p. 471). If |hyper(𝑒) | ≤ 2 for all 𝑒 ∈ E, then the hypergraph is a (multi -)graph. The condition⋃

𝑒∈E hyper(𝑒) = N means that there are no isolated nodes (i.e. without any edge linked to
them). Two hypergraphs are disjoint if the sets of their nodes and edges are.

Some structures can be put on top of a hypergraph: direction, labeling, order.

Definition 2.2 (Directed, labeled, ordered hypergraph). Let 𝐻 = (N , E, hyper) be a hypergraph.

• A directed hypergraph is 𝐷 = (𝐻, t, s) where t : E → P(N) and s : E → P(N) are such
that t(𝑒) ∪ s(𝑒) = hyper(𝑒) for all 𝑒 ∈ E;1 the elements of t(𝑒) and s(𝑒) are respectively the
targets and sources of 𝑒. The inputs (or hypotheses) and outputs (or conclusions) of 𝐷
are respectively the elements of in(𝐷) = N ∖

⋃
im(t) and out(𝐷) = N ∖

⋃
im(s).

• A labeled hypergraph is (𝐻, l) where l : E → 𝐴 associates with every edge its label in 𝐴.

• An ordered hypergraph is (𝐻, <) where < is a strict partial order on N .

Let 𝐷 = (N , E, hyper, t, s) be a directed hypergraph: the underlying (undirected) hypergraph
of 𝐷 is 𝐻𝐷 = (N , E, hyper). As hyper in 𝐷 can be deduced from t and s, we often omit it when
defining a directed hypergraph. Given 𝑒 ∈ E in 𝐷, the set of predecessors and successors of 𝑒
are pre𝐷 (𝑒) = { 𝑓 ∈ E : t( 𝑓 ) ∩ s(𝑒) ≠ ∅} and suc𝐷 (𝑒) = { 𝑓 ∈ E : s( 𝑓 ) ∩ t(𝑒) ≠ ∅} respectively. By
abuse of notation, we identify an hypergraph consisting of only one edge with the edge itself.

Different structures on a hypergraph 𝐻 can combine modularly, for instance 𝐻 can be
endowed with a labeling l and an order <, so as to form a labeled ordered hypergraph (𝐻, l, <).

We need a notion of structure-preserving map between hypergraphs.

Definition 2.3 (Morphism). Let 𝐻 = (N𝐻 , E𝐻 , hyper𝐻 ), 𝐽 = (N𝐽 , E𝐽 , hyper𝐽 ) be hypergraphs.
A (plain) hypergraph morphism 𝜏 : 𝐻 → 𝐽 from 𝐻 to 𝐽 is a pair of functions (𝜏N : N𝐻→ N𝐽 ,

𝜏E : E𝐻 → E𝐽 ) such that 𝜏N (hyper𝐻 (𝑒)) ⊆ hyper𝐽 (𝜏E (𝑒)) for all 𝑒 ∈ E𝐻 .
Given the directed hypergraphs 𝐷 = (𝐻, t𝐷 , s𝐷), 𝐹 = (𝐽, t𝐹 , s𝐹) a directed hypergraph mor-

phism 𝛿 = (𝛿N , 𝛿E) : 𝐷 → 𝐹 is a hypergraph morphism such that 𝛿N (t𝐷 (𝑒)) ⊆ t𝐹 (𝛿E (𝑒)) and
𝛿N (s𝐷 (𝑒)) ⊆ s𝐹 (𝛿E (𝑒)) for all 𝑒 ∈ E𝐻 .

Given the labeled hypergraphs 𝐺 = (𝐻, l𝐺 : E𝐻 → 𝐴𝐺), 𝐼 = (𝐽, l𝐼 : E𝐽 → 𝐴𝐼 ) with 𝐴𝐺 ⊆ 𝐴𝐼 , a
labeled hypergraph morphism 𝛿 = (𝛿N , 𝛿E) : 𝐺 → 𝐼 is a hypergraph morphism with l𝐼 ◦ 𝛿E = l𝐺.

Given the ordered hypergraphs 𝑂 = (𝐻, <𝑂), 𝑃 = (𝐽, <𝑃), an ordered hypergraph morphism
𝛿 = (𝛿N , 𝛿E) : 𝑂 → 𝑃 is a hypergraph morphism where 𝑚 <𝑂 𝑛 implies 𝛿N (𝑚) <𝑃 𝛿N (𝑛).

A plain or directed and/or labeled and/or ordered hypergraph morphism 𝜏 = (𝜏N , 𝜏E) : 𝐻 → 𝐽

is an isomorphism if there is a plain or directed and/or labeled and/or ordered hypergraph mor-
phism 𝜎 = (𝜎N , 𝜎E) : 𝐽 → 𝐻 such that 𝜎N and 𝜎E are the inverses of 𝜏N and 𝜏E , respectively.

1So, there are three kinds of dangling edges (𝑒 ∈ E with |t(𝑒)∪s(𝑒) | = 1): those coming in their target without
a source, those going out their source without a target, and the loops going out and coming in the same node.
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Figure 4: Some operations on hypergraphs (edges are depicted by lines or arrows with a bullet).

Sum of hypergraphs. Two hypergraphs 𝐻 = (N𝐻 , E𝐻 , hyper𝐻 ) and 𝐽 = (N𝐽 , E𝐽 , hyper𝐽 ) are
compatible if E𝐻 ∩ E𝐽 = ∅. The sum of compatible hypergraphs is the union of their edges and
nodes: 𝐻+𝐽 = (N𝐻∪N𝐽 , E𝐻∪E𝐽 , hyper𝐻∪hyper𝐽 ). Note that the nodes in N𝐻∩N𝐽 are merged,
see the example in Figure 4a. If N𝐻 ∩N𝐽 = ∅, 𝐻+ 𝐽 is the disjoint sum of 𝐻 and 𝐽. Sums can be
extended to directed hypergraphs: the sum of compatible 𝑆1 = (𝐻1, t1, s1) and 𝑆2 = (𝐻2, t2, s2)
is 𝑆1 + 𝑆2 = (𝑆1 + 𝑆2, t1 ∪ t2, s1 ∪ s2). Similarly for labeled and/or ordered hypergraphs.

Sub-hypergraph, difference and intersection of hypergraphs. Let 𝐽 = (N𝐽 , E𝐽 , hyper𝐽 )
and 𝐻 = (N𝐻 , E𝐻 , hyper𝐻 ) be hypergraphs.

𝐽 is a sub-hypergraph of 𝐻 if N𝐽 ⊆ N𝐻 , E𝐽 ⊆ E𝐻 , hyper𝐽 (𝑒) = hyper𝐻 (𝑒) ∩N𝐽 for all 𝑒 ∈ E𝐽 .
The difference 𝐻−𝐽 = (N𝐻−𝐽 , E𝐻−𝐽 , hyper𝐻−𝐽 ) removes 𝐽 from 𝐻 and is defined by: E𝐻−𝐽 =

E𝐻 ∖ E𝐽 and N𝐻−𝐽 = hyper𝐻 (E𝐻−𝐽 ) and hyper𝐻−𝐽 = hyper𝐻 ↾E𝐻−𝐽 . If hyper𝐻 (𝑒) = hyper𝐽 (𝑒)
for all 𝑒 ∈ E𝐻 ∩ E𝐽 , the intersection of 𝐻 and 𝐽 is 𝐻 ∩ 𝐽 = (N𝐻 ∩N𝐽 , E𝐻 ∩ E𝐽 , hyper𝐻 ↾E𝐻∩E𝐽 ).

These notions can be extended to directed, labeled and ordered hypergraphs taking the
restriction of the respective additional functions (and for the intersection, provided that the
respective functions coincides on the shared edges).

