
Termination Casts: A Flexible Approach to
Termination with General Recursion

Aaron Stump
Computer Science

The University of Iowa
astump@acm.org, Vilhelm Sjöberg

Computer and Information Science
University of Pennsylvania

vilhelm@cis.upenn.edu and Stephanie Weirich
Computer and Information Science

University of Pennsylvania
sweirich@cis.upenn.edu

Abstract

This paper proposes a type-and-effect system called Teq↓, which distinguishes terminating terms
and total functions from possibly diverging terms and partial functions, for a lambda calculus with
general recursion and equality types. The central idea is to include a primitive type-form “Terminates
t”, expressing that term t is terminating; and then allow terms t to be coerced from possibly diverging
to total, using a proof of Terminates t. We call such coercions termination casts, and show how
to implement terminating recursion using them. For the meta-theory of the system, we describe a
translation from Teq↓ to a logical theory of termination for general recursive, simply typed functions.
Every typing judgment of Teq↓ is translated to a theorem expressing the appropriate termination
property of the computational part of the Teq↓ term.

1 Introduction
Soundly combining general recursion and dependent types is a significant current challenge in the design
of dependently typed programming languages. The two main difficulties raised by this combination are
(1) type-equivalence checking with dependent types usually depends on term reduction, which may fail
to terminate in the presence of general recursion; and (2) under the Curry-Howard isomorphism, non-
terminating recursions are interpreted as unsound inductive proofs, and hence we lose soundness of the
type system as a logic.

Problem (1) can be addressed simply by bounding the number of steps of reduction that can be
performed in a single conversion. This solution may seem ad hoc, but it is less problematic if one works,
as we do here, with a primitive notion of propositional equality, and no automatic conversion. Explicit
casts with equality proofs are used to change the types of terms, and so with a bound on the number
of reduction steps allowed, one may simply chain together a sequence of conversions to accommodate
long-running terms in types. There are certainly some issues to be addressed in making such a solution
workable in practice, but it is not a fundamental problem.

Problem (2), on the other hand, cannot be so easily dealt with, since we must truly know that a
recursive function is total if we are to view it soundly as an inductive proof. One well-known approach
to this problem was proposed by Capretta [7]: extend a terminating type theory (that is, one for which we
have a sound static analysis for totality, which we use to require all functions to be total) with general
recursion via coinductive types. Corecursion is used to model general-recursive functions, without
losing logical soundness: productive corecursive functions correspond to sound coinductive arguments.
The type constructor (·)ν for possibly diverging computations, together with natural operations on it, is
shown to form a monad.

A separate problem related to (2) is extending the flexibility of totality checking for total type the-
ories. It is well-known that structural termination can become awkward for some functions like, for
example, natural-number division, where a recursive call must be made on the result of another function

84 E. Komendantskaya, A. Bove, M. Niqui (eds.), PAR-10 (EPiC Series, vol. 5), pp. 84–100

astump@acm.org
vilhelm@cis.upenn.edu
sweirich@cis.upenn.edu

Termination Casts Stump, Sjöberg, and Weirich

call. For this situation, methods like type-based termination have been proposed: see Barthe et al. [4]
and several subsequent works by those authors; also, Abel [1]. The idea in type-based termination is,
roughly, to associate sizes with data, and track sizes statically across function calls. Recursive calls
must be on data with smaller size. This method certainly increases the range of functions judged total
in their natural presentation. No static termination analysis will be complete, so there will always be
programs that type-based termination cannot judge terminating. When such analyses fail, programmers
must rewrite their code so that its termination behavior is more apparent to the analysis. What is required
is a flexible method for such explicit termination arguments.

This paper’s contribution This paper proposes a system called Teq↓ that can be seen as building on
both these lines of work. We develop a type-and-effect system where the effect distinguishes total from
possibly partial terms. The type assignment judgment Γ ` t : T θ includes a termination effect θ, which
can be either ↓ (called “total”), for terms that are known to terminate, or ? (called “general”), for terms
whose termination behavior is unknown.

We can view this approach as building, at least in spirit, on Capretta’s approach with the par-
tiality monad, thanks to the close connection between monads and effects, as shown by Wadler and
Thiemann [19]. Of course, there are important differences between the monadic and effectful ap-
proaches, most notably that effects are hard-wired into the language definition, while monads are usually
programmer-defined. We adopt the effectful approach here, since we are particularly focused on these
two kinds of computation, terminating and possibly partial, as fundamental. We thus deem them appro-
priate for hard-wiring into the language itself. Exploring the tradeoffs more deeply between these two
approaches must remain to future work.

Importantly, Teq↓ provides a flexible approach to termination because the judgment of totality,
Γ ` t : T ↓, is internalized into the type system. The type Terminates t expresses termination of
term t . The effect of a term can thus be changed from possibly partial to total by casting the term t with
a proof of Terminates t . These termination casts change the type checker’s view of the termination
behavior of a term, much as a (sound) type cast changes its view of the type of the term. Termination
casts are used with the terminating recursion operator: the body of the putatively terminating recursive
function is type-checked under the additional explicit assumption that calls with a structurally smaller
argument are terminating.

By reifying this basic view of structural termination as an explicit typing assumption, we follow
the spirit of type-based termination: our method eliminates the need for a separate structural check
(proposed as an important motivation for type-based termination [4]), and gives the programmer even
more flexibility in the kind of functions s/he can write. This is because instead of relying on a static
analysis to track sizes of datatypes, our approach allows the user (or an automated reasoning system)
to perform arbitrarily complex reasoning to show termination of the function. This reasoning can be
internal, using termination casts, or completely external: one can write a general-recursive function that
the type checker can only judge to be possibly partial, and later prove a theorem explicitly showing that
the function is terminating. Of course, one could also wish to support what we would see as a hybrid
approach, in the style of the PROGRAM tactic in Coq [16], but this is outside the scope of the present
paper.

