
Determining Optimal Control Frequency for
Large Numbers of Virtual Agents within an

Augmented Reality Application
Dr. Bradford A. Towle Jr.

Florida Polytechnic University
btowle@floridapoly.edu

Abstract
Augmented reality (AR) devices are becoming more prevalent and powerful enough

to allow more virtual agents to be run simultaneously. This paper explores the ideal
frequency to update the control logic for each virtual agent using the framerate as a
measurement. This paper details the averaged result of a stair-step confidence test that
was run five times for each frequency. This experiment was run on the Microsoft
HoloLens 2.

1 Introduction
Augmented reality (AR) is growing more popular and approaching widespread availability to the

public [1]. Newer devices with more capabilities are being developed along with more accessible
libraries. AR projects virtual objects onto the real world providing the ability to add information to the
visual perception of the user [2]. This augmentation can allow virtual characters, or agents, to appear
as if they are present in the real-world providing information to the user. Because of this nature, it is
practical to have the AR device mobile and untethered to a stationary computer.

Therefore, many of the modern AR devices are not personal computers, but rather smaller, lighter
mobile devices that can be carried or worn. Some examples of AR devices include smart phones,
Microsoft HoloLens, and Magic Leap 1 [3]–[5] . While these devices are continuously improving their
capabilities most cannot match the raw processing power of a modern-day personal computer
configured for research.

Along with the limitation of processing power, there are no libraries or APIs for developing on these
devices. In general, a developer can choose to use the manufacturer’s drivers directly, Unity3D Game
Engine, or the Unreal Game Engine. Using the game engines will help abstract some of the more
tedious problems that come with the device allowing the developer to focus more on the application.
However, these development platforms are designed specifically to create games, meaning any virtual

EPiC Series in Computing

Volume 88, 2022, Pages 82–90

Proceedings of 31st International Conference
on Software Engineering and Data Engineering

F. Harris, A. Redei and R. Wu (eds.), SEDE 2022 (EPiC Series in Computing, vol. 88), pp. 82–90

agent that requires a periodic update will most likely be programmed from a typical game design
approach.

Considering both the limited computation of the mobile device and the influence of game design on
the augmented reality development this paper determines the most efficient frequency to update control
scripts on the virtual agent while still maintaining smooth performance. Please note, this paper is not
addressing rendering or physics engine optimization but test for the optimal frequency of invoking
control scripts for virtual agents. The control scripts used in the test have been written to mimic a
typical game programmer profile; the code will employ best practice but not optimized to the level used
in algorithm analysis research.

The experiment detailed below employs an unbounded stair-step test to compare the number of
active virtual agents against the framerate of the AR application. Framerate is important to AR because
it may cause the user to experience motion sickness if it falls too low. The unbounded test will
consistently create new virtual agents for five seconds, wait for five seconds, and then repeat. This
provides an opportunity to determine if the device can handle the computation while more load is added
and when it is stable.

 This paper provides a brief related works justifying use of virtual agent in AR. A methodology
section provides a detailed explanation of how the program was setup, followed by an explanation of
the testing procedure and the results. This paper concludes with a future work and closing thoughts.

2 Related Work
This paper considers virtual agent to mean any projected visualization in an augmented reality

application that must change, move, or adapt to outside stimuli, thus, requiring a control script to
function. The term virtual agent conjures mental images of brightly colored cartoon characters running
around. While such virtual agents have been used in AR applications to assist with user interaction [6]–
[10], not all virtual agents are 3D game characters. Many virtual agents will be informational elements
that change and adapt. For example, a virtual agent may be nothing more than a label or text message
that appears identifying a desired product in the grocery store [11]. Another example in the realm of
health applications is visualizing different organs during surgery or education [12]–[14]. This
visualization may need to change, update, or provide some form of response due to the user’s action
requiring some form of control script. Another important field in AR is bridging the gap between
robotics and humans [15], [16]. These applications will employ virtual agents to represent robots or
robot-human scenarios and goals. Again, these informational virtual agents will need a control script
to update, move, and adapt to different input from the user.

Currently many of the augmented reality applications only focus on one or two virtual agents at
once. Therefore, processing power for their control scripts is not a large concern; however, as the field
grows expanding the scale of these applications, it is foreseeable that an AR application may have
hundreds of virtual agents running simultaneously. Due to this expectation, the experiment described
in the next section seeks to determine the best practice for designing virtual agent control scripts.

3 Methodology
The experiment outlined in this paper was run on a Microsoft HoloLens 2. The program used in

this experiment was written with Unity 2020.3 and used the Mixed Reality Tool Kit (MRTK 2.0). This
program would add a new virtual agent at a frequency of 2 Hz for five seconds and then wait for five
seconds to determine if the system was stable. The above sequence of spawning and waiting would
repeat until there were 100 agents, during which the frame rate was recorded to a file at the frequency

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

83

of 10 Hz. The frame rate was calculated using the unscaled delta time property to provide the most
accurate values possible (Equation 1).

𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒	𝑖𝑠	𝑎𝑛	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑖𝑛	𝑠𝑒𝑐𝑜𝑛𝑑𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑙𝑎𝑠𝑡	𝑓𝑟𝑎𝑚𝑒	

𝑡𝑜	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	[17].

𝐹𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒 =
1

𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒

Equation 1: Equation Used to Calculate Framerate

The program recorded the framerate every tenth of a second and kept the file writer open to minimize
computational overhead. The program would only append information, never delete, or search through
the file. This limitation with the file handler was explicitly done to minimize its computational load on
the HoloLens 2.

The virtual agents were programmed by employing best practices with Unity 3D; however, no other
optimization was done. This programming style imitated a typical game programmer and not
necessarily a researcher in computer science. The reason for imitation is to ensure the test script
represents a typical program written for this platform.

When a virtual agent was created, it was given a team: red or blue. The agent invoked a control
function called handle update, which provided the control algorithm.

Each agent ran the same function to control themselves. However, the frequency this function was
invoked varied throughout the experiment, and the resulting framerates were compared. Five individual
tests were administered for each following frequency:

• Update (once per frame)

• Fixed Update (20 Hz)

• 20 Hz coroutine

• 10 Hz coroutine

• 5 Hz coroutine

• 2 Hz coroutine

The control function performed the following tasks:

1. Control the nav-mesh agent
2. Fire projectiles at the enemy team
3. Orient and update the score panel

The test had a large arena where there were sixteen pre-determined points the virtual agents could
move. If the virtual agent were within 6 centimeters of the goal, it would then randomly choose a new
goal and start navigating toward the new nav goal.

The nav-mesh system in Unity was used as it is a common and popular tool amongst developers.
This nav-mesh path-finding system is well optimized and would likely be chosen over building a path-
finding algorithm from scratch. Please note, even though the logic was updated at different frequencies,
the agents still moved continuously due to the nav-mesh.

Initially, the nav-mesh agent would be the only logic the virtual agents performed. However, it is
unlikely that a typical application would only have navigation for a virtual agent be the only overhead.
Therefore, logic was added to determine if there was a virtual agent on the opposite team within 50
centimeters in front of it. If there were, the agent would then fire a projectile in the same direction it

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

84

was facing. If the projectile struck the other virtual agent, then the score of the first would increase by
one. These projectiles also had a timer on them so that they would be destroyed after one second. The
rate of fire was controlled by an additional co-routine that would wait for .3 seconds before allowing
the virtual agent to fire again.

Each virtual agent had a small canvas above itself in world space. This canvas displayed the current
score for each virtual agent and was used to simulate a visualization load that may be required for an
AR application. The control function would rotate the canvas to make the visualizations more user-
friendly to ensure it was facing the camera regardless of what direction the virtual agent was moving.
Typically, this would be done in the update function, but it was added to the control function to keep
all tests consistent.

4 Testing
The testing procedure took five individual tests of the above-mentioned frequencies. The user would

start each test and disable the default profiler, to keep things consistent, then move outside the arena
and sit down. The user’s action would be constrained to look around the arena as the different virtual
elements were spawned and performed their control logic. This reduction in physical movement is
essential as fast or erratic movements by the user will cause the system extra computation to keep the
virtual environment aligned with the real environment. It was not the intention of this experiment to
put the AR application under stress from user movement. After the number of agents reached 100, the
test was stopped, and the framerate was collected in a comma-delimited file. The raw data was very
noisy, as demonstrated in Figure 1.

Figure 1: Raw Data from 10 Hz Virtual Agent Update Experiment

0

10

20

30

40

50

60

70

80

90

100

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

70
3

73
0

75
7

78
4

81
1

Fr
am
er
at
e

Sample	Number

Raw	Data	for	Updating	Virtual	Agents	at	10	Hz

Number	of	Virtual	Agents 10	Hz

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

85

 Five tests were run for each frequency and then averaged together in order to reduce the noise.
The results were still noisy; therefore, a moving average with a sliding window of size ten was used to
improve the results further (Equation 2)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑟𝑑! =
∑ 𝑉𝑎𝑙𝑢𝑒!,#$%&'
#$%&()

5

∀𝑚𝑎	𝑤ℎ𝑒𝑟𝑒	𝑚𝑎 = {10…𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓𝑅𝑒𝑐𝑜𝑟𝑑𝑠}.

	𝑀𝑜𝑣𝑖𝑛𝑔𝐴𝑣𝑒𝑟𝑎𝑔𝑒*+ =	
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑟𝑑,*+
,(*+-).

