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Abstract

Hilbert’s ε operator is a binder that picks an arbitrary element from a nonempty set. The operator is typically used
in logics and proof engines. This paper contributes a discussion of considerations in supporting this operator in
a programming language. More specifically, the paper presents the design choices made around supporting this
operator in the verification-aware language Dafny.

1 Introduction
When describing an algorithm or giving a proof, it is common exclaim “pick an arbitrary x such that P(x)
holds”, where P(x) denotes some predicate on x. Such an operation can provide a level of abstraction,
because what follows might not depend on the exact value of x, as long as P(x) holds of it. In other
cases, the operation may describe one step that is going to be repeated for every x satisfying P(x). In
formal mathematics, this operation is known as Hilbert’s ε operator [6, 7], and its name stems from
the fact that Hilbert used a notation like ε x• P(x) to denote an expression that evaluates to some value
satisfying the predicate P.0

In this paper, I present the manifestation of Hilbert’s ε operator in the verification-aware program-
ming language Dafny [10]. Including this operator in a programming language poses challenges for
referential transparency and for compilation. The considerations I bring up are applicable to other lan-
guages as well, even if other languages end up making different design decisions.

2 Dafny
In this section, I present some characteristics of Dafny that are relevant to this paper. More documenta-
tion of the language is found from the Dafny open-source repository dafny.codeplex.com.1

The Dafny language includes imperative constructs (assignments, loops, classes, etc.) and functional
constructs (higher-order functions, inductive and coinductive datatypes, mathematical sets, etc.). The
language also includes facilities for writing specifications and proofs. Dafny comes equipped with a
verifier, which checks that the program meets its specifications and that program constructs are used
correctly.

0In Hilbert’s work, ε x • P(x) was a total expression that could be used even when no x satisfies P(x) (but guaranteeing to
return a value satisfying P only if one exists, of course). In this paper, I will instead forbid such uses of ε .

1Dafny can also be used directly in a web browser at rise4fun.com/dafny.
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As is common among programming languages, Dafny has both statements and expressions. The
statements can mutate the program state and can be nondeterministic. Expressions are deterministic (in
other words, they are functional in their variables) and, of course, do not mutate the state.

Less common among languages is that Dafny distinguishes between compiled entities and ghost en-
tities. A ghost entity—e.g., a ghost variable, ghost declaration, ghost expression, or ghost statement—is
used only for reasoning about the program and is erased by the compiler. For instance, a ghost variable
occupies no space at run time and an assert statement (which is always ghost) is not evaluated at run
time.

Dafny can be used not only for writing specifications and executable code, but also for writing
lemmas and proofs. These two “program” and “proof” fragments of the language have a high degree of
overlap and can be mixed. For example, to help the verifier reason about a program, it is common to
call lemmas at certain points in the program. In fact, in Dafny, lemmas are simply ghost methods and
proofs are ghost statements.

3 Nondeterminism
Dafny contains several variations on the ε operator. In this section, I discuss the least problematic
variations, which occur in statements.

3.1 Assign Such That
In addition to the ordinary assignment statement, x := E;, Dafny supports an assign such that statement:
for any variable x and boolean expression R, the semantics of

x :| R;

is to set x to some value such that R will evaluate to true. (Note that, in difference to the ordinary
assignment statement where occurrences of x in the right-hand side refer to the value of x before the
update, occurrences of x in the right-hand side of the assign-such-that statement refer to the value x will
have after the update.) A proof obligation for the assign-such-that statement is that some value for x

satisfying R exists.2 As with the ordinary assignment statement, it is possible to combine the declaration
of the left-hand-side variable with its initial assignment, which is done by writing var in front of the
statement.

For example, the following statement may be used in an implementation of the QuickSort algorithm:

var pivot :| lo ≤ pivot < hi;

because the correctness of the algorithm does not depend on which such pivot index is chosen. (The
value chosen does matter for performance. Dafny includes features that let a programmer tighten up, in
a refinement module, how the choice of pivot is made. [8, 12])

The assign-such-that statement is nondeterministic in that the language makes no guarantee about
which value satisfying R will get picked. In fact, the value assigned to x may be different each time the
statement is executed, even if the program state is otherwise the same.