Node substitution. Given a hypergraph 𝐻 = (N , E, hyper), a name 𝑛, a set n of names such
that if n = ∅ then 𝑛 ∉ N , and 𝜑 : E ⇀ n such that 𝑒 ∈ dom(𝜑) iff 𝑛 ∈ hyper(𝑒), we define the
operation of node substitution, noted 𝐻 [n/𝑛]𝜑, that replaces the node 𝑛 in 𝐻 (if any) with the
elements of n according to 𝜑. Formally, the hypergraph 𝐻 [n/𝑛]𝜑 = (N ′, E, hyper′) is defined by:

N ′ =
{
(N ∖ {𝑛}) ∪ n if 𝑛 ∈ N
N otherwise

hyper′ (𝑒) =
{
(hyper(𝑒) ∖ {𝑛}) ∪ {𝜑(𝑒)} if 𝑛 ∈ hyper(𝑒)
hyper(𝑒) otherwise.

We set sub (𝐻, 𝑛, n) = {𝐻 [n/𝑛]𝜑 | 𝜑 : E ⇀ n, and 𝑒 ∈ dom(𝜑) iff 𝑛 ∈ hyper(𝑒)}, and 𝐻 [n/𝑛]
denotes a generic element of sub (𝐻, 𝑛, n). Note that when n ∩ N = ∅, if the node 𝑛 is linked
to several edges and 𝜑 is injective, then 𝐻 [n/𝑛]𝜑 linearizes 𝑛, that is, disentangles 𝑛 into
distinct nodes, one for each edge that was linked to 𝑛 in 𝐻. If |n| = 1, 𝐻 [n/𝑛]𝜑 just renames
the node 𝑛. If 𝑛 ∉ N , then 𝐻 [n/𝑛]𝜑 = 𝐻. Node substitution can be naturally extended
to labeled and/or directed hypergraphs. Given an ordered hypergraph 𝑂 = (𝐻, <), we set
𝑂 [n/𝑛]𝜑 = (𝐻 [n/𝑛]𝜑 , <′) where <′ =< ∩ (N ′ × N ′) and N ′ is defined as above.

Refreshing. Given a hypergraph 𝐻 = (N , E, hyper) and a set I ⊆ N , a I-refreshing of
𝐻 is a pair (𝐻′, 𝛿) where 𝐻′ = (N ′, E′, hyper′) is a hypergraph compatible with 𝐻 and 𝛿 =

(𝛿N , 𝛿E) : 𝐻 → 𝐻′ is a hypergraph isomorphism such that 𝛿N (𝑛) = 𝑛 if and only if 𝑛 ∈ I (note
that this implies that N ∩N ′ = I). We denote by refresh (𝐻,I) the set of I-refreshings of 𝐻.
The notion of I-refreshing is extended to directed and/or labeled and/or ordered hypergraphs
but just requiring that 𝛿 is a directed and/or labeled and/or ordered hypergraph isomorphism.
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Trees and paths. A (undirected) path 𝜌 in a hypergraph 𝐻 = (N , E, hyper) is a finite sequence
𝜌 = (𝑛0, 𝑒1, 𝑛1, . . . , 𝑒𝑘 , 𝑛𝑘) alternating nodes and edges in 𝐻 where 𝑒𝑖 ∈ E and 𝑛𝑖−1, 𝑛𝑖 ∈ hyper(𝑒𝑖)
for all 1 ≤ 𝑖 ≤ 𝑘, and 𝑛𝑖 ≠ 𝑛𝑖+1 for all 0 ≤ 𝑖 < 𝑘, and 𝑒𝑖 ≠ 𝑒𝑖+1 for all 1 ≤ 𝑖 < 𝑘.2 The length of 𝜌
is len(𝜌) = 𝑘; if 𝑘 = 0, 𝜌 is an empty path. If 𝑘 > 0 and 𝑛0 = 𝑛𝑘 (resp. 𝑛0 = 𝑛𝑘 and 𝑛𝑖 ≠ 𝑛 𝑗 for
all 0 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘), 𝜌 is a cycle (resp. minimal cycle). The set of paths on 𝐻 is noted paths(𝐻).

A path 𝜌 = (𝑛0, 𝑒1, 𝑛1, . . . , 𝑒𝑘 , 𝑛𝑘) in a directed hypergraph 𝐷 = (𝐻, t, s) is directed if 𝑛𝑖−1 ∈
s(𝑒𝑖) and 𝑛𝑖 ∈ t(𝑒𝑖) for all 1 ≤ 𝑖 ≤ 𝑘; we then say that 𝜌 is from 𝑛0 to 𝑛𝑘 , noted 𝑛0 𝜌 𝑛𝑘 . The
set of directed paths in 𝐷 is noted dpaths(𝐷).

Two nodes in a hypergraph 𝐻 = (N , E, hyper) are connected if there is a path between them.
A hypergraph is connected if any two distinct nodes are connected. A connected component of
𝐻 is a maximal (with respect to the inclusions in N and E) connected sub-hypergraph of 𝐻.

A forest is a hypergraph with no cycles. A tree is a connected forest. Note that a forest can
be seen as the disjoint sum of trees where each tree is a connected component.

A rooted tree is a directed non-empty tree 𝑇 = (N , E, t, s) where |s−1 ({𝑛}) | = 1 for all 𝑛 ∈ N
and |s(𝑒) | = 1 for all 𝑒 ∈ E, and |t(𝑒) | = 1 for all 𝑒 ∈ E except one, the root edge root(𝑇) of
𝑇 , for which t(root(𝑇)) = ∅. A rooted subtree 𝑆 of a tree 𝑇 is a sub-hypergraph of 𝑇 that is a
rooted tree and pre𝑆 = pre𝑇 ↾E𝑆 . The set of rooted subtrees of a tree 𝑇 is noted rTrees(𝑇), and
the function rsubtree𝑇 : E → rTrees(𝑇) associates with every 𝑒 ∈ E the rooted tree 𝑆 ∈ rTrees(𝑇)
such that root(𝑆) = 𝑒. A rooted forest is the disjoint sum of rooted trees.

The number of directed paths in a rooted tree 𝑇 = (N , E, t, s) is finite. Hence, we can define
the height of a rooted tree 𝑇 as heig(𝑇) = max{len(𝜌) ∈ N | 𝜌 ∈ dpaths(𝑇)}, and the reflexive-
transitive closure 𝑇⟲ of 𝑇 as the directed hypergraph obtained by extending the links of each
edge as follows: its sources are the same, its targets are all nodes reachable from its sources by a
(possibly empty) direct path. Formally, 𝑇⟲ = (N , E, t⟲, s) where, for all 𝑒 ∈ E, t⟲ (𝑒) = {𝑛 ∈ N |
∃𝑚 ∈ s(𝑒) ∃ 𝜌 ∈ dpaths(𝑇) : 𝑚 𝜌 𝑛}. Note that if 𝑇,𝑈 are rooted tees and 𝜏 : 𝑇 → 𝑈 is a directed
hypergraph morphism, then 𝜏 is also a directed hypergraph morphism from 𝑇⟲ to 𝑈⟲.

Operations on trees. Given two rooted trees, we can merge them so that the result of this
union is still a rooted tree. Hence, we describe how to graft a rooted tree 𝑆 into an edge 𝑒 of
another rooted tree 𝑇 , yielding a rooted tree 𝑇 ⟨𝑆/𝑒⟩. Formally, given two disjoint rooted trees
𝑇 = (N𝑇 , E𝑇 , t𝑇 , s𝑇 ) and 𝑆 = (N𝑆 , E𝑆 , t𝑆 , s𝑆) with root(𝑆) = 𝑠, the operation of grafting 𝑆 into 𝑇

on 𝑒 ∈ E𝑇 , is 𝑇 ⟨𝑆/𝑒⟩ = 𝑇 + ((𝑆 − 𝑠) [{𝑚}/𝑛] ), where s𝑆 (𝑠) = {𝑛} and s𝑇 (𝑒) = {𝑚} (see Figure 4b).
Given the pairwise disjoint rooted trees 𝑇, 𝑆1, . . . , 𝑆𝑘 and 𝑒1, . . . , 𝑒𝑘 ∈ E𝑇 (not necessarily

distinct), 𝑇 ⟨(𝑆1, . . . , 𝑆𝑘)/(𝑒1, . . . , 𝑒𝑘)⟩ is the iteration 𝑘 ≥ 0 times of grafting 𝑆𝑖 into 𝑇 on 𝑒𝑖.