10

Equation 2: Calculation for Moving Average

 The improvement can be seen by comparing the above graph with Figure 2. Notice the noise is
significantly reduced.

Figure 2: Averaged Data for Updating a Virtual Agent at 10 Hz.

5 Results
At the beginning of the experiment, all frequencies were performed in the acceptable range between

50 and 60 FPS. Around 40 virtual agents, the performances started to diverge, and by the time there
were more than 50 virtual agents, all frequencies demonstrated a downward turn (Figure 3). Fixed

0

10

20

30

40

50

60

70

80

90

100

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

70
3

73
0

75
7

78
4

81
1

Fr
am
er
at
e

Sample	Number

Averaged	Data	for	Updating	a	Virtual	Agent	at	10	Hz	

Average	for	10	Hz	Run Number	of	Virtual	Agents

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

86

update performed the worst as it is the most rigid with the time precision; therefore, the CPU could not
keep up as more agents were added. This result coincides with the anecdotal wisdom that fixed updates
should be used sparingly on mobile devices. Calling the control function once per frame (Update)
performed decently. Although, it is worth noting that as the framerate drops, so does the number of calls
to the control function, creating an unintended feedback loop. Coroutines were used to provide the 20,
10, and 2 Hz, where the performance was anticipated to improve the slower the frequency. The results
differed significantly from the expectation. The 10 Hz coroutine performed the best out of all the tests.
The 2 Hz coroutine had trouble maintaining the same performance as calling the control function once
per frame. The experiment for 2 Hz was repeated to ensure this data was not an anomaly, and the
second set of results was similar. It was hypothesized that the 2 Hz test conflicted with the virtual agent
spawning as they are both using the same frequency. Another experiment was run at 5 Hz, and it
performed better than 2 Hz but did not outperform the 10 Hz coroutine.

Figure 3: Averaged Data for All Experiments

 It is worth noting that all the experiments remained above 24 frames per second, satisfying the
real-time constraint. However, to find a strong contrast between the different frequencies, the highest
number of agents was taken while the framerate was still above 50 frames per second (Table 1).

0
10
20
30
40
50
60
70
80
90
100

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

56
8

59
5

62
2

64
9

67
6

70
3

73
0

75
7

78
4

81
1

Fr
am
er
at
e

Sample	Number

Averaged	Data	for	All	Experiments

Number	of	Virtual	Agents Update()

FixedUpdate() 20Hz

10Hz 2Hz

5	Hz

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

87

Frequency (From Best to Worst
Performance)

Highest Number of Virtual Agents before
Dropping Below 50 FPS.

10 Hz 71
5 Hz 66
20 Hz 58
Update 54
2 Hz 50
Fixed Update 50

Table 1: Highest Number of Virtual Agents while maintaining 50 FPS.

 The final framerate was also used to determine the performance rating. Due to the system load,
the framerate recorder would cease to record values of around 92 virtual agents. Therefore, the data
ends at this point even though the experiment ran to 100 virtual agents. The order of performance is the
same except at the end, calling the control function once per frame (update) performed better than a 20
Hz coroutine by one frame per second. Updating the virtual agents at 10 Hz still outperformed all other
tests; however, its lead had narrowed significantly (Table 2).

Frequency (From Best to Worst

Performance)
Last Framerate (92 Virtual Agents)

10 Hz 38
5 Hz 36
Update 34
20 Hz 33
2 Hz 30
Fixed Update 26

Table 2: Highest Number of Virtual Agents at the End of the Experiment

 The conclusion from this data clearly shows that a slower update rate on logic does not
translate into better performance. Further research is needed to identify why 10 Hz performed
noticeably better than all other frequencies. Current hypotheses are the Unity 3D coroutine system
favors this frequency due to some underlying design, or 10 Hz has the least conflicts with the HoloLens
2 system processes. Regardless, updating the control script of a virtual agent at 10 Hz will provide the
best performance for the HoloLens 2.

6 Future Work
There are two questions that require further investigation. The first question is how this experiment

will perform on different platforms. The Mixed Reality Toolkit (MRTK) allows projects to be cross-
platform; therefore, this experiment is hypothetically portable. Comparing the results from different
platforms would provide an opportunity to see if there was a generalized best practice frequency.

Another modification to the experiment would be removing all coroutine usage except for agent
spawning, ensuring the test was not interfering with the framerate. The primary reason this has not
already been done was to ensure the virtual agents used common practices with game development.
Coroutines are a common practice, and an experienced game developer would use them. This means it
is not unreasonable to expect multiple different coroutines to be used by a virtual agent.