Figure 0 shows an example use of the assign-such-that statement in a proof. The example models
the semantics of a simple (and, frankly, rather uninteresting) language consisting of Inc commands and
sequential composition. The state is represented by an integer and the Inc command increases that
integer by 1. Predicate BigStep defines the big-step semantics of this language as the least fixpoint of

2Moreover, the expression R must be well defined for any x of its type.
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datatype Cmd = Inc | Seq(Cmd, Cmd)

type State = int

inductive predicate BigStep(c: Cmd, s: State, t: State)

{

match c

case Inc ⇒
t == s + 1

case Seq(c0, c1) ⇒
∃s’ • BigStep(c0, s, s’) ∧ BigStep(c1, s’, t)

}

inductive lemma Monotonicity(c: Cmd, s: State, t: State)

requires BigStep(c, s, t)

ensures s ≤ t

{

match c

case Inc ⇒
// proof is trivial

case Seq(c0, c1) ⇒
// introduce an s’ satisfying the two conjuncts

var s’ :| BigStep(c0, s, s’) ∧ BigStep(c1, s’, t);

// invoke the induction hypothesis on the two sub-commands

Monotonicity(c0, s, s’);

Monotonicity(c1, s’, t);

}

Figure 0. An example where the proof of lemma Monotonicity uses an assign-such-that statement to,
essentially, Skolemize the existentially quantified variable s’ in the definition of BigStep.

the following two inference rules:

t = s+1
BigStep(Inc,s, t)

BigStep(c0,s,s′) BigStep(c1,s′, t)
BigStep(Seq(c0,c1),s, t))

Lemma Monotonicity says that from BigStep(c, s, t) it follows that s ≤ t. In the case where c

has the form Seq(c0, c1), the definition of BigStep tells of the existence of a middle state s’ in the
derivation of BigStep(c, s, t). The proof of the lemma wants to get its hands on such a middle state,
so it uses an assign-such-that statement to, essentially, Skolemize the existential quantification in the
definition of BigStep. The proof names the middle state s’ and uses it to invoke the induction hypothesis
once for each sub-command of the sequential composition.3

3Figure 0 illustrates the typical shape of many proofs. However, for Monotonicity and other simple cases, this is not the
simplest proof: because Dafny calls the induction hypothesis automatically, the body of Monotonicity could have been left
empty. [11, 13]
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3.2 Verification
As I mentioned above, an assign-such-that statement x :| R(x); gives rise to a proof obligation that
such an x exists. Formally, this proof obligation is

∃x• R(x)

That sounds straightforward enough, but Dafny builds on the first-order satisfiability-modulo-theories
(SMT) based Boogie/Z3 tool chain [0, 3]. Ironically, SMT solvers are notoriously bad at proving such
existential quantifiers when they are simple, or more precisely, when the existential quantifier uses only
interpreted symbols. For example, the innocent-looking proof obligation for the assignment to pivot

above is
∃ pivot • lo≤ pivot ∧ pivot < hi

which follows from lo < hi. To handle these cases more smoothly, Dafny performs a simple syntactic
scan of the formula R(x), looking for some candidate witnesses w0, w1, . . . à la [14]. Dafny then
elaborates the proof obligation into:

R(w0) ∨ R(w1) ∨ ·· · ∨ ∃x• R(x)

which in practice works more often.

3.3 Compilation
As I have shown, assign-such-that statements can occur in both ghost contexts and compiled contexts.
When they are to be compiled, there is fertile ground for advanced synthesis techniques to kick in
and produce good code. Alas, this is not done by the current Dafny compiler. But even without such
advanced compilation techniques, doing the compilation correctly still requires some care.

The main idea behind the compilation is to emit a loop that will enumerate the values in the “domain”
of x and to test, for each such value, whether or not R holds. Once a value satisfying R has been found,
the loop exits. Since the verifier has ascertained that a value for x satisfying R does exist, the loop will
eventually terminate, provided the enumeration is exhaustive, that is, that for each value w in the domain
of x, the enumeration will eventually reach w.4

The “domain” is some subset of the type of x that is both large enough not to exclude all values of x
for which R holds and easy enough to enumerate exhaustively. Types with only a finite number of values
(for example, bool and user-defined datatypes with only nullary constructors) can be used as their own
domain. The integers can also serve as their own domain, since they can be enumerated as follows:

0, 1, -1, 2, -2, 3, -3, 4, -4, ..., 7, ..., -13, ...

