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Abstract

We present a procedure to decide propositional Dummett logic. This procedure re-
lies on a tableau calculus with a multiple premise rule and optimizations. The resulting
implementation outperforms the state of the art graph-based procedure.

1 Introduction

In this note a tableau calculus, some optimizations and an implementation to decide proposi-
tional Dummett logic are described.

Dummett logic can be axiomatized by adding to any proof system for propositional intuition-
istic logic the axiom scheme (p → q)∨ (q → p). It has a well-known semantical characterization
by linearly ordered Kripke models, thus Dummett logic is also known as Linear Chain logic.
Gödel studied finite approximations of Dummett Logic ([15]), namely the sequence Gn, n ≥ 1,
of logics that are semantically characterized by linearly ordered Kripke models with at most
n worlds. For this reason another name for the logic under consideration is Gödel-Dummett
Logic. Dummett Logic has been considered by people interested in computer science [4, 5] and
many valued logics [7, 8]. In [17] it has been recognized as an important fuzzy logic. We quote
[9] for a thorough treatment of the subject.

In the late ’90 were presented tableau [1, 12] and sequent calculi [11] for propositional
Dummett logic. These calculi are believed to be highly inefficient to the purpose of performing
practical theorem proving ([5, 20]), mainly because they contain a multiple premise rule that
in the worse case analysis gives rise to tableau proofs having a factorial number of branches
with respect to the number of formulas in the premise. To get rid of the multiple premise
rule, paper [5] proposes to exploit the following logical equivalences: A → (B ∨ C) ≡ (A →
B) ∨ (A → C), A → (B ∧ C) ≡ (A → B) ∧ (A → C), (A ∨ B) → C ≡ (A → C) ∧ (B → C)
and (A ∧B) → C ≡ (A → C) ∨ (B → C). In the recent [21] it is proved that the deduction in
Dummett logic can be reduced to the construction of a graph and an implementation has been
developed.

Recent investigations in propositional intuitionist logics have introduced optimization tech-
niques that dramatically reduce the running time ([2]). Such techniques can be extended to
other logics. The aim of this note is to show that the tableau calculi based on a multiple premise
rule plus optimization techniques give rise to a fast decision procedure for propositional Dum-
mett logic. Our fast implementation is based on three main ideas that are motivated in this
note: (i) a new tableau calculus. Compared with [1, 12], our tableau calculus provides a new
treatment of negated formulas and a new multiple premise rule; (ii) the optimization technique
Simplification, first described in [22]. This optimization has been employed in [2] to improve
automated deduction in propositional intuitionistic logic; (iii) the equivalences for Dummett
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S,T(A ∧ B)

S,TA,TB
T∧

S,F(A ∧ B)

S,FA|S,FB
F∧

S,Fc(A ∧ B)

S,FcA|S,FcB
Fc∧

S,Tcl(A ∧ B)

S,TclA,TclB
Tcl∧

S,T(A ∨ B)

S,TA|S,TB
T∨

S,F(A ∨ B)

S,FA,FB
F∨

S,Fc(A ∨ B)

S,FcA,FcB
Fc∨

S,Tcl(A ∨ B)

S,TclA|S,TclB
Tcl∨

S,T(¬A)

S,FcA
T¬

S,F(¬A)

S,TclA
F¬

S,Fc(¬A)

S,TclA
Fc¬

S,Tcl(¬A)

S,FcA
Tcl¬

S,TA,T(A → B)

S,TA,TB
T→

S,Fc(A → B)

S,TclA,FcB
Fc→

S,Tcl(A → B)

S,FcA|S,TclB
Tcl→

S,T((A ∧ B) → C)

S,T(A → (B → C))
T→∧

S,T(¬A → B)

S,TclA|S,TB
T→¬

S,T((A ∨B) → C)

S,T(A → C),T(B → C)
T→∨

S,T((A → B) → C)

S,F(A → p),T(p → C),T(B → p)|S,TC
T→→ with p a new atom

Figure 1: The invertible rules of D.

logic quoted above. The equivalences are employed to reduce the number of branches generated
by the multiple premise rule. They are used in the opposite style with respect to [5, 6, 21].
On the ideas described in this note (full details with proofs in [13]) we have developed a prolog
implementation that is faster than the state of the art graph-based procedure of [21].