3 Prestructures

We present here a purely graphical definition of MELL proof structures, following the non-
inductive approach of [16, 17, 18]: a MELL (proof ) structure 𝑅 is basically a labeled directed
graph |𝑅 | (here called MELL shape) together with additional information to identify its boxes.
Indeed, the inductive and ordered structure of the boxes of 𝑅 is recovered by means of a tree A𝑅

and a graph morphism box𝑅 from |𝑅 | to A𝑅 which allows us to recognize all boxes in 𝑅. We use
generalized 𝑛-ary ?-links collapsing weakening, dereliction and contraction, like in [22, 9]. This
way, we get a canonical representation of MELL proof structures with respect to operations like
associativity and commutativity of contractions, or neutrality of weakening for contraction.

2Note that a path cannot loop on a node. This restriction simplifies the definition of cycle.
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` ⊗
cut ? ! · · ·

𝑘∈N∖{0}

✠ ax 1 ⊥

Figure 5: Edges for MELL shapes, with their directions and labels.

Our definition of MELL structure is completely based on standard mathematical tools (re-
called in Section 2) from graph theory: it is rigorous and formal (with an eye to computer for-
malization) but avoids ad hoc technicalities to identify boxes. Indeed, one of the benefits of our
purely graphical approach is that notions involving MELL structures such as isomorphism (see
below), Taylor expansion (see [18]) and correctness graph (see [16]) are elegant and manageable.

Unlike [16, 17, 18], we actually use (directed, labeled, ordered) hypergraphs instead of graphs,
because this allows a more concise definition of the crucial operation of substitution (Section 4).
Thus, hyperedges are labeled by MELL connectives and linked to each other by means of nodes.
Akin to [21, 10], to get more generality, we consider untyped MELL structures, that is, their
nodes are not labeled by MELL formulas. Adapting our definition to the typed case is trivial.

We start with the definition of a MELL shape, the directed, labeled, ordered hypergraph
underlying a MELL structure, without information about boxes. We actually generalize MELL
shapes to pseudoshapes, since they are used later to define some technical operations.

Definition 3.1 (Pseudoshape, shape). A (MELL) pseudoshape 𝑃 = (N , E, t, s, l, <) is a directed
(t, s), labeled (l), ordered (<) hypergraph 𝐻𝑃 = (N , E, hyper) such that:

• the map l : E → {cut, ax,`, ⊗, !, ?, 1,⊥,✠} associates with each 𝑒 ∈ E its type l(𝑒), and 𝑒 is
then called a l(𝑒)-(hyper)edge; a cut (resp. axiom) is a cut-edge (resp. ax-edge);

• for every 𝑒 ∈ E we have that t(𝑒) ∩ s(𝑒) = ∅3 and (see Figure 5):

– if l(𝑒) = cut then |s(𝑒) | = 2 and t(𝑒) = ∅,
– if l(𝑒) = ax then s(𝑒) = ∅ and |t(𝑒) | = 2,

– if l(𝑒) = ✠ then s(𝑒) = ∅ and t(𝑒) ≠ ∅,

– if l(𝑒) ∈ {⊗,`} then |s(𝑒) | = 2 and |t(𝑒) | = 1,

– if l(𝑒) ∈ {!, ?} then |s(𝑒) | = 1 and |t(𝑒) | = 1,

– if l(𝑒) ∈ {1,⊥} then s(𝑒) = ∅ and |t(𝑒) | = 1;

• < is a total strict order defined only on s(𝑒), for each `- and ⊗-edge 𝑒 ∈ E, separately;4

• for all 𝑛 ∈ N , if |{ 𝑓 ∈ E | 𝑛 ∈ t( 𝑓 )}| > 1 then 𝑛 ∈ out(𝑃) or 𝑛 ∈ s(𝑒) for some ?-edge 𝑒 ∈ E;5

• for every 𝑛 ∈ N ∖ out(𝑃), there is exactly one 𝑒 ∈ E, noted s̄(𝑛), such that 𝑛 ∈ s(𝑒).6

Given † ∈ {1,⊥, ⊗,`, !, ?}, we set †𝑃 = {𝑒 ∈ E : l(𝑒) = †}. Given 𝑒 ∈ ?𝑃, 𝑒 is a contraction
(resp. dereliction; weakening) if |pre𝑃 (𝑒) | > 1 (resp. |pre𝑃 (𝑒) | = 1; pre𝑃 (𝑒) = ∅).

A MELL shape is a pseudoshape 𝑃 = (N , E, t, s, l, <) with no ✠-edge and such that if 𝑛 ∈ in(𝑃)
then 𝑛 ∈ s(𝑒) for some 𝑒 ∈ ?𝑃 ∪ !𝑃.

Note that a ?-edge 𝑒 always has exactly one source: in this setting, the usual premises of a
?-link are the predecessor edges of 𝑒 (if any). We also allow !-edges to be without a predecessor:
when it is so, there is no box associated with the !-edge (see below).

Definition 3.2 (Kind of cut). Given a pseudoshape 𝑃 = (N , E, t, s, l, <) and a cut 𝑒 ∈ E, we say:

3This condition means that a pseudoshape is a directed hypergraph with no loops (i.e. cycles of length 1).
4< identifies the left and right source of each `-/⊗-edge, to define the multiplicative cut elimination step.
5So, the only nodes that can be targets of more than one edge are outputs or sources of ?-edges.
6It means that all nodes that are not outputs of 𝑃 are the source of exactly one edge.
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(a) The MELL shape |𝑃 | (without colors).
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(b) The box-tree T (without dotted lines) and its

reflexive-transitive closure T⟲ (with dotted lines).

Figure 6: A MELL structure 𝑃 = ( |𝑃 |,T , box).

• 𝑒 is exponential if l(pre𝑃 (𝑒)) = {!, ?}, and active if also pre𝑃 (𝑖) ≠ ∅ for the !-edge 𝑖 ∈pre𝑃 (𝑒);

• 𝑒 is multiplicative if l(pre𝑃 (𝑒)) = {`, ⊗}; and 𝑒 is unit if l(pre𝑃 (𝑒)) = {⊥, 1};

• 𝑒 is axiom if l( 𝑓 ) = ax for some 𝑓 ∈ pre𝑃 (𝑒).

We define a MELL (proof ) structure 𝑃 as a MELL shape |𝑃 | together with a tree representing
the nesting of boxes in 𝑃 (its root stands for the part of 𝑃 outside any box) and a directed
hypergraph morphism associating with each edge in 𝑃 the smallest box containing it, if any.

Definition 3.3 (Prestructure, structure). A (MELL) prestructure is a tuple 𝑃 = ( |𝑃 |,T , box)
where |𝑃 | = (N , E, t, s, l, <) is a MELL shape, T = (NT , ET , tT , sT) is a rooted tree called the
box-tree of 𝑃, and box = (boxN , boxE) : |𝑃 | → T⟲ is a directed hypergraph morphism such that:

• boxN (out( |𝑃 |)) ⊆ sT (root(T ));7

• boxE : E → E𝑇 induces a bijection from
⋃

𝑒∈! |𝑃 | pre |𝑃 | (𝑒) to ET ∖ {root(T )}, and for all
𝑒 ∈ !|𝑃 |, if pre |𝑃 | (𝑒) = { 𝑓 } then boxE (𝑒) ≠ boxE ( 𝑓 );8

• for all 𝑒 ∈ E, if there exists 𝑓 ∈ pre |𝑃 | (𝑒) such that boxE (𝑒) ≠ boxE ( 𝑓 ) then l(𝑒) ∈ {!, ?}.9

We set N𝑃 = N , E𝑃 = E, t𝑃 = t, s𝑃 = s, l𝑃 = l, <𝑃 =<, pre𝑃 = pre |𝑃 | , suc𝑃 = suc |𝑃 | , in(𝑃) =
in( |𝑃 |), out(𝑃) = out( |𝑃 |), †𝑃 = †|𝑃 | for all † ∈ {⊗,`, 1,⊥, ?, !}. The depth of 𝑃 is depth(𝑃) =
heig(T ), the depth of an edge 𝑒 in 𝑃 is depth𝑃 (𝑒) = heig(T ) − heig(rsubtreeT (boxE (𝑒))).