Dafny will use this enumeration for integers, unless it finds a smaller domain.
Dafny does a simple syntactic analysis on the top-level conjuncts of R (or, rather, of R after some

simple distributions of negations), looking for bounds on x. For example, if an integer inequality can in
simple steps be rewritten into x ≤ E or E ≤ x where E is an expression that does not depend on x, then
this inequality is used to reduce the size of the domain. Also, if a conjunct says x in S where S denotes
a finite set, finite multiset, or sequence and S does not depend on x, then the elements of S are used as
the domain.

In some cases, the type of x and the simple syntactic analysis do not reveal any good domain. In
those cases, Dafny gives up and generates a compilation error. This can happen when the type of x is
not enumerable (like for real and for coinductive datatypes) or possibly not enumerable (if the type is a

4LEAN calls this property listable [4].
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type parameter). Finally, in some cases, Dafny gives up because the enumeration would have too high
of a cost at run time (for example, if x is of a reference type and the syntactic analysis does not bear
any fruit, then its domain would be all currently allocated objects of that type) or because the compiler
implementation itself would require more effort than seems justifiable for the additional programs that
could compile (for example, the inductive datatype Cmd in Figure 0, or a variation of it where Inc takes
an integer argument).

Dafny allows the left-hand side of :| to be a list of variables. Here, it is important that the enumera-
tions are interleaved properly. For example, consider

x, y :| 0 ≤ x ∧ 0 ≤ y ∧ Both1(x, y);

where Both1 is a predicate that holds only if both its arguments are 1. It would be incorrect to compile
this assignment into two nested loops like

foreach (var xx in UpwardsOf(0)) {

foreach (var yy in UpwardsOf(0)) {

if (0 ≤ xx ∧ 0 ≤ yy ∧ Both1(xx, yy)) {

x := xx;

y := yy;

break break;

}

}

}

because this would have the effect of never trying more than one value for x. A more clever interleaving
of the loops could work. As a simple (but, again, without bragging rights of being efficient) solution,
Dafny generates code that works in successively larger rounds, where a round puts a limit on the number
of iterations that any of the loops may perform. For the example above, Dafny generates:

var maxIterations := 5;

while (true) {

var budget_x := maxIterations;

foreach (var xx in UpwardsOf(0)) {

if (budget_x == 0) { break; }

budget_x := budget_x - 1;

var budget_y := maxIterations;

foreach (var yy in UpwardsOf(0)) {

if (budget_y == 0) { break; }

budget_y := budget_y - 1;

if (0 ≤ xx ∧ 0 ≤ yy ∧ Both1(xx, yy)) {

x := xx;

y := yy;

break break break;

}

}

}

maxIterations := 2 * maxIterations;

}

As a small optimization, a loop is not held to a budget if it has been determined that the domain it is
enumerating over is finite.

As a final note, it seems that an “obvious” idea is to improve compilation dramatically by simply
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using the witness value that the verifier had used in the existence proof. This would be a great idea to
follow up on, but it wouldn’t always be easy. First, the witness may not have been determined concretely
by the SMT solver. For example, it could be that the proof of the existence follows from a lemma that
the program invokes before the assign-such-that statement. The verifier would then need to determine
the need to remember the witness that in some way was used inside the proof of the lemma. Second, the
witness may depend on the program state. That is, the SMT solver may use different witnesses along
different branches of the proof. The compiled code would then need to have enough information to set
up the same branching structure at run time as the SMT solver used in the proof. Third, the SMT solver
is based on classical (not constructive) logic, so the existence proof may potentially have made use of
the Law of the Excluded Middle. If so, there may not be a particular witness to point to.

3.4 Summary
In this section, I discussed the least problematic of Dafny’s variations of the ε operator, the assign-such-
that statement. It is least problematic, because the statement is allowed to be nondeterministic and is
free to choose a different value each time it is executed. In this sense, it isn’t really Hilbert’s ε operator,
because Hilbert’s ε operator is axiomatized to be deterministic. We’ll look at that next.

4 Determinism
In this section, I consider Dafny’s variations of the ε operator that occur in expression contexts, where
it has to be deterministic.

4.1 Let Such That
In addition to the ordinary let expression, which in Dafny is written var x := E; Body, Dafny supports a
let such that expression: for any variable x, boolean expression R, and any expression Body, the semantics
of

var x :| R; Body

is to bind x to some value such that R will evaluate to true, and then to evaluate Body. As for the assign-
such-that statement, a proof obligation for the let-such-that expression is that some value for x satisfying
R exists.

