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Abstract 

 Pedicle screw fixation is a technically demanding procedure with potential 

difficulties and reoperation rates are currently on the order of 11%. The most common 

intraoperative practice for position assessment of pedicle screws is biplanar fluoroscopic 

imaging that is limited to two-dimensions and is associated to low accuracies. We have 

previously introduced a full-dimensional position assessment framework based on 

registering intraoperative X-rays to preoperative volumetric images with sufficient 

accuracies. However, the framework requires a semi-manual process of pedicle screw 

segmentation and the intraoperative X-rays have to be taken from defined positions in 

space in order to avoid pedicle screws’ head occlusion. This motivated us to develop 

advancements to the system to achieve higher levels of automation in the hope of higher 

clinical feasibility.  

In this study, we developed an automatic segmentation and X-ray adequacy 

assessment protocol. An artificial neural network was trained on a dataset that included 

a number of digitally reconstructed radiographs representing pedicle screw projections 

from different points of view. This model was able to segment the projection of any 

pedicle screw given an X-ray as its input with accuracy of 93% of the pixels. Once the 

pedicle screw was segmented, a number of descriptive geometric features were extracted 

from the isolated blob. These segmented images were manually labels as ‘adequate’ or 

‘not adequate’ depending on the visibility of the screw axis. The extracted features along 

with their corresponding labels were used to train a decision tree model that could classify 

each X-ray based on its adequacy with accuracies on the order of 95%.  

In conclusion, we presented here a robust, fast and automated pedicle screw 

segmentation process, combined with an accurate and automatic algorithm for classifying 
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views of pedicle screws as adequate or not. These tools represent a useful step towards 

full automation of our pedicle screw positioning assessment system.  

1 Introduction 

 Pedicle screw fixation is a common practice in many surgical spinal procedures, particularly fusion 

and deformity correction. Metal screws are first placed into the vertebral body through the pedicle 

pathway and used as firm anchor points for rods connecting to adjacent spinal segments. Despite the 

obvious advancements that this method has brought to spinal surgeries, it is a technically demanding 

procedure with potential difficulties (Katonis 2003). Due to the proximity of the spinal cord, nerves and 

blood vessels, a misplaced pedicle screw can lead to serious clinical complications. Furthermore pedicle 

screw malplacement rates have been reported to be on the order of 20% while major violations can 

occur in roughly 4% of inserted screws (Nevzati 2014), resulting in reoperation rates of roughly 11% 

primarily attributable to screw malplacement (Christensen 2002).  

 This experience highlights the importance of performing an intraoperative implant position 

assessment after screw insertion. In clinical practice, this is usually done using intraoperative biplanar 

X-rays, intraoperative cone-beam computed tomography (e.g. O-arm) or postoperative (postop) 

computed tomography (CT) modalities. While postoperative CT imaging is considered the gold 

standard in terms of identifying malplaced screws, it results in high levels of ionizing radiation, is prone 

to metal artifact issues and occurs too late to make changes during the surgery. Intraoperative X-ray 

assessment is the most common practice (due to its low cost, availability and ease of use), but, compared 

to the gold standard, it has limited sensitivity and specificity (70% and 83% respectively; Choma 2006). 

Intraoperative cone-beam CT can provide 3D spatial feedback on the screw’s position, however this 

method attributed to the similar issues of postoperative CTs. Additionally cone-beam CT has been 

shown to have low rates of sensitivity (77% presumably due to metal artifact issues; Cordemans 2016) 

and is not universally available. In (Esfandiari 2016) we introduced an intraoperative (post-placement) 

pedicle screw position assessment system based on C-arm fluoroscopy. In this technique, we register 

the intraoperative fluoroscopic images (which generate relatively low radiation doses) to 

preoperatively-acquired CT volumes. Although we achieved acceptable levels of accuracy with our 

models (2mm and 1.3o on average), the need for manual intervention at several stages of the processing 

pipeline would constitute a significant barrier to clinical adoption. In this study, we therefore focus on 

automating several components of the system in the hope of achieving higher clinical acceptability. 