Outline of the development In Section 2, we first present the syntax, reduction rules and type as-
signment system for Teq↓. Because type assignment is not algorithmic for Teq↓, we also develop an
annotated version of Teq↓ suitable for implementation, where terms are annotated to enable algorith-
mic type checking. We follow this explanation with a number of examples of the use of termination
casts, in Section 3. Next, in Section 4 we develop our central meta-theoretic result, based on a trans-
lation of Teq↓ typing judgments to judgments about termination of the term in question, formulated in

85

Termination Casts Stump, Sjöberg, and Weirich

effects θ, ρ ::= ↓ | ?
types T ::= nat | Πθx :T .T ′ | t = t ′ | Terminates t
terms t ::= x | λ x . t | t t ′ | 0 | Suc t

| rec f (x) = t | case t t ′ t ′′

| join | terminates | contra | abort
values v ::= x | 0 | Suc v | λ x . t | rec f (x) = t

| join | terminates | contra
contexts C ::= [] | Suc C | C t | v C | case C t t

Figure 1: Syntax of Teq↓

a first-order logical theory of general-recursive functions (called W ′). This system is similar in spirit
to Feferman’s theory W (see Chapter 13 of [10]), although with significant syntactic differences, and
support for hypothetical reasoning about termination. We show that Teq↓ is sound with respect to this
translation. Also, we find that constructive reasoning suffices for soundness of the translation, so we
take W ′ to be intuitionistic (whereas an important characteristic of W is that its logic is classical).

2 Definition of Teq↓

The language Teq↓ is a simple language with natural numbers and dependently-typed recursive func-
tions. The syntax of types T and terms t appears in Figure 1. The variable x is bound in t in the term
λ x . t and in T ′ in the type Πθx :T .T ′. As explained below, θ for Π-types represents the latent effect of
the function’s computation (it does not describe the input argument). The variables f and x are bound in
t in the term rec f (x) = t . We use the notation [t ′ / x] T and [t ′ / x] t to denote the capture-avoiding
substitution of t ′ for x in types and terms respectively.

We deliberately omit from Teq↓ many important type-theoretic features which we believe to be or-
thogonal to the central ideas explored here. A full-fledged type theory based on these ideas would
include user-defined inductive types, type polymorphism, perhaps a universe hierarchy, large elimina-
tions, implicit products, and so forth. Some of these features, in particular large eliminations, raise
serious technical challenges for this approach (and many others). For this paper we develop the core
ideas needed for distinguishing total and possibly partial computations with our effect system and using
termination casts to internalize termination, leaving other problems to future work.

2.1 Operational semantics

Reduction for Teq↓ is defined as a call-by-value small-step operational semantics. Figure 1 presents
the syntax of values and evaluation contexts and Figure 2 contains the two judgments that make up this
semantics. Values in Teq↓ include variables, natural numbers, functions and primitive proof terms for
the internalized judgments of equality and termination.

We define the reduction rules with two relations: the primitive β rules, written t ;β t ′ describe
reduction when a value is in an active position. This relation is used by the main reduction relation
t ; t ′, which lifts beta reduction through evaluation contexts C and terminates computation for abort,
representing finite failure. Other proof forms, including contra, are considered values. We cannot, in
fact, obtain a contradiction in the empty context (assuming our theoryW ′ is consistent), but at this point
in the development that cannot be shown.

86

Termination Casts Stump, Sjöberg, and Weirich

t ;β t ′

(λ x . t) v ;β [v / x] t
BETA APPABS

case 0 t t ′ ;β t
BETA CASEZERO

case (Suc v) t t ′ ;β t ′ v
BETA CASESUC

(rec f (x) = t) v ;β [v / x] [rec f (x) = t / f] t
BETA APPREC

t ; t ′

t ;β t ′

C [t] ; C [t ′]
RED CTXT

C [abort] ; abort
RED ABORT

Figure 2: Call-by-value small-step operational semantics

2.2 Type assignment

Figure 3 defines the type-assignment system. The judgment Γ ` t : T θ states that the term t can be
assigned type T in the context Γ with effect θ. (The other two judgments, Γ ` Ok and Γ ` T , are
used by this one to check that contexts and types are well formed.) We define the system such that θ is
an approximation of the termination behavior of the system. If we can derive a judgment Γ ` t : T ↓,
then this means that for any assignment of values to the variables in Γ, reduction of t must terminate.
(If the context is inconsistent, t might not terminate even if the type system judges it to do so, since
an inconsistent context can make unsatisfiable assertions about termination, which may pollute the type
system’s judgments.) In contrast, the judgment Γ ` t : T ? places no restrictions on the termination
behavior of t . We view θ is as a capability on termination behavior [9]. A term with capability ? is
allowed to diverge, but terms with capability ↓ cannot. As a result, any term that typechecks with ↓ will
also typecheck with ?. Thus ? is more permissive than ↓, and we order them as ↓≤ ?.

Such reasoning is reflected in the type system. Teq↓ has a call-by-value operational semantics, so
variables stand for values. Therefore, a variable is known to terminate, so we can type variables with any
effect in rule T VAR. This pattern occurs often; all terms that are known to terminate have unconstrained
effects in the conclusion of their typing rules. In this way, we build subeffecting into the type system
and do not need an additional rule to coerce total terms to general ones. Because of this subeffecting,
when a premise of a rule uses the general effect, such as K EQ, it places no restriction on the term.

As is standard in type-and-effect systems, function types are annotated with a latent effect. This
effect records the termination effect for the body of the function, in rule T ABS. Likewise, in an appli-
cation (rule T APP), the latent effect of the function must be equal or less than the current termination
effect. Note that, although the system supports subeffecting, it does not support subtyping. In an appli-
cation, the type of the argument must exactly match that expected by the function. Although there is a
natural extension of subeffecting to subtyping, for simplicity we have not included it in this system.

Teq↓ types include two propositions. The type t = t ′ states that two terms are equal and the type
Terminates t declares that term t is terminating. The introduction form for the equality proposition
(rule T JOIN) requires both terms to be well typed and evaluate to a common reduct. For flexibility,
these terms need not be judged terminating nor have the same type. The elimination form (T CONV)
uses a total proof of equality to convert between equivalent types. Likewise, the introduction form for
the Terminates t proposition (T REIFY) requires showing that the term terminates. Analogously, the
elimination form (T REFLECT) uses a total proof of termination to change the effect of t . Teq↓ also
internalizes an admissible property of the judgment with the empty context—if a term terminates, then

87

Termination Casts Stump, Sjöberg, and Weirich

Γ ` T

Γ ` Ok

Γ ` nat
K NAT

Γ , x : T ` T ′

Γ ` Πθx :T .T ′
K PI

Γ ` t : T ? Γ ` t ′ : T ′ ?