The prestructure 𝑃 is a MELL (proof) structure if in(𝑃) ⊆ ⋃
s(?𝑃)10 and

1. t(𝑒) ∩ out(𝑃) = ∅, for all 𝑒 ∈ E such that boxE (𝑒) ≠ root(T );11

2. for all 𝑛 ∈ N , if |{𝑒 ∈ E | 𝑛 ∈ t(𝑒)}| > 1 then 𝑛 ∈ ⋃ s(?𝑃).12

From the definition of directed hypergraph morphism, once boxE is defined, boxN is uniquely
determined. Therefore we will often use the notation box to refer to boxE , and define boxE only.

7It means that every output 𝑛 of |𝑃 | is outside any boxes, independently of the edges of which 𝑛 is target.
8Hence, all and only the !-edges with a predecessor are associated with a box, to which they do not belong.
9It means that only the outputs of |𝑃 | or the source of some ?- and !-edge can be in the border of a box.

10So, the inputs of a MELL structure can only be sources of ?-edges, thus there is no !-edge without its box.
11So, the targets of an edge with nonzero depth cannot be outputs of 𝑃, but must be the source of other edges.
12This means that the only nodes that can be targets of more than one edge are sources of ?-edges.
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In our syntax, boxes do not have explicit constructors, hence the boxes of a MELL structure
𝑃 = ( |𝑃 |,T , box) are recovered in a non-inductive way. Roughly, given a subtree of T rooted at
a non-root edge 𝑒, its preimage via box in |𝑃 | is the box represented by 𝑒 in T . The preimage of
the root of T via box is the part of |𝑃 | at depth 0, that is, outside any box. The tree-structure
of T expresses the usual nesting condition of boxes: two boxes in |𝑃 | are either disjoint or
contained one in the other. Since there is a one-to-one correspondence between boxes in |𝑃 |
and !-edges of 𝑃 (see Footnotes 8 and 10), we can talk of the box of a !-edge.

A prestructure slightly generalizes a MELL structure: !-edges without predecessors (and so
without a box) are allowed, as well as outputs at nonzero depth. This is needed to define parallel
cut elimination that reduces independently both a cut inside a box (without the !- and ?-edges
in the border) and a cut outside the box (with a !-edge without predecessors), see Section 7.

Example 3.4. Figure 6 depicts a MELL structure 𝑃 = ( |𝑃 |,T , box), where box is kept implicit
by means of colors: the colored areas in |𝑃 | represent boxes (the preimages of non-root edges
of T via box), and the same color is used on T to show where each box is mapped by box. The
MELL shape |𝑃 | plus the colors for boxes (Figure 6a) uniquely determines the prestructure 𝑃:
this is why in other figures we depict a prestructure as a MELL shape plus colors for its boxes.
In particular, a prestructure with depth 0 (i.e. no boxes) can be identified with its MELL shape.

The MELL prestructures we have defined depend on the carrier sets for nodes and edges. It
is natural to abstract from them, and identify two MELL prestructures that differ only in the
name of their nodes and edges, through a handy notion of isomorphism (i.e. structure-preserving
bijection) inherited from the one of hypergraph isomorphism defined in Section 2.

Definition 3.5 (Prestructure isomorphism). Let 𝑃 = ( |𝑃 |,T , box) and 𝑃′ = ( |𝑃′ |,T ′, box′) be
prestructures. A prestructure isomorphism 𝜏 : 𝑃 → 𝑃′ from 𝑃 to 𝑃′ is a pair (𝜏| · | , 𝜏tree) where
𝜏| · | : |𝑃 | → |𝑃′ | is a directed, labeled, ordered hypergraph isomorphism, and 𝜏tree : T → T ′ is a
directed hypergraph isomorphism, such that the diagram below commutes.

|𝑃 | T⟲

|𝑃′ | T ′⟲
𝜏| · |

box

𝜏tree

box′

(The diagram actually stands for two diagrams: one for the

nodes of |𝑃 |, T⟲, |𝑃′ |, T ′⟲, and one for their edges)

We write 𝑃 � 𝑃′ if there is a prestructure isomorphism 𝜏 : 𝑃→ 𝑃′.

The idea is that MELL prestructures are identified up to the prestructure isomorphism �.
Note that in a prestructure isomorphism 𝜏 = (𝜏| · | , 𝜏tree), the hypergraph isomorphisms 𝜏| · | and
𝜏tree uniquely determine their mappings on nodes, once their mappings on edges are defined.
Therefore, we will often define them on edges only.

Adding and deleting an edge in a prestructure. Let 𝑃 = ( |𝑃 |,T , box) be a prestructure
with |𝑃 | = (N, E, t, s, l, <). We define the prestructures obtained by adding and deleting an edge
in 𝑃 from underneath, that is, in the outputs of 𝑃 (which can be at any depth in a prestructure).

Let (N𝑒, {𝑒}, t𝑒, s𝑒, l𝑒, <𝑒) be a MELL shape (by abuse of notation, noted 𝑒) made only of an
edge 𝑒 ∉ E with t𝑒 (𝑒) ∩N = ∅, s𝑒 (𝑒) ⊆ out(𝑃) and l𝑒 (𝑒) ∉ {!, ?}. Suppose that box ( 𝑓 ) = box ( 𝑓 ′)
for all 𝑓 , 𝑓 ′ ∈ 𝜕 (𝑃, 𝑒) = { 𝑓 ∈ E | t( 𝑓 ) ∩ s𝑒 (𝑒) ≠ ∅}. We set 𝑃 + 𝑒 = ( |𝑃 | + 𝑒,T , box𝑃+𝑒) where
box𝑃+𝑒 (𝑒) = box ( 𝑓 ) if 𝑓 ∈ 𝜕 (𝑃, 𝑒) ≠ ∅, box𝑃+𝑒 (𝑒) = root(T ) if 𝜕 (𝑃, 𝑒) = ∅, and box𝑃+𝑒 ↾E= box.

Let 𝑒 ∈ E be such that t(𝑒) ⊆ out(𝑃) and l(𝑒) ≠ !: we set 𝑃 − 𝑒 = ( |𝑃 | − 𝑒,T , box ↾E∖{𝑒}).
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4 Prestructure Substitution

We introduce a general notion of prestructure substitution—a key ingredient to define (parallel)
cut elimination—inspired by term substitution for the 𝜆-calculus. Given two prestructures 𝑃

and 𝐵, an output 𝑜 of 𝐵 and a name 𝑛, substituting 𝐵 for 𝑛 in 𝑃 via 𝑜, noted 𝑃[𝐵𝑜/𝑛], is the
analog of substituting the 𝜆-term 𝑠 for the free occurrences of the variable 𝑥 in 𝑡: think of the
tree-like representations of 𝜆-terms to visualize the analogy. A difference with the 𝜆-calculus is
that, since prestructures do not have a tree-like structure or a distinguished output such as the
root of a 𝜆-term, the output 𝑜 of 𝐵 “leading” the substitution must be declared explicitly.

In prestructures, the role of the variable 𝑥 is played by the name 𝑛, which is an output of 𝑃
if it is a node of 𝑃, and the edges of 𝑃 whose target is 𝑛 represent its 𝑘 ≥ 0 (free) “occurrences”
(𝑘 = 0 means that 𝑛 is not a node of 𝑃): so, before performing the substitution, 𝑛 is “linearized”
in the nodes 𝑛1, . . . , 𝑛𝑘 , each one is the target of exactly one of the edges 𝑛 is the target of (see
the definition of node substitution |𝑃 | [{𝑛1, . . . , 𝑛𝑘}/𝑛] , p. 470). For each of these 𝑘 occurrences,
a copy 𝐵𝑖 of the MELL shape |𝐵 | of the prestructure 𝐵 should be provided and the substitution
is performed by linking the copy 𝑜𝑖 of the output 𝑏 of |𝐵 | to 𝑛𝑖 via a cut-edge; for all 1 ≤ 𝑖 ≤ 𝑘,
the copy 𝐵𝑖 is obtained by renaming the edges and nodes of |𝐵 |, in particular its output 𝑏,
but the other outputs of |𝐵 | are not renamed because they are merged when performing the
substitution (so, 𝐵𝑖 ∈ refresh ( |𝐵 |, out(𝐵) ∖ {𝑜}) according to the definition on p. 470). This
way, 𝐵 is duplicated 𝑘 times, in particular if 𝑘 = 0 then 𝐵 is erased. In 𝑃[𝐵𝑜/𝑛] the edges
of 𝐵𝑖 may have changed the boxes containing them, with respect to 𝐵: indeed, the new cut-
edge linked to 𝑜𝑖 is in the same boxes as the edge 𝑒𝑖 whose target is 𝑛𝑖; this is obtained by
grafting a copy of the box-tree of 𝐵 into the box-tree of 𝑃 on the image via box𝑃 of 𝑒𝑖 (see the
definition of grafting, p. 471).