Most of the pedicle screws currently used in clinical practice use a two-component design that 

consists of a shaft and an articulating (or fixed) head. The head component is relatively large and 

depending on the imaging configuration, can occlude a considerable portion of the screw’s axis. Since 

this axis needs to be clearly visible for quantitative assessment, C-arm images should be acquired well 

away from the long axes of all screws being imaged. Once we have a pair of acceptable images, our 

current pipeline involves a semi-automated step in which the user identifies the screws on the acquired 

X-rays. 

In this study, we aim to increase the level of automation in our processing pipeline by automatically 

identifying screws in the image and assessing the adequacy of the acquired intraoperative X-rays’ view 

angle. We report on a first step towards this goal: using machine learning techniques to segment a single 

screw in a fluoroscopic image and to classify the perspective of the C-arm as adequate or not. 
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2  Materials and Methods  

The proposed enhancement to our existing workflow has two key steps: implant segmentation and 

image quality assessment (Figure 1). 

 

 
 

Despite the relatively high contrast between the screws and the background in the fluoroscopic 

images, which facilitates segmentation, it can be surprisingly difficult to both identify all screws in the 

image and accurately segment them without requiring any manual input (e.g. specifying seed points for 

region growing methods or roughly tracing of the outlines for active contour-based methods). This 

motivated us to develop a machine learning model that can automatically identify and segment the 

projections of the pedicle screws, given an intraoperative X-ray as its input. 

Since all machine learning algorithms require a large number of training examples, and since it is 

time-consuming to acquire a large number of real fluoroscopic images, we opted instead to create a 

synthetic training set by overlaying artificially-generated images of a pedicle screw from multiple 

perspectives with a dataset of real fluoroscopic images from clinical cases. 

To generate the synthetic images, we used the process illustrated in Figure 2 – we generated a set of 

2000 random positions for the pedicle screw within the imaging cone of a C-arm machine (using 

realistic intrinsic imaging parameters derived from a clinical C-arm (Arcadis Orbic, Siemens AG, 

Munich, Germany)) and applied a ray-casting algorithm to produce a digitally-reconstructed radiograph 

showing the pedicle screw on a blank background. We then overlaid each of these  

screw images on one of ten clinical fluoroscopic images from our archive to produce a final training 

dataset of 2000 images. 

 

 

 

 

Figure 1: Proposed clinical workflow 

A Machine Learning Framework for Intraoperative Segmentation ... H. Esfandiari et al.

146



 
 

The first step in the machine learning pipeline was to recover the projection of the pedicle screw. 

To do this, we extracted a set of features from each training instance based on a series of processed 

images as shown in Figure 3: a Gabor Transformation (Soares 2006), difference of Gaussian kernels, 

global thresholding (threshold value interpreted from the ray-casted images), Canny edge detector 

(Canny 1986) and boundary estimation. The feature images were downsampled to 100 by 100 pixels to 

reduce the computational resources required. 

 

 
 

An artificial neural network (ANN) with 2 hidden layers and 10 + 1 neurons was trained on the 

generated learning dataset (Figure 4). Having a learning dataset of size 2000 images (100 by 100  

Figure 2: Generation of the synthetic training dataset; Calib: intrinsic and extrinsic 

imaging parameters of the modeled C-arm; 𝑅𝑖𝑔𝑖𝑑𝑖: the rigid transformation parameters 

assigned for each image 

Figure 3: Extracted features from each training example 
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pixels) and randomly dividing it into training (70%), validation (15%) and testing datasets (15%) 

resulted in 14 million training examples, 3 million validation examples and 3 million testing examples 

(each pixel is considered as an individual learning example with 6 features and a binary label). 