Γ ` t = t ′
K EQ

Γ ` t : T ?

Γ ` Terminates t
K TERM

Γ ` Ok

· ` Ok
OK EMPTY

Γ ` Ok Γ ` T

Γ , x : T ` Ok
OK CONS

Γ ` t : T θ

t ;∗ t0 t ′ ;∗ t0
Γ ` t : T ? Γ ` t ′ : T ′ ?

Γ ` join : t = t ′ θ
T JOIN

Γ ` t : [t2 / x] T θ
Γ ` t ′ : t1 = t2 ↓ Γ ` [t1 / x] T

Γ ` t : [t1 / x] T θ
T CONV

Γ ` t : T ↓
Γ ` terminates : Terminates t θ

T REIFY

Γ ` t : T ?
Γ ` t ′ : Terminates t ↓

Γ ` t : T θ
T REFLECT

Γ ` t : Terminates C [t ′] θ

Γ ` t : Terminates t ′ θ
T CTXTERM

Γ(x) = T Γ ` Ok

Γ ` x : T θ
T VAR

Γ , x : T ′ ` t : T ρ Γ ` Πρx :T ′.T

Γ ` λ x . t : Πρx :T ′.T θ
T ABS

Γ ` t : Πρx :T ′.T θ Γ ` t ′ : T ′ θ ρ ≤ θ

Γ ` t t ′ : [t ′ / x] T θ
T APP

Γ ` Ok

Γ ` 0 : nat θ
T ZERO

Γ ` t : nat θ

Γ ` Suc t : nat θ
T SUC

Γ ` t : 0 = Suc t ′ ↓
Γ ` contra : T θ

T CONTRA
Γ ` Ok

Γ ` abort : T ?
T ABORT

Γ , f : Π?x :T ′.T , x : T ′ ` t : T ?

Γ ` rec f (x) = t : Π?x :T ′.T θ
T REC

Γ ` t : nat θ Γ ` t ′ : [0 / x] T θ
Γ ` t ′′ : Πρx ′ :nat.[Suc x ′ / x] T θ ρ ≤ θ

Γ ` case t t ′ t ′′ : [t / x] T θ
T CASENAT

p 6∈ fv t
Γ , f : Π?x :nat.T , x : nat , p : Π↓x1 :nat.Π↓p′ :x = Suc x1.Terminates (f x1) ` t : T ↓

Γ ` rec f (x) = t : Π↓x :nat.T θ
T RECNAT

Figure 3: Type assignment system

88

Termination Casts Stump, Sjöberg, and Weirich

annot . types S ::= nat | Πθx :S .S ′ | a = a ′ | Terminates a
annot . terms a ::= x | a a ′ | λθx:S .a | 0 | Suc a

| recnat f(x p): S = a | rec f(x:S): S ′ = a | case x.S a a ′ a ′′

| join a a ′ | conv x.S a ′ a | terminates a | reflect a a ′

| inv a a ′ | contra S a | abort S

Figure 4: Syntax of annotated Teq↓

the subterm in the active position of the term terminates (T CTXTERM). This property does not (appear
to) follow constructively from the others.

Recursive functions can be typed with either general or total latent effects. In the latter case, the
T RECNAT rule introduces a new hypothesis into the context that may be used to show that the body
of the function is total. The assumption p : Π↓x1 : nat.Π↓p′ : x = Suc x1.Terminates (f x1) is
an assertion that for any number x1 that is one less than x , the recursive call (f x1) terminates. Even
though the type of f has a ? latent effect, recursive calls on the immediate predecessor can be cast to be
total using this assumption.

The rule T RECNAT includes a restriction that p 6∈ fv t . This means that the only places that p can
occur in a typing derivation is in the proof-premises of T CONV, T REFLECT, and T CONTRA. The
advantage of setting up the system this way is that we can define the operational semantics without any
reference to proofs: the rule BETA APPREC does not have to specify a proof term to substitute for free
occurrences of p in t . In other words the T RECNAT rule bakes in a form of proof erasure [12, 3, 11].

We may worry that this restriction limits the expressiveness of the language because the variable
p can not be used in every context. However, that is not the case as our system satisfies a form of
proof irrelevance. No matter what proof we have of termination, we can always use the rules T REIFY
and T REFLECT to replace it by the (computationally) uninformative proof terminates. We give an
example of this behavior in the next section. Thus, we do not lose anything by making the proof variable
p second-class, since we can always replace it with a proof that does not mention p. (Likewise, equality
proofs are irrelevant, as we can use T JOIN followed by T CONV to show that Γ ` u : t = t ′ ↓ implies
Γ ` join : t = t ′ ↓.)

2.3 Annotated language

The previous two subsections provide a complete specification of the Teq↓ language. However, in Teq↓,
type inference is not algorithmic. Given a context Γ, a term t and effect θ, it is not clear how to determine
if there is some T such that Γ ` t : T θ holds. The terms do not contain enough information to indicate
how to construct a typing derivation.

Fortunately, it is straightforward to produce an annotated version of Teq↓ where the type checking
algorithm is fully determined. Below we give the syntax of the annotated terms. The full typing rules
for the annotated system appear in Figure 6. The judgment form is Γ a : S θ, where algorithmically,
Γ, a , and θ are inputs to the type checker and type S is the output.

Most annotated term forms have direct correspondence to the unannotated terms. Figure 5 defines
the operation | · | that erases annotations. Notably, there are two different forms of recursion, based on
which typing rule should be used. Furthermore, the syntax includes terms (conv x.S a ′ a , inv a a ′,
and reflect a a ′) that mark where type conversions, termination inversions and termination casts should
occur—these are implicit in the unannotated system.

The annotated system uses types S that are exactly like types T except that they contain annotated

89

Termination Casts Stump, Sjöberg, and Weirich

Types
|nat | = nat
Πθx :S .S ′	= Πθx :	S	.	S ′
a = a ′	=	a	=	a ′
Terminates a	= Terminates	a		

Terms
|x | = x
| a a ′ | = | a | | a ′ |
|λθx:S .a | = λ x . | a |
| 0 | = 0
Suc a	= Suc	a				
case x.S a a ′ a ′′	= case	a		a ′		a ′′
recnat f(x p): S = a	= rec f (x) =	a				
rec f(x:S): S ′ = a	= rec f (x) =	a				

| join a a ′ | = join
| terminates a | = terminates
| contra S a | = contra
|abort S | = abort
conv x.S a a ′	=	a
reflect a a ′	=	a
inv a a ′	=	a

Figure 5: Annotation erasure

terms. However, because there is no operational semantics defined for annotated terms, the join rule
(shown below) first erases the annotations before determining if there is some common reduct. Likewise,
the inversion rule uses erasure to find the evaluation context.