Some technical conditions must be fulfilled to perform a prestructure substitution 𝑃[𝐵𝑜/𝑛].

Definition 4.1 (Substitutability). Let 𝑃 = ( |𝑃 |,P, box𝑃) and 𝐵 = ( |𝐵 |,B, box𝐵) be prestructures
and 𝑜 ∈ out(𝐵) ∖N𝑃 and 𝑛 be a name: 𝐵 is substitutable for 𝑛 in 𝑃 via 𝑜 if the following hold:

• |𝑃 | and |𝐵 | are compatible, 𝑛 ∉ N𝐵, and if 𝑛 ∈ N𝑃 then 𝑛 ∈ out(𝑃);

• for every 𝑚 ∈ N𝑃 ∩N𝐵, 𝑚 ∈ out(𝐵) and either 𝑚 ∈ out(𝑃), or s̄𝑃 (𝑚) ∈ ?𝑃 has depth 0 in 𝑃;

• 𝑜 is the target of only one edge 𝑒 in 𝐵, and depth𝐵 (𝑒) = 0.

Assuming that 𝐵 = ( |𝐵 |,B, box𝐵) is substitutable for 𝑛 in 𝑃 = ( |𝑃 |,P, box𝑃) via 𝑜, let
us formally define the substitution 𝑃[𝐵𝑜/𝑛] of 𝐵 for 𝑛 in 𝑃 via 𝑜. Let 𝑒1, . . . , 𝑒𝑘 be an
enumeration of the edges in {𝑒 ∈ E𝑃 | 𝑛 ∈ t𝑃 (𝑒)} (𝑘 = 0 if 𝑛 ∉ N𝑃) and ( 𝑓1, . . . , 𝑓𝑘) =

(box𝑃 (𝑒1), . . . , box𝑃 (𝑒𝑘)). Let (𝐵1, 𝛾1), . . . , (𝐵𝑘 , 𝛾𝑘) ∈ refresh (|𝐵 |, out(𝐵) ∖ {𝑜}) be pairwise
compatible with 𝑜1 = 𝛾1 (𝑜), . . . , 𝑜𝑘 = 𝛾𝑘 (𝑜) pairwise distinct, and let (B1, 𝛿1), . . . , (B𝑘 , 𝛿𝑘) ∈
refresh (B, ∅) be pairwise compatible. For all 𝑖 ∈ {1, . . . , 𝑘}, let cut𝑖 ∉ N𝑃 ∪ N𝐵 be a cut-edge
whose sources are 𝑛𝑖 and 𝑜𝑖. We define 𝑃[𝐵𝑜/𝑛] = ( |𝑃[𝐵𝑜/𝑛] |,T , box) as follows:

|𝑃[𝐵𝑜/𝑛] | = |𝑃 | [{𝑛1, . . . , 𝑛𝑘}/𝑛] + 𝐵1 + · · · + 𝐵𝑘 + cut1 + · · · + cut𝑘
T = P⟨(B1, . . . ,B𝑘)/( 𝑓1, . . . , 𝑓𝑘)⟩

box (𝑒) =

box𝑃 (𝑒𝑖) if 𝑒 = cut𝑖 or depth𝐵 (𝛾−1𝑖

(𝑒)) = 0

𝛿𝑖 ◦ box𝐵 ◦ 𝛾−1𝑖
(𝑒) if depth𝐵 (𝛾−1𝑖

(𝑒)) > 0

box𝑃 (𝑒) otherwise.
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Figure 7: A prestructure substitution 𝑃[𝐵𝑜/𝑛] (where 𝑜, 𝑚, 𝑛, 𝑜1, 𝑜2, 𝑛1, 𝑛2 are nodes).

An example of prestructure substitution is in Figure 7. From now on, given two prestructures
𝑃, 𝐵, and 𝑜 ∈ out(𝐵)∖N𝑃 and a name 𝑛, when we write 𝑃[𝐵𝑜/𝑛] we assume 𝐵 to be substitutable
for 𝑛 in 𝑃 via 𝑜. Substitutability guarantees that prestructures are closed under substitution.

Lemma 4.2. If 𝑃, 𝐵 are prestructures and 𝑏 ∈ out(𝐵) ∖N𝑃, then 𝑃[𝐵𝑜/𝑛] is a prestructure.

Remark 4.3. If 𝑛 ∉ out(𝑃) then 𝑃[𝐵𝑜/𝑛] = 𝑃, as { 𝑓 ∈ N𝑃 | 𝑛 ∈ t𝑃 ( 𝑓 )} = ∅ and |𝑃 | [∅/𝑛] = |𝑃 |.

Prestructure substitution is commutative under a reasonable independence hypothesis.

Lemma 4.4 (Independence). 𝑃[𝐴𝑝/𝑛] [𝐵𝑜/𝑚] � 𝑃[𝐵𝑜/𝑚] [𝐴𝑝/𝑛] whenever 𝑛∉N𝐵 and 𝑚∉N𝐴.

5 Decomposing Prestructures

To define a notion of parallel cut elimination for prestructures analogously to parallel 𝛽-
reduction for the 𝜆-calculus, we need to decompose a prestructure into two prestructures and
perform parallel cut elimination separately on them. As explained in Section 1, this operation
is delicate and requires to use prestructures, instead of the more restrictive MELL structures.

When a prestructure 𝑃 = ( |𝑃 |,T , box) contains an !-edge 𝑏 at depth 0 and with a predecessor,
then 𝑃 can be seen as “union” of two “sub-prestructures” of 𝑃: one is the content of the box of
𝑏, the other one is the context into which the box of 𝑏 is plugged (see Figure 3). We provide
two possible ways of decomposing a prestructure based on this idea.

The content of a box. Every !-edge 𝑏 of a prestructure 𝑃 = ( |𝑃 |,T , box) with pre𝑃 (𝑏) = {𝑏0}
is associated with a prestructure called the content of the box of 𝑏, denoted by B𝑏

𝑃
, or simply

B𝑏 when no ambiguity arises. All information about this “sub-prestructure” of 𝑃 is retrievable
from box. Formally, B𝑏 = ( |B𝑏 |,B, boxB𝑏 ) where |B𝑏 | = (N|B𝑏 | , E |B𝑏 | , t |B𝑏 | , s |B𝑏 | , l |B𝑏 | , < |B𝑏 | ) and:

B = rsubtreeT (box (𝑏0)) E |B𝑏 | =
⋃

box−1 (B) N|B𝑏 | =
⋃

𝑒∈E |B𝑏 | (t𝑃 (𝑒) ∪ s𝑃 (𝑒))

t |B𝑏 | = t𝑃↾E |B𝑏 | s |B𝑏 | = s𝑃↾E |B𝑏 | l |B𝑏 | = l𝑃↾E |B𝑏 | < |B𝑏 | = <𝑃 ∩ (N|B𝑏 | × N|B𝑏 | ) boxB𝑏 = box ↾E |B𝑏 |

The !-edge 𝑏 is the principal port of B𝑏. The set bord(𝑏) = {𝑒 ∈ E |B𝑏 | | suc𝑃 (𝑒) ∩E |B𝑏 | = ∅} is

the border of B𝑏 and aux(𝑏) = suc𝑃 (bord(𝑏)) ∖ {𝑏} is the set of auxiliary ports of B𝑏. Note that
the principal and auxiliary ports of B𝑏 are edges of 𝑃 but not of B𝑏, and that l(aux(𝑏)) = {?}.