 

 
 

The perspective assessment module was based on a decision tree developed using manually-

assigned labels specified by the first author on a set of fifty fluoroscopic images of two artificial 

vertebral models (Ammolite BioModels, Calgary, Canada; these models have realistic X-ray properties) 

with stainless steel or titanium pedicle screws inserted (Medtronic, Dublin, Ireland). The X-rays images 

were acquired using a mobile C-arm (Arcadis Orbic, Siemens AG, Munich, Germany) from different 

locations in space representing realistic clinical scenarios. All images were processed with the 

aforementioned ANN segmentation algorithm to isolate the projection of the inserted implants. The 

instances for which the segmentation algorithm did not produce sufficient results (i.e. high rates of 

misclassification) were excluded from the rest of the process. Then, the isolated screws were labeled as 

“Acceptable” or “Not acceptable” based on parameters like screw shaft length and occlusion by the 

screw head (Figure 5). We then extracted a set of descriptive features from the isolated blobs in the 

segmented images to characterise the geometric properties of the projected screws. The employed 

features were area, major axis, minor axis and perimeter (Figure 5). 

 

We trained a decision tree using the extracted descriptive features and the manually identified labels 

and applied the trained model to the 50-image dataset described earlier. By comparing model’s output 

Figure 4: A schematic overview of the implemented neural network; 𝑤𝑖 and 𝑏𝑖 are the 

weights and biases of each hidden layer; 𝑛𝑖
𝑗
 is the jth neuron in the ith hidden layer 

Figure 5: Manual labeling and feature extraction for X-ray adequacy assessment 
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to the manually labeled adequacy measures we could calculate the accuracy of the quality assessment 

module. For this purpose a 5-folds cross validation routine was incorporated. This classifier will be able 

to generate a quality measure (acceptable or not acceptable) for every intraoperative X-ray that is ran 

through the segmentation process beforehand. 

Custom codes were developed using Matlab R2016b (Mathworks, Natick, MA) for ray-casting and 

image processing. The neural network design and analysis was performed using the Neural Net toolbox 

in Matlab R2016b. The decision tree classifier was trained using the Classification Learner toolbox in 

Matlab R2016b. Training and cross validation of the machine learners was performed on a computer 

with a 2.60 GHz Core i7 processor running a 64-bit operating system (windows 10) with 64 GB of 

RAM. 

3 Results 

The implemented neural networks achieved an encouraging cross-entropy value of 0.12 on the 

testing dataset and only 0.53% of the test data was misclassified (i.e. only 0.53% of the total pixels were 

misclassified). Sensitivity and specificity values of 99.7% and 93.3% were achieved. This means that 

93.3% of all the pixels in the test dataset (3 million) that belonged to the projected screw were correctly 

identified (the screws were projected in black as the foreground). The entire training process took 30 

minutes of computation time and classifying an unseen image using the trained model was almost 

instantaneous. As the result of 5-folds cross validation, the adequacy assessment module was shown to 

achieve accuracies on the order of 95%. 

4 Discussion 

This study presented a novel framework for intraoperative segmentation and adequacy assessment 

of pedicle screw X-rays. We demonstrated promising ability to distinguish between pixels belonging to 

pedicle screws and to anatomy, and showed that a set of geometric features of the resulting blobs could 

accurately classify a view of a pedicle screw as adequate or not.  

There appears to be relatively little literature to date addressing this specific issue. Popescu 2012 

evaluated a machine learning approach to segment pedicle screws from axial fluoroscopy images 

acquired from an artificial vertebral model, but only validated their approach on models with no soft 

tissue component and from only one viewing angle. As another limitation associated to that study, only 

34 instances were used for training the segmentation model, hence the generalization ability of their 

model is questionable.  

Although our results were encouraging, several aspects of the proposed framework need to be 

further improved before this technique can be used in practice. Most significantly, our current synthetic 

training set may not be sufficiently realistic – it does not include multiple screws, nor additional 

hardware commonly encountered in clinical images (eg, rods or tools). In addition, the screws used all 

had fixed heads, but screws with articulating heads are common in practice and should be accounted 

for. It is possible that we will need to adapt our segmentation step to incorporate additional local context 

in order to be more robust to these situations. In addition, we currently need to manually verify the 

segmented blobs prior to adequacy classification; this step will have to be automated in future. 

In conclusion, we presented here a robust, fast and automated pedicle screw segmentation process, 

combined with an accurate and automatic algorithm for classifying views of pedicle screws as adequate 

or not. These tools represent a useful step towards full automation of our pedicle screw positioning 

assessment system (Esfandiari 2016). 
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