Simple comparison of the typing rules of the two systems in a straightforward inductive proof shows
that the annotated system is sound and complete with respect to the implicit system.

Proposition 1 (Soundness of annotated system). If Γ a : S θ then Γ ` | a | : |S | θ.

Proposition 2 (Completeness of annotated system). If Γ ` t : T θ then there exists an a and S , such
that | a | = t and |S | = T and Γ a : S θ.

Note that although type inference is syntax-directed, it is only decidable in the annotated system
if there is some cut-off in normalization in the join rule. Even if we were to require a and a ′ to have
the total effect in this rule, this restriction would not ensure decidability. An inconsistent context could
type a looping term with a total effect. It would be reasonable to make the cutoff part of the annotated
join-term itself, although here we use a global cut-off. Note that imposing a cutoff in the join rule in
the annotated system does not jeopardize completeness as a single join in the implicit system can be
translated to several joins in the annotated system.

Finally, we are not considering the problem of annotation inference for this system. This is an im-
portant problem to ease the burden of programming with termination casts. We conjecture that in many
simple cases like structural decrease of a single parameter to the function, the appropriate termination
casts can be added completely automatically. But working this process out is beyond the scope of this
paper.

3 Examples

Natural number addition: internal verification Our first example shows how simple structurally re-
cursive functions can be shown terminating at their definition time using the T RECNAT rule. We define
natural number addition with the following term, showing first its implicit then annotated versions:

90

Termination Casts Stump, Sjöberg, and Weirich

Γ S

Γ Ok

Γ nat
S NAT

Γ S Γ , x : S S ′

Γ Πθx :S .S ′
S PI

Γ a : S ? Γ a ′ : S ′ ?
Γ S Γ S ′

Γ a = a ′
S EQ

Γ a : S ?

Γ Terminates a
S TERM

Γ Ok

· Ok
OKA EMPTY

Γ Ok Γ S

Γ , x : S Ok
OKA CONS

Γ a : S θ

| a |;N t | a ′ |;N t
Γ a : S ? Γ a ′ : S ′ ?

Γ join a a ′ : a = a ′ θ
AT JOIN

Γ a : [a2 / x] S θ
Γ a ′ : a1 = a2 ↓ Γ [a1 / x] S

Γ conv x.S a a ′ : [a1 / x] S θ
AT CONV

Γ a : S ↓
Γ terminates a : Terminates a θ

AT REIFY
Γ a : S ? Γ a ′ : Terminates a ↓

Γ reflect a a ′ : S θ
AT REFLECT

Γ a : Terminates a ′′ θ
| a ′′ | = C [| a ′ |]

Γ inv a a ′ : Terminates a ′ θ
AT CTXTERM

Γ(x) = T Γ Ok

Γ x : S θ
AT VAR

Γ , x : S ′ a : S ρ Γ Πρx :S ′.S

Γ λρx:S ′.a : Πρx :S ′.S θ
AT ABS

Γ a : Πρx :S ′.S θ Γ a ′ : S ′ θ ρ ≤ θ

Γ a a ′ : [a ′ / x] S θ
AT APP

Γ Ok

Γ 0 : nat θ
AT ZERO

Γ a : nat θ

Γ Suc a : nat θ
AT SUC

Γ a : 0 = Suc a ′ ↓
Γ contra S a : S θ

AT CONTRA
Γ Ok

Γ abort S : S ?
AT ABORT

Γ , f : Π?x :S ′.S , x : S ′ a : S ?

Γ rec f(x:S ′): S = a : Π?x :S ′.S θ
AT REC

Γ a : nat θ Γ a ′ : [0 / x] S θ
Γ a ′′ : Πρx′ :nat.[Sucx′ / x] S θ
ρ ≤ θ

Γ case x.S a a ′ a ′′ : [a / x] S θ
AT CASENAT

p 6∈ fv a
Γ , f : Π?x :nat.S , x : nat , p : Π↓x1 :nat.Π↓p′ :x = Sucx1.Terminates (f x1) a : S ↓

Γ recnat f(x p): S = a : Π↓x :nat.S θ
AT RECNAT

Figure 6: Annotated type checking system

91

Termination Casts Stump, Sjöberg, and Weirich

implicit plus
def
= λ x2 . rec f (x1) = (case x1 (λ q . x2) (λ x ′ . λ q .Suc (f x ′))) join

annotated plus
def
= λ↓x2:nat. recnat f (x1 p): nat =

(case x.(Π↓q :x1 = x.nat) x1
(λ↓q:x1 = 0.x2)
(λ↓x′:nat.λ↓q:x1 = Sucx′. Suc (reflect (f x′) (p x′ q))))

(join x1 x1)

In this example, we must abstract over equality types that are then applied to join. This standard
trick, used frequently in COQ and similar dependent type theories, introduces different assumptions of
equalities into the context, depending on the case branch. As remarked above, we have deliberately
omitted from Teq↓ a number of features that would improve some of these examples, notably implicit
products (as proposed by Miquel [11]) for equality proofs in case-terms.

The typing rules verify that plus is a total operation. For example, in the annotated system we can
show:

· plus : Π↓x1 :nat.Π↓x2 :nat.nat ↓

To see why this is so, consider the context that we use to type check the body of the recursive function:

Γ
def
= x1 : nat , x2 : nat , f : Π?x1 :nat.nat , p : Π↓x′ :nat.Π↓q :x1 =

Sucx′.Terminates (f x′) , ·

In this context, we would like to show that the case expression has type (Π↓q :x1 = x1.nat). Note that
the abstraction of q must be ↓ so that when we apply the case expression to join the entire expression
will have the ↓ effect. In the zero case, we use rules TA ABS and TA VAR to show that the abstraction
has the desired total function type.