First decomposition. Let 𝑃 = ( |𝑃 |,T , box) be a prestructure and B𝑏 = ( |B𝑏 |,B, boxB𝑏 ) be
the content of the box of a !-edge 𝑏 of 𝑃 at depth 0 with a predecessor: the part of 𝑃 that is not
in B𝑏 is still a prestructure, called the context of B𝑏 (in 𝑃), denoted by C𝑏

𝑃
, or simply C𝑏 when

no ambiguity arises. Formally, C𝑏 = ( |C𝑏 |,T −B, box ↾E
C𝑏
) where |C𝑏 | = |𝑃 | − |B𝑏 | (the directed,

labeled and ordered hypergraph obtained in this way is still a shape). Since 𝑃 can be entirely
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Figure 8: A MELL structure 𝑃 = ( |𝑃 |,T , box), its two decompositions with respect to the !-edge
𝑏, the MELL structure E𝑏 [B𝑏

𝑜/𝑛] obtained by exponential cut elimination from 𝑃, and gnd(𝑃).

rebuilt from B𝑏 and C𝑏, we say that B𝑏 and C𝑏 decompose 𝑃 and we write 𝑃 ≡ (C𝑏,B𝑏). See
Figure 8b for an example, from the MELL structure 𝑃 in Figure 8a: note that B𝑏

𝑃
and C𝑏

𝑃
are

prestructures and not MELL structures there, even though 𝑃 is a MELL structure.

Second decomposition. Let 𝑃 = ( |𝑃 |,T , box) be a prestructure and B𝑏 = ( |B𝑏 |,B, boxB𝑏 )
be the content of the box of a !-edge 𝑏 of 𝑃 at depth 0 with a predecessor. Suppose also that
𝑏 is in turn a predecessor of an exponential cut 𝑐 with 𝑤 ∈ ?𝑃 ∩ pre𝑃 (𝑐). We define another
decomposition for 𝑃: drawing apart B𝑏 and the exponential cut 𝑐 with its predecessors 𝑏 and
𝑤, the remaining part of 𝑃 is still a prestructure, called the exponential context of B𝑏 (in 𝑃),
denoted by E𝑏

𝑃
or simply E𝑏 when no ambiguity arises. Formally, E𝑏 = ( |E𝑏 |,T − B, box ↾E

E𝑏
)

with |E𝑏 | = (( |C𝑏 | − 𝑐) −𝑤) −𝑏. Since to rebuild 𝑃 (up to �) it is enough to know B𝑏, E𝑏 and the
sources 𝑜 and 𝑛 of 𝑏 and 𝑤, respectively (otherwise it is not determined where 𝑏 and 𝑤 must
be linked to in B𝑏 and/or E𝑏), we say that E𝑏 and B𝑏 exponentially decompose 𝑃 via 𝑛 and 𝑜,
and we write 𝑃 ≡ (E𝑏,B𝑏, 𝑜, 𝑛). Note that the exponential cut 𝑐 and its predecessors 𝑏 and 𝑤

are not edges of B𝑏 or E𝑏, they are left implicit because for any exponential decomposition of
𝑃, it is intended that an exponential cut with its predecessors must be added so as to rebuild
𝑃 up to �. See Figure 8b for an example, from the MELL structure 𝑃 in Figure 8a: again, B𝑏

𝑃

and E𝑏
𝑃

are prestructures and not MELL structures there, even though 𝑃 is a MELL structure.

Remark 5.1. Let 𝑃 be a prestructure and 𝑏 be a !-edge of 𝑃 with at depth 0 with a predecessor.
If 𝑃 ≡ (E𝑏,B𝑏, 𝑜, 𝑛) then B𝑏 is substitutable for 𝑛 in E𝑏 via 𝑜 (see Definition 4.1).

6 Acyclicity and External Bang

To give an inductive definition of parallel exponential cut elimination, we need to identify com-
putationally independent “sub-prestructures” of a prestructure 𝑃: that is, 𝑃 can be decomposed
into two prestructures 𝑆1 and 𝑆2 such that: (1) all information about 𝑃 can be retrieved from
𝑆1 and 𝑆2, and (2) parallel exponential cut elimination in 𝑆1 does not affect 𝑆2 (and vice-versa).
In Section 5 we have seen how, given a !-edge 𝑏 of 𝑃 at depth 0 with pre𝑃 (𝑏) ≠ ∅, 𝑃 can be
decomposed into the prestructures B𝑏 and C𝑏 (or E𝑏 if 𝑏 is a predecessor of an exponential cut)

477



Confluence for proof nets via parallel cut elimination Guerrieri, Manara, Tortora de Falco, Vaux Auclair

so that (1) is satisfied. For B𝑏 and C𝑏 to satisfy (2) it is necessary that no active exponential cut
in C𝑏 has an auxiliary port of B𝑏 as a predecessor, see Figure 3 and the end of Section 1. This
last condition concerns exponential cuts only because we parallelize exponential cut elimination
steps only, as we will see in Section 7. Keeping this in mind we give the following definition:

Definition 6.1 (External bang). Let 𝑃 be a prestructure, and 𝑏 ∈ E𝑃 be an !-edge at depth 0
in 𝑃 with a predecessor: 𝑏 is external (or an external bang) if the successor of every auxiliary
port of the content B𝑏 of the box of 𝑏 is not an active exponential cut; 𝑏 is heavily external (or
a heavily external bang) if it is external and the successor of every auxiliary port of the content
B𝑏 of the box of 𝑏 is not the predecessor of an active exponential cut.

Although externality meets condition (2) discussed above, it is heavy externality—and not
externality—that is preserved after a (parallel) exponential cut elimination step (see Section 7).

To ensure the presence of an external bang, we introduce an acyclicity condition AC on
prestructures: the absence of specific cycles is checked outside the boxes and the acyclicity
condition is inductively checked inside every the content of every box at depth 0. To do so, we
use the first decomposition introduced in Section 5 and define an intermediate pseudoshape,
called the ground pseudoshape, where each box at depth 0 is replaced by a ✠-edge with the
same conclusions. For instance, the ground pseudoshape of the MELL structure 𝑃 in Figure 8a
is depicted in Figure 8c on the top.

Definition 6.2 (Ground pseudoshape). The ground pseudoshape of a prestructure 𝑃 is the
pseudoshape gnd(𝑃) = ∑

𝑏∈𝐴 𝑒𝑏 +
⋂

𝑏∈𝐴 |C𝑏 | where 𝐴 = {𝑒 ∈ !𝑃 | depth𝑃 (𝑒) = 0, pre (𝑒) ≠ ∅} and,
for every 𝑏 ∈ 𝐴, 𝑒𝑏 is a ✠-edge whose targets are exactly the elements of NC𝑏 ∩ NB𝑏 .

A switching is defined in the standard way [8] as a boolean function that “chooses” exactly
one predecessor for each ?- and `-edge. Every switching on 𝑃 induces an hypergraph where the
?-/`-edges have only one predecessor. It is on these hypergraphs that acyclicity is then tested.

Definition 6.3 (Switching). A switching of a prestructure 𝑃 is a function swch : (?gnd(𝑃) ∪
`gnd(𝑃)) × Egnd(𝑃) → {0, 1} such that swch(𝑒1, 𝑒2) = 1 for all 𝑒2 ∉ pregnd(𝑃) (𝑒1), and for all 𝑒 ∈
?gnd(𝑃)∪`gnd(𝑃) there is exactly one (𝑒1, 𝑒2) ∈ {(𝑒, 𝑓 ) | 𝑓 ∈pregnd(𝑃) (𝑒)} with swch(𝑒1, 𝑒2) = 1.

Any switching swch of 𝑃 induces an undirected hypergraph swch(𝑃) = (N , Egnd(𝑃) , hyper),
called the switching hypergraph of 𝑃 via swch, where hyper(𝑒) = hypergnd(𝑃) (𝑒) ∖ {𝑛 | ∃ 𝑓 ∈
Egnd(𝑃) : 𝑛 ∈ t(𝑒) ∩ s( 𝑓 ), swch( 𝑓 , 𝑒) = 0} and N =

⋃
𝑒∈Egnd(𝑃) hyper(𝑒).