2 Basic Definitions

We consider the propositional language based on a denumerable set of propositional variables
PV , the boolean constants ⊤ and ⊥ and the logical connectives ¬,∧,∨,→. In the following,
formulas (respectively set of formulas and propositional variables) are denoted by letters A, B,
C. . . (respectively S, T , U ,. . . and p, q, r,. . . ) possibly with subscripts or superscripts.

A well-known semantical characterization of Dummett logic (Dum) is by linearly ordered

Kripke models. In this note model means a linearly ordered Kripke model, namely a structure
K = 〈P,≤,ρ,〉, where 〈P,≤, ρ〉 is a linearly ordered set with minimum ρ and  is the forcing

relation, a binary relation on P × (PV ∪ {⊤,⊥}) such that: (i) if α  p and α ≤ β, then β  p;
(ii) for every α ∈ P , α  ⊤ holds and α  ⊥ does not hold. Hereafter we denote the members
of P with lowercase letters of the Greek alphabet.

The forcing relation is extended in a standard way to arbitrary formulas as follows: (i)
α  A ∧ B iff α  A and α  B; (ii) α  A ∨ B iff α  A or α  B; (iii) α  A → B iff, for
every β ∈ P such that α ≤ β, β  A implies β  B; (iv) α  ¬A iff, for every β ∈ P such that
α ≤ β, β  A does not hold.

We write α 1 A when α  A does not hold. It is easy to prove that, for every formula A,
the persistence property holds: if α  A and α ≤ β, then β  A. A formula A is valid in a

model K = 〈P,≤,ρ,〉 if and only if ρ  A. It is well-known (see e.g. [10]) that Dum coincides
with the set of formulas valid in all models.

The rules of our calculus D for Dum are in Figures 1 and 2. The rules of D work on signed
formulas, that is well-formed formulas prefixed with one of the signs {T,F,Fc,Tcl}, and on
sets of signed formulas (hereafter we omit the word “signed” in front of “formula” in all the
contexts where no confusion arises).

The semantical meaning of the signs is explained by means of the realizability relation (✄)
defined as follows. Let K = 〈P,≤,ρ,〉 be a model, let α ∈ P , let H be a signed formula and
let S be a set of signed formulas. We say that α realizes H , α realizes S and K realizes S, and
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S,TclA

Sc,TA
Tcl-Atom

S,F(A1 → B1), . . . ,F(An → Bn)

Sc,TA1,FB1, S
1
F→

|Sc,TA2,FB2, S
2
F→

| . . . |Sc,TAn,FBn, S
n

F→

F→

Sc = {TA|TA ∈ S} ∪ {FcA|FcA ∈ S} ∪ {TclA|TclA ∈ S};
S1
F→

= {F(A2 → B2), . . . ,F(An → Bn)},

Si
F→ = {F((A1∧Bi)→B1),...,F((Ai−1∧Bi)→Bi−1),F(Ai+1→Bi+1),...,F(An→Bn)},

for i = 2, . . . , n.