In the successor case, we use a termination cast to show that the recursive call is total. Without this
cast, we would be unable to use the latent effect ↓ in the abstraction of q. Using the rules for variables
and application we can show that the recursive call has a general effect, but by itself, this will not let us
define a total function.

Γ , x′ : nat , q : x1 = Sucx′ f x′ : nat ?

However, given the extra argument from recursive function, we can produce a proof that the recursive
call terminates.

Γ , x′ : nat , q : x1 = Sucx′ p x′ q : Terminates (f x′) ↓

From these two, we can use a termination cast to change the effect of the recursive call.

Γ , x′ : nat , q : x1 = Sucx′ reflect (f x′) (p x′ q) : nat ↓

Finally, we can use the rules for successor and abstraction to conclude that the successor case has the
desired type.

Natural number addition: external verification An advantage of this system is that we do not need
to prove that plus is total when we define it. We could also define plus using general recursion:

plus
def
= λ x2 . rec f (x1) = case x1 x2 (λ z .Suc (f z))

92

Termination Casts Stump, Sjöberg, and Weirich

But note, the best typing derivation will assign a ? latent effect to this function. (For brevity, this and
further examples will be presented in the implicit language.)

· ` plus : Π↓x2 :nat.Π?x1 :nat.nat ↓

However, all is not lost. We can still prove the following theorem and use it in a termination cast to
show that a particular application of plus terminates. The proof term (below) uses recursion to construct
a total witness for this theorem.

plustotal : Π↓x2 :nat.Π↓x1 :nat.Terminates (plus x2 x1)

plustotal
def
= λ x2 . (rec f (x1) = (case x1 (λ q . terminates) (λ z . λ q . terminates)) join)

To understand this proof term, we look at the typing derivation in each branch of the case term. Let Γ
be the context that rule T RECNAT uses to check the body of the recursive definition, shown below.

Γ
def
= x2 : nat,

x1 : nat,
f : Π?z :nat.Terminates (plus x2 z),
p : Π↓z :nat.Π↓q :x1 = Suc z .Terminates (f z)

Then in the zero case, because plus x2 0 evaluates to x2 and variables terminate, we can use rule T CONV
to show that case total.

Γ , q : x1 = 0 ` x2 : nat ↓
Γ , q : x1 = 0 ` terminates : Terminates x2 ↓

...
Γ ` join : plus x2 0 = x2 ↓

Γ , q : x1 = 0 ` terminates : Terminates (plus x2 0) ↓
Γ ` λ q . terminates : Π↓q :x1 = 0.Terminates (plus x2 0) ↓

For the successor case, we need to make a recursive call to the theorem to show that the recursive call to
the function terminates. Below, let Γ′ be the extended environment Γ , z : nat , q : x1 = Suc z and
(∗) be the derivation of Γ′ ` join : plus x2 (Suc z) = Suc (plus x2 z) ↓. Then, the derivation looks
like:

...

Γ′ ` plus x2 z : nat ?

...

Γ′ ` f z : Terminates (plus x2 z) ↓

Γ′ ` plus x2 z : nat ↓

Γ′ ` Suc (plus x2 z) : nat ↓

Γ′ ` terminates : Terminates (Suc (plus x2 z)) ↓ (∗)

Γ′ ` terminates : Terminates (plus x2 (Suc z)) ↓

First-class termination proofs Recursive functions can also call helper functions in their definitions,
passing off the recursive term and a proof that the recursive call will terminate. For example, suppose
there is some function h that takes a an argument, a (general) function to call on that argument, and a
proof that the call terminates.

h : Π↓x :nat.Π↓f :Π?x :nat.nat.Π↓p :Terminates (f x).nat

93

Termination Casts Stump, Sjöberg, and Weirich

For example, h may just apply f to x and use a termination cast to show the effect total. We can use h
in the definition of a total recursive function, even if we do not know its definition. (Let Γ be a context
which contains the above binding for h .)

Γ ` rec f (x) = (case x (λ q . 0) (λ z . λ q . h z f terminates)) join : Π↓x :nat.nat ↓

Note that in this example, we use terminates as the proof that f z terminates. Although T RECNAT
introduces the variable p, of type Π↓z : nat.Π↓q : z = Suc z .Terminates (f z), we cannot pass
p z q as the termination proof to h because p cannot be mentioned in the term. However, the proof
term terminates works instead, as shown by the following derivation. (Let Γ′ be the context in the
successor case, i.e. Γ extended with bindings for x , f , p, z and q .)

...

Γ′ ` p z q : Terminates (f z) ↓

...

Γ′ ` f z : nat ?
T REFLECT

Γ′ ` f z : nat ↓
T REIFY

Γ′ ` terminates : Terminates (f z) ↓

Natural number division Finally, we demonstrate a function that requires a course-of-values argu-
ment to show termination: natural number division. The general problem is that division calls itself
recursively on a number that is smaller, but is not the direct predecessor of the argument. To show that
this function terminates, we do structural recursion on an upper bound of the dividend instead of the
dividend itself. (Note that we could also define division as a possibly partial function, without this extra
upper-bound argument, and separately write a proof that states that division is a total function.) The
type we use for division is:

div : Π↓z :nat.Π↓x :nat.Π↓x ′ :nat.Π↓u : (lte x ′ x) = true.nat

where z is the divisor, x ′ is the dividend, x is an upper bound of the dividend, and lte is a function
that determines if the first number is “less-than-or-equal” the second. We have been parsimonious in
omitting a boolean type, so we use 0 and Suc 0 for false and true, respectively in the result of lte .
Therefore, we define

lte
def
= rec f (x) = λ u . case x (Suc 0) (λ x ′ . case u 0 (f x ′))

and show
· ` lte : Π?x :nat.Π?x ′ :nat.nat ↓

Note that we are considering lte as a possibly partial function; nothing is harmed by not requiring it to
be total. We also define cut-off subtraction as a total function minus of type Π↓x :nat.Π↓x ′ :nat.nat
(details omitted). The code for division is then:

div def
= λz .((case z

(λ q . λ x . λ x ′ . λ u . 0)
(λ z ′ . λ q . rec f (x) = λ x ′ . λ u . ((case (lte (Suc x) z) t1 (λ z ′′ . λ q ′ . 0)) join)))

join)

We handle the case of division by 0 up front, obtaining an assumption q : z = Suc z ′ when the
divisor is not zero. Next, we case split on whether or not the bound x is strictly less than z; that is,
lte (Suc x) z . If so, we use the term λ z ′′ . λ q ′ . 0 of type