For example, the following function returns an index into the given sequence where the element x
occurs:

function Find〈T〉(s: seq〈T〉, x: T): nat

requires x in s

{

var i :| 0 ≤ i < |s| ∧ s[i] == x;

i

}

The precondition of this function, declared with the keyword requires, implies the existence of a value
that satisfies the constraint of the let-such-that expression.

Since let-such-that is an expression, the Dafny language says it is deterministic. Determinacy of
expressions is important, because it means that for any well-defined expression E,

E == E (0)
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is always true, just like in mathematics. Consequently, if Find(s, x) is well defined, then the equality
Find(s, x) == Find(s, x) holds, which implies that the let-such-that expression in the body of Find

must return the same value both times.
By what I have just said, we would also have

(var x :| R; Body) == (var x :| R; Body)

But this is a slippery slope. By alpha conversion, wouldn’t we then also expect the following equality
to hold:

(var x :| R; Body) == (var x’ :| R’; Body’)

where x’ is fresh and R’ and Body’ are like R and Body but with x replaced by x’? And to obtain refer-
ential transparency, whereby replacing a subexpression by another that always returns the same value,
wouldn’t we expect equalities like the following also to hold:

(var x :| R; Body) == (var x :| (R); Body)

(var x :| x in S; Body) == (var x :| x in S + S; Body)

(var x :| 14 ≤ x < 20 ∧ IsPrime(x); x) == (var x :| x == 17 ∨ x == 19; x)

where S denotes some nonempty set, + is set union, and IsPrime is some function that returns whether
or not its argument is a prime number? The verifier and compiler both need to know which expressions
have to be encoded in the same way, so going down the slippery slope of saying that these equalities
must hold would necessitate comparing the quadratically many pairs of let-such-that expressions in the
program. Not only would each such comparison require theorem proving in general, but this analysis
could not be completed until the whole program is available. This seems untenable.

For this reason, Dafny treats each textual occurrence of a let-such-that expression as if it were its
own flavor of the ε operator. Stated differently, we can imagine an unbounded number of “colors” of
ε operators, where the ε operator of one color is allowed to make its choices independently of the ε

operator of other colors. Dafny then says that each textual occurrence of a let-such-that expression in a
program gets its own color.

Consequently, (var x :| R; Body) == (var x :| R; Body) is not guaranteed in Dafny. More
generally, the equality in (0) holds only if E does not directly mention any let-such-that expressions.
However, when a let-such-that expression is placed inside a named function, like in Find above, then the
expression Find(x, s) does not directly mention a let-such-that, so then the language does guarantee
the equality Find(x, s) == Find(x, s).

4.2 Verification
Following the ideas of anonymous lambda lifting,5 the Dafny verifier proceeds as follows for each
textual occurrence of an expression var x :| R; Body. It collects the non-x free variables of R, say
vars, and introduces a fresh function symbol, say f, parameterized by vars.6 To give f meaning, the
verifier lays down the axiom

∀vars• (∃x• R) =⇒ R′

where R’ denotes R in which occurrences of x have been replaced by f(vars). For example, for the
let-such-that expression var x :| 0 ≤ x < N; 2*x, the verifier introduces a function f and the axiom

∀N • (∃x• 0≤ x < N) =⇒ 0≤ f (N)< N (1)

5which here might be called “epsilon lifting”
6If the function depends on fields in the heap, the verifier will include among vars the variable that is encoding the heap.
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Actually, since the existential is checked (during well-formedness checking) as a precondition of the
let-such-that expression, Dafny introduces a certificate that is assumed after the check, and this certifi-
cate is used in the antecedent of the axiom. (This is also what Dafny does for user-defined functions.)
More precisely, the certificate is another fresh function symbol, CanCall_f, parameterized like f. Using
this certificate, axiom (1) is written:

∀N • CanCall_ f (N) =⇒ 0≤ f (N)< N

Once function f (and function CanCall_f) and the axiom above have been introduced, the verifier
treats the let-such-that expression like it does the ordinary let expression var x := f(vars); Body.