Figure 2: The non-invertible rules of D.

we write α✄H , α✄ S and K ✄ S, respectively, if the following conditions hold:

1. α✄TA iff α  A;

2. α✄ FA iff α 1 A;

3. α✄ FcA iff α  ¬A;

4. α✄TclA iff α  ¬¬A;

5. α✄ S iff α realizes every formula in S;

6. K ✄ S iff ρ✄ S.

Since the meaning of T, Fc and Tcl is related to the forcing of a formula and since, by the
persistence property, the forced formulas are preserved upwards, we call stable the formulas
signed with T, Fc or Tcl. As discussed in the following, stable formulas have a central role
in the organization of our deduction strategy. We point out that FcA and TclA are synonym
T¬A and T¬¬A respectively. If FcA holds in a world of a Kripke model, then A is certainly

not forced in the future. If TclA holds in a world of a Kripke model K, then A is forced in the
maximum of K, which is a world semantically behaving as a classical model. We could rewrite
the rules of the calculus by using only the signs T and F. In such a calculus the Fc-rules
are replaced by rules treating negated formulas and the rules for Tcl are replaced by rules
treating double negated formulas. We prefer this object language because it makes the rules
less cumbersome than the object language with two signs only.

From the meaning of the signs we get the conditions that make a set of formulas inconsistent.
A set S is inconsistent iff {TA,FA} ⊆ S, {TA,FcA} ⊆ S, {FcA,TclA} ⊆ S, T⊥ ∈ S, F⊤ ∈ S,
Fc⊤ ∈ S or Tcl⊥ ∈ S. It is easy to prove the following result:

Theorem 1. If a set of formulas S is inconsistent, then for every Kripke model K = 〈P,≤,ρ,〉
and for every α ∈ P , α ⋫ S.

We refer to [16] for a full presentation of tableaux systems. A closed proof table is a proof
table whose leaves are all inconsistent sets. A closed proof table is a proof of the calculus and
a formula A is provable iff there exists a closed proof table for {FA}.

The calculus D has two non-invertible rules, namely F → and Tcl-Atom. Rule F → is
inspired to the rule of [1]. Rule Tcl-Atom can be explained as follows: let K = 〈P,≤,ρ,〉 be
a model and let α ∈ P such that α  ¬¬p. Let φ the maximum with respect to 〈P,≤, ρ〉.
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Then φ  p. We notice that nothing can be concluded about the forcing in α of p, whereas
if α  ¬¬A, with A a non-atomic formula, we have information about the forcing in α of the
subformulas of A. This explains the Tcl-rules in Figure 1.

3 Correctness

To prove the correctness of D with respect to Dummett logic we need to prove that, if there
exists a closed proof table for {FA}, then A is a valid formula in Dummett logic. The main
step is to prove that the rules of the calculus preserve realizability:

Proposition 1. For every rule of D, if a model realizes the premise, then there exists a model

realizing at least one of the conclusions.

Proof: we provide the proof for F →, the other cases being trivial. If the premise of F →
is realized, then there exist α1, . . . , αn elements of a model K such that αi ✄ TAi,FBi, for
i = 1, . . . , n. Let βi = max{α|α✄TAi,FBi}, for i = 1, . . . , n, thus, βi is the maximal element
such that βi✄TAi,FBi. The structureK

′ = 〈{β1, . . . , βn},≤, ρ′,〉, with ρ′ = min{β1, . . . , βn},
is a model such that ρ′ ✄ Sc,TAj ,FBj , SF→ for some j ∈ {1, . . . , n}. Let m = min{i ∈
{1, . . . , n}|βi = ρ′}. If m = 1, then the leftmost conclusion of F → is realized. If m > 1, then
β1, . . . , βm−1 > βm. Let βk = min{β1, . . . , βm−1}. It follows that βk ✄TAk,FBk,TBm. Thus
βm ✄F((Ai ∧Bm) → Bi), for i = 1, . . . ,m− 1 and this implies that the m-th conclusion of the
rule is realized.

The idea behind the rule F → can be explained as follows: If the j-th conclusion of the
rule Dum of [1] is realizable and no model realizes the first j − 1 conclusions, then αj >
α1, . . . , αj−1 holds. This also implies that α1, . . . , αj−1 ✄TBj , hence αj ✄F((Ak ∧Bj) → Bk),
for k = 1, . . . , j − 1 and this proves that the j-th conclusion of F → is realized.