Π↓z ′′ :nat.Π↓q ′ : lte (Suc x) z = (Suc z ′′).nat

94

Termination Casts Stump, Sjöberg, and Weirich

Then the quotient is 0. If not, we use the term t1, of type Π↓q ′ : (lte (Suc x) z = 0).nat, which is
(with t2 discussed below):

t1
def
= λ q ′ . (Suc (f (pred x) (minus x ′ z) t2))

In this case, we are decreasing our bound on the dividend by one, and then using a termination cast to
show that f (pred x) is terminating. Here, we define pred as just λ x . case x 0 λ x ′ . x ′. Of course,
since this is the implicit language, the termination cast does not appear in the term itself. To apply the
termination cast, we must use the implicit assumption p telling us that f terminates on the predecessor
of x . We can prove that case x 0 λ x ′ . x ′ is the predecessor of x in this case, because the assumptions
q : z = (Suc z ′) and q ′ : lte (Suc x) z = false show that x is non-zero: Intuitively, q ′ implies that
x is greater than or equal to z, which we know is non-zero by q . The term t2 is a proof that minus x ′ z
is less than or equal to the predecessor of the bound, case x 0 λ x ′ . x ′. In fact, join will serve for t2
because the desired equation is provable from the assumptions.

4 A Logical Semantics for Teq↓

In this section, we give a semantics for Teq↓ in terms of a simple constructive logic called W ′. This
semantics informs our design of Teq↓ and can potentially be used as part of a consistency proof for Teq↓.
The theory W ′ is reminiscent of Feferman’s theory W (see, for example, Chapter 13 of [10]). W is a
classical second-order theory of general-recursive functions, classified by class terms which correspond
to simple types. W supports quantification over class terms, and quantification over defined individual
terms. It is defined in Beeson’s Logic of Partial Terms, a logic designed for reasoning about definedness
in the presence of partial functions [5]. W includes a relatively weak form of natural-number induction.
Indeed, W is conservative over Peano Arithmetic.

4.1 The theory W ′

Figure 7 gives the syntax for sorts A (which are just simple types) and formulas F for the theory W ′;
as well as typing contexts Σ and contexts H for logical assumptions. Terms t are just as for (implicit)
Teq↓, except without contra, terminates, and join. Figure 8 gives the proof rules for the theory W ′.
The form of judgments is Σ ; H ` F . This expresses that formula F holds under the assumed formulas
in H . Σ is a typing context declaring free term-level variables occurring in H and F .

W ′ is similar in spirit to Feferman’s W , but differs in a number of details. First, W is a two-sorted
theory: there is a sort for individual terms, and one for class terms. To express that term t is in class C,
theory W uses an atomic formula t ∈ C. Our theory W ′, in contrast, is a multi-sorted first-order logic,
with one sort for every simple type. So W ′ does not make use of a predicate symbol to express that a
term has a sort. We only insist that terms are well-sorted when instantiating quantifiers. This is apparent
in the rule PV ALLE, which depends on a simple typing judgment for W ′. The rules for this typing
judgment may be found in the companion technical report [18]. Well-formedness of equations does not
require well-sortedness of the terms in W ′ (as also in W). Also, we have no reason at the moment to
include non-constructive reasoning in W ′, so we define it using principles of intuitionistic logic only.

A few more words on the proof principles of W ′ are warranted. The PV OPSEM equates terms t
and t′ iff t ;∗ t′. Thanks to the PV SUBST rule, symmetry and transitivity of equality can be derived
in a standard way. We do not require quantifiers to be instantiated by only terminating terms. This
means that for induction principles, we must state explicitly that the terms in question are terminating.
We include a principle PV COMPIND of computational induction, on the structure of a terminating
computation. That is, if we know that an application of a recursive function is terminating, we can prove

95

Termination Casts Stump, Sjöberg, and Weirich

A ::= nat | A→ A′

F ::= True | ∀x : A.F | F ⇒ F ′ | F ∧ F ′ | Terminates t | t = t ′

Σ ::= · | Σ , x : A
H ::= · | H , F

Figure 7: Simple types, formulas, typing contexts, and assumption contexts of W ′

F ∈ H

Σ ; H ` F
PV ASSUME

Σ , x : A ; H ` F x 6∈ fv H

Σ ; H ` ∀x : A.F
PV ALLI

Σ ; H ` ∀x : A.F Σ ` t : A

Σ ; H ` [t / x] F
PV ALLE

Σ ; H , F ` F ′

Σ ; H ` F ⇒ F ′
PV IMPI

Σ ; H ` F ⇒ F ′ Σ ; H ` F

Σ ; H ` F ′
PV IMPE

Σ ; H ` F Σ ; H ` F ′

Σ ; H ` F ∧ F ′
PV ANDI

Σ ; H ` F ∧ F ′

Σ ; H ` F
PV ANDE1

Σ ; H ` F ∧ F ′

Σ ; H ` F ′
PV ANDE2

Σ ; H ` True
PV TRUEI

Σ ; H ` 0 = Suc t

Σ ; H ` F
PV CONTRA

t ;∗ t ′

Σ ; H ` t = t ′
PV OPSEM

Σ ; H ` t = t ′ Σ ; H ` [t / x] F

Σ ; H ` [t ′ / x] F
PV SUBST

Σ ; H ` Terminates 0
PV TERM0

Σ ; H ` Terminates t

Σ ; H ` Terminates Suc t
PV TERMS

Σ ; H ` Terminates λ x . t
PV TERMABS

Σ ; H ` Terminates rec f (x) = t
PV TERMREC

Σ ; H ` Terminates C [t]

Σ ; H ` Terminates t
PV TERMINV

Σ ; H ` Terminates abort

Σ ; H ` F
PV NOTTERMABORT

Σ ; H ` [0 / x] F Σ , x ′ : nat ; H , Terminates x ′ , [x ′ / x] F ` [Suc x ′ / x] F

Σ ; H ` ∀x : nat.Terminates x ⇒ F
PV IND

Σ , f : A′ → A ; H , ∀x : A′.[f x / z] F ` ∀x : A′.[t / z] F Σ ` rec f (x) = t : A′ → A

Σ ; H ` ∀x : A′.Terminates (rec f (x) = t) x ⇒ [(rec f (x) = t) x / z] F
PV COMPIND

Figure 8: Theory W ′

a property of such an application by assuming it is true for recursive calls, and showing it is true for
an outer arbitrary call of the function. Note that the assumption of termination of the application of the
recursive function is essential: without it, we could prove diverging terms terminate. We also include a
principle PV TERMINV of computational inversion, which allows us to conclude Terminates t from
Terminates C [t]. Interestingly, even without the inversion rule of Teq↓, the theorem we prove below
would make heavy use of computational inversion. In a classical theory like W , this principle may well
be derivable from the other axioms. Here, it does not seem to be.