A consequence of this encoding is that the verifier treats a let-such-that expression as being a func-
tion of its free variables. For example,

var z :| z < x + y; z

is a function of x and y, not of x + y, which would give rise a stronger determinacy guarantee.7 To
obtain the latter, one would have to say

var s := x + y; var z :| z < s; z

4.3 Compilation
For let-such-that expressions in ghost contexts, there is nothing more to say. But a let-such-that expres-
sion in a compiled context must be translated into target code that is functional in its arguments. I will
illustrate the difficulty of this task through an example.

Consider a compiled function (indicated by the keyword combination function method) that picks
an arbitrary element from a nonempty set:

function method Pick〈T〉(S: set〈T〉): T

requires S 6= {}

{

var x :| x in S; x

}

Suppose A and B are sets whose union is known to be nonempty. Then, since set union is commutative,
the following program is free of assertion failures and free of division-by-zero errors, as indeed the
Dafny verifier can prove:

var x := Pick(A + B);

var y := Pick(B + A);

assert A + B == B + A; // this assertion gets used as a lemma from which x = y follows

if x 6= y {

var z := 4 / 0; // error if we ever get here (but the verifier knows we don’t, phew)

}

Soundness requires agreement between verification and compilation. The compiled code must therefore
ensure that the two calls to Pick return the value value. Here are some attempts to achieve that:

• At run time, let Pick(S) select the smallest element of S.
The trouble with this attempt is that the element type of S may not have a readily defined notion of
“smallest”. Plus, it would only work for the specific example Pick, anyway.

7I thank Jasmin Blanchette for pointing this out to me.

113



Compiling Hilbert’s ε operator Rustan Leino

• At run time, let Pick(S) select the “first” element in the run-time representation of the given set S
(for example, suppose sets are stored as linked lists).
The trouble with this attempt is that the first element of A + B may be different than the first
element of B + A, even though the two expressions denote the same set. Plus, it would only work
for the specific example Pick, anyway.

• Before computing the let-such-that expression, canonicalize the run-time representation of each
variable involved. That way, the iterative search for the value to return from the let-such-that ex-
pression would always proceed in the same way.
The trouble with this attempt is that not all types may have a readily defined canonical represen-
tation. For example, even a canonical ordering on something as innocuous as set〈Cmd〉 is complex
and would take a long time to compute at run time.

• For each let-such-that expression, maintain at run time an ordered list of values that have been
returned. To evaluate the let-such-that expression, first try each value in the list, in order, returning
the first value that satisfies the constraint. If the list contains no value that satisfies the constraint,
then compute a new value (for example, using the loops described in Section 2.2), append that
value to the list, and return it.8

The trouble with this approach is that list continues to grow as the program runs, which means the
program will run more and more slowly.

• Analyze the program to figure out when it would be okay to clear the list in the previously men-
tioned attempt.
This seems tricky and would require some research to figure out.

From these initial attempts at a solution, our situation does not look good. Luckily, we can instead
consider changing the problem.

4.4 Russell’s ι operator
Instead of doing enough bookkeeping at run time to make sure a let-such-that expression always chooses
consistently among its possible values, we can restrict the language to make sure there is only one pos-
sible value to choose from. Dafny takes this approach and adds as a proof obligation, for any compiled
let-such-that expression, that the value returned is unique. This means that any run-time technique for
finding some value finds the one and only value.

For a let-such-that expression var x :| R; Body, the uniqueness proof obligation is:

∀x,x′ • R∧R′ =⇒ Body = Body′

where x’ is fresh and R’ and Body’ are R and Body in which x has been replaced by x’. Note that the right-
hand side of the implication in this proof obligation is not x == x’, but instead the weaker condition
Body == Body’.

Technically, with this restriction, the compiled let-such-that statement is no longer Hilbert’s ε oper-
ator, but instead Russel’s definite description operator [15], commonly denoted as the binder ι .

Under the definite-description (that is, uniqueness) restriction on compiled let-such-that expressions,
function Pick above is not admitted. For it to be allowed, the constraint must be strengthened to denote
a unique value. In the case of the polymorphic Pick, strengthening the constraint is hard to do. We can
write a pick function for integers, for example by always picking the smallest integer. As we strengthen
the constraint, the existence condition becomes harder to verify. The following definition deals with that
problem by calling a lemma just before the let-such-that expression:

8Manfred Broy suggested this approach to me.
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function method PickInt(S: set〈int〉): int

requires S 6= {}

{

ThereIsASmallest(S);

var x :| x in S ∧ forall y • y in S =⇒ x ≤ y; x

}

lemma ThereIsASmallest(S: set〈int〉)
requires S 6= {}

ensures ∃x • x in S ∧ forall y • y in S =⇒ x ≤ y

{

var x :| x in S;

if S 6= {x} {

ThereIsASmallest(S - {x});

}

}

Note that the lemma makes use of a (nondeterministic) assign-such-that statement.
It seems unfortunate that the definition of PickInt runs in time O(|S|2), not to mention the fact that its

definition is more complicated, whereas if nondeterminism were okay, then the statement x :| x in S;

is both simpler and runs in time O(1).