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

88

7 Conclusion
This paper has detailed an experiment where different frequencies were used to update control

scripts on virtual agents in an augmented reality application. The justification was given for why
specific programming practices were used, and the experiment isolated one factor: The rate at which a
function was invoked. Five different tests were made per frequency, keeping all other factors the same,
and the results were averaged together. The data concludes that the ideal update frequency for control
scripts in virtual agents for the HoloLens 2 is 10 Hz.

8 References
[1] C. Arth, R. Grasset, L. Gruber, T. Langlotz, A. Mulloni, and D. Wagner, “The History of

Mobile Augmented Reality,” arXiv:1505.01319 [cs], Nov. 2015, Accessed: Mar. 30, 2022. [Online].
Available: http://arxiv.org/abs/1505.01319

[2] T. P. Caudell and D. W. Mizell, “Augmented reality: an application of heads-up display technology to
manual manufacturing processes,” in Proceedings of the Twenty-Fifth Hawaii International Conference on System
Sciences, Jan. 1992, vol. ii, pp. 659–669 vol.2. doi: 10.1109/HICSS.1992.183317.

[3] mattzmsft, “HoloLens (1st gen) hardware.” https://docs.microsoft.com/en-us/hololens/hololens1-
hardware (accessed Mar. 15, 2022).

[4] “HoloLens 2—Overview, Features, and Specs | Microsoft HoloLens.” https://www.microsoft.com/en-
us/hololens/hardware (accessed Mar. 15, 2022).

[5] “Magic Leap 1.” https://www.magicleap.com/magic-leap-1 (accessed Mar. 15, 2022).
[6] I. Wang, J. Smith, and J. Ruiz, “Exploring Virtual Agents for Augmented Reality,” in Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland Uk, May 2019, pp. 1–12. doi:
10.1145/3290605.3300511.

[7] M. Obaid, I. Damian, F. Kistler, B. Endrass, J. Wagner, and E. André, “Cultural behaviors of virtual
agents in an augmented reality environment,” in International Conference on Intelligent Virtual Agents, 2012, pp.
412–418.

[8] K. Kim, L. Boelling, S. Haesler, J. Bailenson, G. Bruder, and G. F. Welch, “Does a digital assistant need
a body? The influence of visual embodiment and social behavior on the perception of intelligent virtual agents in
AR,” in 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2018, pp. 105–114.

[9] M. Obaid, R. Niewiadomski, and C. Pelachaud, “Perception of spatial relations and of coexistence with
virtual agents,” in International Workshop on Intelligent Virtual Agents, 2011, pp. 363–369.

[10] A. Hartholt et al., “Virtual humans in augmented reality: A first step towards real-world embedded virtual
roleplayers,” in Proceedings of the 7th International Conference on Human-Agent Interaction, 2019, pp. 205–207.

[11] J. Ahn, J. Williamson, M. Gartrell, R. Han, Q. Lv, and S. Mishra, “Supporting Healthy Grocery Shopping
via Mobile Augmented Reality,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 1s, p. 16:1-16:24,
Oct. 2015, doi: 10.1145/2808207.

[12] I. C. S. da Silva, G. Klein, and D. M. Brandão, “Segmented and Detailed Visualization of Anatomical
Structures based on Augmented Reality for Health Education and Knowledge Discovery,” Adv. sci. technol. eng.
syst. j., vol. 2, no. 3, pp. 469–478, May 2017, doi: 10.25046/aj020360.

[13] C. Moro, Z. Štromberga, A. Raikos, and A. Stirling, “The effectiveness of virtual and augmented reality
in health sciences and medical anatomy,” Anatomical Sciences Education, vol. 10, no. 6, pp. 549–559, 2017, doi:
10.1002/ase.1696.

[14] B. Garrett, J. Anthony, and C. Jackson, “Using Mobile Augmented Reality to Enhance Health
Professional Practice Education,” Current Issues in Emerging eLearning, vol. 4, no. 1, Jul. 2018, [Online].
Available: https://scholarworks.umb.edu/ciee/vol4/iss1/10

[15] P. Parashar, L. M. Sanneman, J. A. Shah, and H. I. Christensen, “A Taxonomy for Characterizing Modes
of Interactions in Goal-driven, Human-robot Teams,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Nov. 2019, pp. 2213–2220. doi: 10.1109/IROS40897.2019.8967974.

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

89

[16] S. Saeedi et al., “Navigating the Landscape for Real-Time Localization and Mapping for Robotics and
Virtual and Augmented Reality,” Proceedings of the IEEE, vol. 106, no. 11, pp. 2020–2039, Nov. 2018, doi:
10.1109/JPROC.2018.2856739.

[17] “Unity - Scripting API: Time.unscaledDeltaTime.” https://docs.unity3d.com/ScriptReference/Time-
unscaledDeltaTime.html (accessed Apr. 05, 2022).

Optimal Control Frequency for Virtual Agents within Augmented Reality Bradford Towle

90