Roughly, swch(𝑃) is obtained from gnd(𝑃) by considering each pair (𝑒1, 𝑒2) of its edges where
l(𝑒1) ∈ {?,`} and looking at their image via swch: if it is 1 then nothing changes, otherwise
they are linked in gnd(𝑃) and they become disconnected in swch(𝑃).

Definition 6.4 (AC prestructure). A prestructure 𝑃 = ( |𝑃 |,T , box) is AC if:

• swch(𝑃) is acyclic for every switching swch of 𝑃;

• for every 𝑏 ∈ !𝑃 with depth𝑃 (𝑏) = 0 and pre𝑃 (𝑏) ≠ ∅, the content B𝑏 of the box of 𝑏 is AC.

The following lemma shows that AC is sufficient to ensure the presence of an external bang.

Lemma 6.5. If 𝑃 = ( |𝑃 |,T , box) is an AC prestructure such that |ET | > 1, then there exists a
heavily external bang 𝑏 ∈ E𝑃.
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Figure 9: 𝑃 is confluent with respect to exponential cut elimination, 𝑃′ is not.

Remark 6.6. Lemma 6.5 is crucial to prove that parallel exponential cut elimination is diamond
(see Section 7). The AC hypothesis in Lemma 6.5 can be relaxed because `-, ⊗-, ⊥- and 1-edges
do not play any role in its proof. The necessary and sufficient requirement for Lemma 6.5 and
for the diamond of parallel exponential cut elimination is a form of “exponential” acyclicity
where cycles only made of ax-, !-, ?-, cut- and ✠-edges have to be avoided (for example 𝑃 in
Figure 9 can be considered “exponential” acyclic). Anyway, AC is necessary to prove confluence
for exponential and multiplicative cut elimination (see Section 8). The reason is that the set of
“exponential” acyclic prestructures is not stable with respect to multiplicative cut elimination
(the prestructure 𝑃 in Figure 9 reduces via multiplicative cut elimination to 𝑃′ which contains
an “exponential” cycle). To use Hindley-Rosen lemma [4, Prop. 3.3.5] we need to work on a
set that is closed with respect to a generic step of cut elimination: the set of AC prestructures.

Lemma 6.7. Let 𝑃 be a prestructure and 𝑏 be a !-edge of 𝑃 with at depth 0 with a predecessor.
If 𝑃 ≡ (E𝑏,B𝑏, 𝑜, 𝑛) is AC then E𝑏 [B𝑏

𝑜/𝑛] is AC.

7 Exponential Cut Elimination and its Parallel Version

In this section we define exponential cut elimination and parallel exponential cut elimination
in prestructures. Cut elimination steps for other kinds of cut (unit, axiom, multiplicative)
are defined in Section 8. To define (parallel) exponential cut elimination, the two kinds of
prestructure decompositions (Section 5) and the notion of prestructure substitution (Section 4)
play a crucial role. Moreover, we assume that the prestructure is AC to avoid dealing with
pathological cases (such as a box whose principal port is cut with one of its auxiliary ports).

Definition 7.1 (Exponential cut elimination). Let 𝑃 = ( |𝑃 |,T , box) be an AC prestructure and
𝑒 ∈ E𝑃 be an active exponential cut. A prestructure 𝑃′ is obtained from 𝑃 by an exponential
cut elimination step on 𝑒, noted 𝑃→𝑒 𝑃′, when (the definition is by induction on depth𝑃 (𝑒)):

• 𝑃′ = E𝑏
[
B𝑏
𝑜/𝑛

]
, if depth𝑃 (𝑒) = 0 and 𝑃 ≡ (E𝑏,B𝑏, 𝑜, 𝑛), where 𝑏 ∈ pre𝑃 (𝑒) ∩ !𝑃 and 𝑤 ∈

pre𝑃 (𝑒) ∩ ?𝑃 with s𝑃 (𝑏) = {𝑜} and s𝑃 (𝑤) = {𝑛};

• 𝑃′ ≡ (C𝑏,B𝑏
1 ), if depth𝑃 (𝑒) > 0 and 𝑃 ≡ (C𝑏,B𝑏) with 𝑏 ∈ !𝑃 such that depth𝑃 (𝑏) = 0 and

𝑒 ∈ EB𝑏 and B𝑏 →𝑒 B
𝑏
1 .

13

13Note that if depth𝑃 (𝑒) > 0 then there is 𝑏 ∈ !𝑃 with depth𝑃 (𝑏) = 0 and 𝑒 ∈ EB𝑏 , hence we can decompose

𝑃 ≡ (C𝑏 ,B𝑏 ) with depthB𝑏 (𝑒) < depth𝑃 (𝑒) and so B𝑏 →𝑒 B𝑏
1 is well defined by induction hypothesis.
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We write 𝑃→e 𝑃
′ if 𝑃→𝑒 𝑃′ for some active exponential cut 𝑒 ∈ E𝑃.

For instance, 𝑃→𝑒 𝑃′ where 𝑃 is the MELL structure in Figure 8a, 𝑃′ is the MELL structure
in Figure 8c (at the bottom) and 𝑒 is the only cut-edge in 𝑃.

Parallel exponential cut elimination fires a number of active exponential cuts (possibly
none) simultaneously. To define it in a AC prestructure 𝑃, we fix an external bang 𝑏 ∈ E𝑃 (if
any) as a “point of view” on 𝑃, and we consider the content B𝑏

𝑃
of the box of 𝑏 and the two

decompositions of 𝑃 based on the context C𝑏
𝑃

and the exponential context E𝑏
𝑃

(Section 5). The
former decomposition inductively propagates parallel exponential cut elimination inside boxes,
the latter one fires an active exponential cut and propagate parallel exponential cut elimination.

Definition 7.2 (Parallel exponential cut elimination). Given an AC prestructure 𝑃, we write
𝑃⇒ 𝑃′ if either 𝑃 � 𝑃′ or there is an external bang 𝑏 ∈ E𝑃 and

1. either 𝑃 ≡ (E𝑏,B𝑏, 𝑜, 𝑛) and 𝑃′ = 𝐸 ′ [𝐵′𝑜/𝑛] with E𝑏 ⇒ 𝐸 ′ and B𝑏 ⇒ 𝐵′;

2. or 𝑃 ≡ (C𝑏,B𝑏) and 𝑃′ ≡ (𝐸 ′, 𝐵′) with C𝑏 ⇒ 𝐸 ′ and B𝑏 ⇒ 𝐵′.

If 𝑃⇒ 𝑃′ and 𝑃′ is obtained as in Items 1. or 2., we write 𝑃⇒𝑏 𝑃′.

Note that ⇒ is a reflexive (up to �) binary relation on AC prestructures, and that if there
is no external bang in 𝑃 then 𝑃 has no active exponential cuts.

The next two lemmas are used to prove that parallel exponential cut elimination is diamond
(Theorem 7.5), and rely on the properties of substitution and decomposition. The first one
states that the result of a ⇒𝑏 step is independent of the choice of 𝑏. The second one is the key
lemma about substitution (analogously to parallel 𝛽-reduction for the 𝜆-calculus).

Lemma 7.3. Let 𝑃�𝑃′ be prestructures. If 𝑃⇒ 𝑃′and 𝑏 ∈E𝑃 is an external bang then 𝑃⇒𝑏 𝑃
′.

Lemma 7.4 (Parallel substitution). Let 𝑃,𝑄 be AC prestructures such that 𝑄 is substitutable for
𝑛 in 𝑃 via 𝑜. Suppose that for all 𝑒 ∈ 𝑃 such that there exists 𝑚 ∈ out(𝑄) with 𝑒 = s̄𝑃 (𝑚), 𝑒 is not
a predecessor of an active exponential cut. If 𝑃⇒ 𝑃′ and 𝑄 ⇒ 𝑄′, then 𝑃[𝑄𝑜/𝑛] ⇒ 𝑃′ [𝑄′𝑜/𝑛].