96

Termination Casts Stump, Sjöberg, and Weirich

[[x]]C = x [[t t ′]]C = [[t]]C [[t ′]]C

[[λ x . t]]C = λx. [[t]]C [[0]]C = 0
[[Suc t]]C = S [[t]]C [[join]]C = 0
[[terminates]]C = 0 [[contra]]C = 0
[[abort]]C = abort [[rec f (x) = t]]C = rec f (x).[[t]]C

[[case t t ′ t ′′]]C = C [[t]]C [[t ′]]C [[t ′′]]C

Figure 9: Computational translation of terms

[[nat]]C = nat

[[Πθx :T .T ′]]C = [[T]]→ [[T ′]]

[[t = t ′]]C = nat

[[Terminates t]]C = nat

[[nat]]L t = True

[[Πθx :T .T ′]]L t = ∀x : [[T]]C .[[T]]L↓ x ⇒ [[T ′]]Lθ (t x)

[[t1 = t2]]L t = [[t1]]C = [[t2]]C

[[Terminates t ′]]L t = Terminates [[t ′]]C

[[T]]L↓ t = Terminates t ∧ [[T]]L t

[[T]]L? t = Terminates t ⇒ [[T]]L t

Figure 10: Interpretation of types

Computational translation of terms Figure 9 defines what we will refer to as the computational
translation of Teq↓ terms (the “C” is for computational). This translation, which is almost trivial, just
maps logical terms join, terminates, and contra to 0.

Translation of types Next, given Teq↓ type T , we define [[T]]C and [[T]]L. The “L” is for logical
translation. This [[T]]C is a sort A, and [[T]]L is a predicate on translated terms. Recall that the syntax for
such types and for the formulas F used in such predicates is defined in Figure 7 above. The definition
of the interpretations is then given in Figure 10. Note that one can confirm the well-foundedness of this
definition by expanding the definition of [[T]]Lθ , a convenient abbreviation, wherever it is used.

4.2 Examples

Example 1. If we consider the type Π↓x1 : nat.Π↓x2 : nat.nat, we will get the following. Note
that the assumptions below that variables terminate reflect the call-by-value nature of the language. A
translation for a call-by-name language would presumably not include such assumptions.

[[Π↓x1 :nat.Π↓x2 :nat.nat]]C = nat→ (nat→ nat)

[[Π↓x1 :nat.Π↓x2 :nat.nat]]L plus = ∀x1 : nat. Terminates x1 ∧True⇒
Terminates (plus x1) ∧
∀x2 : nat.Terminates x2 ∧True⇒

Terminates (plus x1 x2) ∧ True

Example 2 (higher-order, total). If we wanted to type a function iter which iterates a terminating
function x1, starting from x2, and does this iteration x3 times, we might use the type: Π↓x1 : Π↓x :
nat.nat.Π↓x2 : nat.Π↓x3 : nat.nat. For this type (call it T for brevity), we will get the following

97

Termination Casts Stump, Sjöberg, and Weirich

[[·]]C = ·
[[Γ , x : T]]C = [[Γ]], x : [[T]]C

[[·]]L = ·
[[Γ , x : T]]L = [[Γ]], [[T]]L↓ x

Figure 11: Interpretation of contexts

translations:

[[T]]C = (nat→ nat)→ (nat→ (nat→ nat))

[[T]]L iter = ∀x1 : nat→ nat.Terminates x1 ∧
(∀x : nat.Terminates x ∧ True⇒ Terminates (x1 x) ∧ True) ⇒

Terminates (iter x1) ∧
∀x2 : nat.Terminates x2 ∧True⇒ Terminates (iter x1 x2) ∧
∀x3 : nat.Terminates x3 ∧True⇒ Terminates (iter x1 x2 x3) ∧ True

Notice that in this case, the logical interpretation [[T]]L includes a hypothesis that the function x1 is
terminating. This corresponds to the fact that x1 has type Π↓x :nat.nat in the original Teq↓ type.

Example 3 (higher-order, partial). If we wanted to type a different version of iter which, when given
a general-recursive function x1 and a starting value x2, returns a general-recursive function taking input
x3 and iterating x1 x3 times starting from x2, we might use the type: Π↓x1 : Π?x : nat.nat.Π↓x2 :
nat.Π?x3 :nat.nat. For this type (call it T), we will get the following logical translation:

[[T]]L iter = ∀x1 : nat→ nat.Terminates x1 ∧
(∀x : nat.Terminates x ∧ True⇒ Terminates (x1 x) ⇒ True) ⇒

Terminates (iter x1) ∧
∀x2 : nat.Terminates x2 ∧True⇒ Terminates (iter x1 x2) ∧
∀x3 : nat.Terminates x3 ∧True⇒ Terminates (iter x1 x2 x3) ⇒ True

4.3 Translation of contexts

Figure 11 gives a similar 2-part translation of typing contexts. The translation [[·]]C produces a simple-
typing context Σ, while the translation [[·]]L produces a logical context H , which asserts, for each vari-
able x , that x terminates and has the property given by the [[·]]L translation of its type.

4.4 Translation of typing judgments

We are now in a position to state the main theorems of this paper. The proofs are given in the companion
technical report. Theorem 4 shows that the logical translation of types is sound: the property expressed
by [[T]]Lθ can indeed be proved to hold for the translation [[t]]C of terms of type T .

Theorem 3 (Soundness of Computational Translation). If Γ ` t : T θ, then [[Γ]]C ` [[t]]C : [[T]]C .

Theorem 4 (Soundness of Logical Translation). If Γ ` t : T θ, then [[Γ]]C ; [[Γ]]L ` [[T]]Lθ [[t]]C .