5 Examples
I end with two more examples.

5.1 Sum
Using the PickInt function above, we can define a function that computes the sum over a finite set of
integers:

function Sum(S: set<int>): int

{

if S == {} then 0 else

var x := PickInt(S);

x + Sum(S - {x})

}

Furthermore, we can state a lemma about the effect on Sum of adding an element to a set. The proof uses
the fact that PickInt picks the smallest integer in the set.

lemma SumDistribution(S: set<int>, g: int)

requires g !in S

ensures Sum(S + {g}) == Sum(S) + g

{

var G := S + {g};

var x := PickInt(G);

if x 6= g {

SumDistribution(S - {x}, g);

assert G - {x} == S - {x} + {g};
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}

}

5.2 Axiom of Choice

It is possible to define in Dafny a function that selects one element from each of an infinite family of
nonempty, possibly infinite sets. In other words, Dafny support the Axiom of Choice.

function F〈T〉(S: iset〈T〉): T

requires S 6= iset{}

{

var x :| x in S; x

}

It is tempting to change this ghost function to be a compiled function. However, doing so will generate
an error message that Dafny is unable to find an exhaustive enumeration for the let-such-that expression.

6 Related Work

The ε operator is at the heart of the logic of the proof assistant Isabelle/HOL, and there are techniques
that attempt to turn formal Isabelle/HOL specifications into executable code. Lochbihler and Bulwahn
also reach the conclusion that compilation of ε (and ι) requires uniqueness and their execution strategy is
the same as I have described for let-such-that expressions in Dafny. From their experience, they caution
against use of the ε operator when compilation is a goal, because refinement from an underspecified
function is difficult. As an alternative, they suggest using a relational description, which is amenable to
refinement. This parallels the use and refinement of the nondeterministic assign-such-that statement in
Dafny.

The standard library of the proof assistant Coq [1] contains variations of the ε operator. These are de-
fined by axioms and generally do not directly lend themselves to compilation. The ConstructiveEpsilon

library provides an executable form of ε (and ι) in the special case where the constraint is a decidable
predicate over the natural numbers. The compilation is based on linear search and thus guarantees de-
terminacy. This special case could also be added to Dafny, providing an alternative to the uniqueness
restriction.

Giese and Ahrendt consider variations of the ε operator and the conditions under which such terms
are to be considered equivalent [5].

The nondeterministic variation of the ε operator has been studied in the context of logics by Blass
and Gurevich [2] and by Wirth [17].

The ASM language also supports Hilbert’s ε operator in the form of a “choose” binder [2]. The
primary application of ASM laid in run-time testing and there was no static verifier for the language.

Eiffel’s AutoProof verifier [16] supports a method any_item in its MML_SET class, which represents
mathematical sets. The verifier treats the result of S.any_item as a function of the mathematical set that
the object S represents. If this were to be evaluated at run time, then one would face the issues I have
outlined in Section 3.2. However, the MML library is intended for specification purposes only.

Kuncak et al. have considered synthesis where an SMT solver is used at run time [9]. Such an
approach can in many cases easily generate better run-time behavior than the compilation scheme I
have mentioned here.
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7 Conclusion
In this paper, I have presented the design of different variations of the ε operator in the programming
language Dafny. The two statement variations are not really Hilbert’s ε operator because they are
nondeterministic. The compiled let-such-that variation is Russell’s ι operator. Only the ghost let-such-
that expression is Hilbert’s ε operator.

Whatever these variations may be called, the Dafny design shows one possibility of including the
choice operator in a language with a semantics that covers both verification and compilation.

In the future, it would be nice to find ways to overcome the difficulty with the compiled let-such-that
expressions, in particular to make a compiled function like PickInt less complicated to write and more
efficient to compile.
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