We recall the definitions of confluence and diamond, abstractly. Let → be a binary relation
on a set A, and →∗ be the reflexive-transitive closure of →: → is diamond if for all 𝑎, 𝑏, 𝑐 ∈ A
such that 𝑎 → 𝑏 and 𝑎 → 𝑐, there is 𝑎′ ∈ A such that 𝑏 → 𝑎′ and 𝑐 → 𝑎′;→ is confluent if→∗ is
diamond. Clearly, diamond implies confluence. Confluence has some important consequences,
which we mention to show the relevance of this property. If → is confluent, then:

• (uniqueness of normal forms) for all 𝑎 ∈ A, if 𝑎 →∗ 𝑏 and 𝑎 →∗ 𝑐 for some normal 𝑏, 𝑐 ∈ A
(that is, there are no 𝑏′, 𝑐′ ∈ A such that 𝑏 → 𝑏′ and 𝑐 → 𝑐′), then 𝑏 = 𝑐;

• (Church-Rosser property) for all 𝑎, 𝑏 ∈ A, if 𝑎 ↔∗ 𝑏 (where ↔∗ is the symmetric, reflexive,
transitive closure of →) then 𝑎 →∗ 𝑐 and 𝑏 →∗ 𝑐 for some 𝑐 ∈ A.

Theorem 7.5 (Diamond). ⇒ is diamond on AC prestructures (up to �).

Corollary 7.6 (Exponential confluence). →e is confluent on AC prestructures (up to �).

Proof. As →e ⊆⇒ ⊆→∗e (trivial), this is an immediate consequence of Theorem 7.5. □
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cut
a

𝑚

⊥ 1

· ·

cut
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Figure 10: Multiplicative (→m), axiom (→a) and unit (→u) cut elimination.

8 Cut Elimination and its Confluence

In this section, we define the cut elimination steps other than exponential: multiplicative, unit,
axiom (see Figure 10). We do not define a parallel version of them. Indeed, we only parallelize
exponential cut elimination steps because they are the only ones that can duplicate parts of a
prestructure, and so they are the only ones requiring parallel reduction to prove their confluence.
Confluence of whole (exponential, axiom, unit and multiplicative) cut elimination is then proved
via Hindley-Rosen lemma [4, Proposition 3.3.5], after showing that exponential, axiom, unit
and multiplicative cut eliminations are separately confluent and commute each other.

Let 𝑃 = ( |𝑃 |,T , box) be a prestructure and 𝑐 be a cut of 𝑃. A prestructure 𝑃′ is obtained from
𝑃 by a non-exponential cut elimination step on 𝑐, noted 𝑃→𝑐 𝑃′, if one of the following holds:

• 𝑐 is a multiplicative cut with predecessors 𝑒 and 𝑓 , where s𝑃 (𝑒) = {𝑛1, 𝑛2} with 𝑛1 <𝑃 𝑛2
and s𝑃 ( 𝑓 ) = {𝑚1, 𝑚2} with 𝑚1 <𝑃 𝑚2, and 𝑃′ = (𝑃 − 𝑐 − 𝑒 − 𝑓 ) + 𝑐1 + 𝑐2 where 𝑐𝑖 ∉ E𝑃 is a
cut-edge whose sources are 𝑛𝑖 and 𝑚𝑖, for all 𝑖 ∈ {1, 2};

• if 𝑐 is an axiom cut having the ax-edge 𝑎 as a predecessor with s𝑃 (𝑐) = {𝑛, 𝑜} and t𝑃 (𝑎) =
{𝑚, 𝑜} and 𝑚 ≠ 𝑛, and 𝑃′ = ( |𝑃′ |,T , box ↾E𝑃′ ) with |𝑃′ | = (𝑃 − 𝑐 − 𝑎) [{𝑚}/𝑛];

• if 𝑐 is a unit cut having predecessors 𝑒 and 𝑓 , and 𝑃′ = ((𝑃 − 𝑐) − 𝑒) − 𝑓 .

We write 𝑃→m 𝑃′ (resp. 𝑃→a 𝑃′; 𝑃→u 𝑃′) if 𝑃→𝑐 𝑃′ for some multiplicative (resp. axiom;
unit) cut 𝑐 ∈ E𝑃. Cut elimination is the binary relation → = →m ∪ →a ∪ →u ∪ →e.

The property below (stability of AC under cut elimination) is crucial. For MELL untyped
proof structures, it has been proved in [10]. Its generalization to prestructures is trivial.

Proposition 8.1. If 𝑃 is an AC MELL prestructure (resp. structure) and 𝑃 →x 𝑄 with x ∈
{u,m, a, e}, then 𝑄 is an AC MELL prestructure (resp. structure).

Lemma 8.2 (Commutations). Let 𝑃 be a prestructure.
Let 𝑒, 𝑐 ∈ E𝑃 where 𝑒 is an active exponential cut and 𝑐 is a multiplicative (resp. axiom;

unit) cut. If 𝑃 is AC and 𝑃 →𝑒 𝑃1 and 𝑃 →𝑐 𝑃2, then 𝑃1 →∗x 𝑃′ and 𝑃2 →𝑒 𝑃′′ for some
prestructures 𝑃′ � 𝑃′′, with x = m (resp. x = a; x = u).

Let 𝑚, 𝑢 ∈ E𝑃 where 𝑚 is a multiplicative cut and 𝑢 is a unit cut. If 𝑃→𝑚 𝑃1 and 𝑃→𝑢 𝑃2,
then 𝑃1 →𝑢 𝑃′ and 𝑃2 →𝑚 𝑃′ for some prestructure 𝑃′.

Let 𝑎, 𝑐 ∈ E𝑃 where 𝑎 is an axiom cut and 𝑐 is an multiplicative (resp. unit) cut. If 𝑃→𝑎 𝑃1

and 𝑃→𝑐 𝑃2, then 𝑃1 →𝑐 𝑃′ and 𝑃2 →𝑎 𝑃′′ for some prestructures 𝑃′ � 𝑃′′.

Theorem 8.3. Cut elimination → on AC prestructures is confluent (up to �).

Proof. It follows from Corollary 7.6, Lemma 8.2, the fact that →m, →a and →u are separately
confluent up to � (immediate, since they do not duplicate or erase anything, they just modify
a prestructure locally), and the Hindley-Rosen lemma [4, Proposition 3.3.5]. □

Corollary 8.4. Cut elimination → on AC MELL structures is confluent (up to �).
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Proof. Immediate consequence of Theorem 8.3 and Proposition 8.1. □

Thus, once the confluence of cut elimination on AC prestructures is established (Theo-
rem 8.3), we easily deduced the confluence of cut elimination on AC MELL structures, the
result we are interested in. Therefore, extending our study of confluence to prestructures is
just a technical device to ease our definitions and proofs, and we are not aware of alternative
approaches to use parallel cut elimination, taking into account the issues discussed in Section 1.

Conclusions. We provided the first proof of confluence for cut elimination in (untyped) AC
MELL proof structures that is not based on Newman’s lemma or strong normalization, not even
indirectly. To achieve our goal, we introduced two main tools:

• parallel cut elimination, inspired by Tait and Martin-Lof’s on parallel reduction for the
𝜆-calculus, and defined only for exponential cut elimination steps;

• prestructures, generalizing proof structures to ease the definition of parallel cut elimination.

Since proving confluence requires to show that two objects are equal, we developed a formal-
ism to rigorously define the identity on prestructures (the notion of prestructure isomorphism,
based on graph-theoretical tools) and the other notions required to prove confluence. Despite
some heaviness, we believe that our rigorous approach is needed to avoid hand-waving proofs,
and it can be seen as a first step towards a formalization of MELL proof nets in theorem provers.

We defined parallel cut elimination for exponential steps only, because they are the only
ones that can duplicate some parts of a prestructure and hence need to be parallelized to
prove confluence via Tait and Martin-Lof’s method. In a wider perspective, our work paves
the way to the general definition of parallel cut elimination for (untyped) AC MELL, not only
for exponential steps: as parallel reduction of the 𝜆-calculus has been used to prove several
operational properties [23, 1, 3], we believe that parallel cut elimination of untyped MELL can
serve as a powerful tool in the general theory of proof nets (and its applications).

Acknowledgments. This project is funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No 945332.
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