98

Termination Casts Stump, Sjöberg, and Weirich

5 Related Work
Capretta’s Partiality Monad Capretta [7] gives an account of general recursion in terms of a coinduc-
tive type constructor (·)ν , and many Teq↓ programs can be fairly mechanically translated into programs
using (·)ν by a translation similar to the the one described by Wadler and Thiemann [19]. However,
one interesting difference is that Teq↓ functions can have a return type which depends on a potentially
nonterminating argument. It is not clear how to represent this in a monadic framework.

For example, if we imagine a version of Teq↓ extended with option types, and suppose we are given
a decision procedure for equality of nats and a partial function which computes the minimum zero of a
function:

eqDec : Π↓x :nat.Π↓x ′ :nat.Maybe (x = x ′)
minZero : Π?f : (Π↓x :nat.nat).nat

Then we can easily compose these to make a function to test if two functions have the same least zero:

λ f . λ f ′ . eqDec (minZero f) (minZero f ′)
: Π↓f : (Π↓x :nat.nat).Π?f ′ : (Π↓x :nat.nat).Maybe (minZero f = minZero f ′)

However the naive translation of this into monadic form,

λf.λf ′.(minZero f) >>= (λm.(minZero f ′) >>= (λm′.return (eqDec mm′))),

is not well typed, since the monadic bind >>= : ∀A B.Aν → (A → Bν) → Bν does not have a way
to propagate the type dependency.

Other Another approach, not depending on coinductive types, is explored by Capretta and Bove, who
define a special-purpose accessibility predicate for each general-recursive function, and then define the
function by structural recursion on the proof of accessibility for the function’s input [6]. ATS and GURU
both separate the domains of proofs and programs, and can thus allow general recursion without endan-
gering logical soundness [17, 8]. Systems like Cayenne [2], ΩMEGA [15]. and CONCOQTION [13]
support dependent types and general recursion, but do not seek to identify a fragment of the term lan-
guage which is sound as a proof system (although CONCOQTION uses COQ proofs for reasoning about
type indices).

6 Conclusion
Teq↓ combines equality types and general recursion, using an effect system to distinguish total from
possibly partial terms. Termination casts are used to change the type system’s view of the termination
behavior of a term. Like other casts, termination casts have no computational relevance and are erased
in passing from the annotated to the implicit type system. We have given a logical semantics for Teq↓

in terms of a multi-sorted first-order theory of general-recursive functions. Future work includes further
meta-theory, including type soundness for Teq↓ and further analysis of the proposed theory W ′; as
well as incorporation of other typing features, in particular polymorphism and large eliminations. An
important further challenge is devising algorithms to reconstruct annotations in simple cases or for
common programming idioms.

Acknowledgments. Many thanks to the PAR 2010 reviewers for an exceptionally close reading and
many constructive criticisms. All syntax definitions in this paper were typeset and type-checked with
the OTT tool [14]. Thanks also to other members of the TRELLYS project, especially Tim Sheard, for
helpful conversations on these ideas. This work was partially supported by the U.S. National Science
Foundation under grants 0702545, 0910510 and 0910786.

99

Termination Casts Stump, Sjöberg, and Weirich

References
[1] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis, Ludwig-

Maximilians-Universität München, 2006.
[2] Lennart Augustsson. Cayenne–a language with dependent types. In Proc. 3rd ACM International Conference

on Functional Programming (ICFP), pages 239–250, 1998.
[3] B. Barras and B. Bernardo. The Implicit Calculus of Constructions as a Programming Language with Depen-

dent Types. In Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, volume 4962 of Lecture Notes in Computer Science, pages
365–379. Springer, 2008.

[4] G. Barthe, M. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions.
Mathematical Structures in Computer Science, 14(1):97–141, 2004.

[5] M. Beeson. Foundations of Constructive Mathematics: Metamathematical Studies. Springer, 1985.
[6] A. Bove and V. Capretta. Modelling general recursion in type theory. Mathematical Structures in Computer

Science, 15:671–708, February 2005. Cambridge University Press.
[7] V. Capretta. General Recursion via Coinductive Types. Logical Methods in Computer Science, 1(2):1–28,

2005.
[8] C. Chen and H. Xi. Combining Programming with Theorem Proving. In Proceedings of the 10th International

Conference on Functional Programming (ICFP05), Tallinn, Estonia, September 2005.
[9] K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in a Calculus of Capabilities. In POPL

’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 262–275. ACM, 1999.

[10] S. Feferman. In the Light of Logic. Oxford University Press, 1998.
[11] A. Miquel. The Implicit Calculus of Constructions. In Typed Lambda Calculi and Applications, pages 344–

359, 2001.
[12] N. Mishra-Linger and T. Sheard. Erasure and Polymorphism in Pure Type Systems. In Roberto M. Ama-

dio, editor, Foundations of Software Science and Computational Structures, 11th International Conference
(FOSSACS), pages 350–364. Springer, 2008.

[13] E Pasalic, J. Siek, W. Taha, and S. Fogarty. Concoqtion: Indexed Types Now! In G. Ramalingam and
E. Visser, editors, ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program Manipulation, 2007.

[14] P. Sewell, F. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott: Effective tool support
for the working semanticist. J. Funct. Program., 20(1):71–122, 2010.

[15] T. Sheard. Type-Level Computation Using Narrowing in Ωmega. In Programming Languages meets Program
Verification, 2006.

[16] M. Sozeau. Subset Coercions in Coq. In T. Altenkirch and C. McBride, editors, Types for Proofs and Pro-
grams, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers,
pages 237–252, 2006.

[17] A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified Programming in Guru. In T. Altenkirch
and T. Millstein, editors, Programming Languges meets Program Verification (PLPV), 2009.

[18] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination casts: A flexible approach to termination
with general recursion (technical appendix). Technical Report MS-CIS-10-21, Computer and Information
Science, University of Pennsylvania, May 2010.

[19] P. Wadler and P. Thiemann. The marriage of effects and monads. ACM Trans. Comput. Logic, 4(1):1–32,
2003.

100

	Introduction
	Definition of Teq"3223379
	Operational semantics
	Type assignment
	Annotated language

	Examples
	A Logical Semantics for Teq"3223379
	The theory W'
	Examples
	Translation of contexts
	Translation of typing judgments

	Related Work
	Conclusion