Remark 1. We call side information the formula Bj added in the j-th conclusion of F → as
conjunct in F((Ai ∧ Bj) → Bi), for i = 1, . . . , j − 1. The side information arises from the
knowledge that the left-hand side conclusions are not realizable. This information is correct
but it is not necessary to get the completeness. The notion of side information is introduced to
reduce the search space by means of the simplification technique which is described in Section 4.

Remark 2. The rule F → can also be given in the following form

S,F(A1 → B1), . . . ,F(An → Bn)

Sc,TA1,FB1, S
1
F→

|Sc,TA2,FB2, S
2
F→

| . . . |Sc,TAn,FBn, S
n

F→

F→new

Sc = {TA|TA ∈ S} ∪ {FcA|FcA ∈ S} ∪ {TclA|TclA ∈ S};
S1
F→

= {F(A2 → B2), . . . ,F(An → Bn)},

Si
F→ = {T(p→Bi),F(A1∧p→B1),...,F(Ai−1∧p→Bi−1),F(Ai+1→Bi+1),...,F(An→Bn)},

with p a new propositional variable,
for i = 2, . . . , n.

The correctness of F →-new can be easily obtained from F → following the proof of correctness
given in [12] for the rules T →→ and T → ∨ (it can also be noticed that it is applied the
indexing technique consisting in replacing a formula with a new propositional variable). This
version highlights that the side information Bi is treated by the rules of the calculus once.

By the above proposition:

Theorem 2 (Soundness of D). If there exists a proof of a formula A, then A is valid in every

model.
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S,TA

S[A/⊤],TA
ReplaceT

S,FcA

S[A/⊥],FcA
ReplaceFc

S,TclA

S[¬A/⊥],TclA
ReplaceTcl

Figure 3: Replacement rules

4 Rules to Optimize the Proof Search

The tableau rules in Figures 1 and 2 are the core of D. Now we discuss some rules, introduced to
reduce the size of the proofs. We note that D improves the known multiple premise calculi [1, 12]
by two aspects: the rule F → and the rules to treat Tcl-formulas.

Simplification Simplification is an effective optimization both in classical and intuitionistic
logic. In the framework of tableau systems Simplification has been introduced in [22], where it
is applied to classical and modal logics. Recently it has been fitted to intuitionistic logic ([2]).
Simplification is based on the well-known replacement rules (see e.g. [19]) consisting in replac-
ing a formula with a logically equivalent one. Our adaptation of Simplification to the object
language of D consists in the replacement rules of Figure 3. It is an easy task to check that the
replacement rules preserve the realizability and are invertible. The logical constant ⊤ and ⊥
are replaced by means of the simplification rules consisting in the usual boolean simplification
rules for conjunction and disjunction, plus the simplification rules for intuitionistic negation
and implication.

The semantical meaning of ⊤ and ⊥ implies that replacements affect neither the correctness
nor the completeness, thus these replacements rules can be applied at any step of a tableau
proof. Hereafter with Simplification we mean the set of rules described in this section, includ-
ing the usual boolean simplification rules. We point out that the use of Simplification can
reduce considerably the search-space ([22] and [2] give an account for propositional classical
and intuitionistic logics, respectively).

Reducing the branching of the multiple premise rule F → In [21] the equivalences

A → (B ∨ C) ≡ (A → B) ∨ (A → C), A → (B ∧C) ≡ (A → B) ∧ (A → C)

(A ∨B) → C ≡ (A → C) ∧ (B → C), and (A ∧B) → C ≡ (A → C) ∨ (B → C)

are exploited to get the rules of Figure 4.

S,T(A → (B ∨ C))

S,T(A → B)|S,T(A → C)

S,T((A ∨B) → C)

S,T(A → C),T(B → C)

S,T((A ∧ B) → C)

S,T(A → C)|S,T(B → C)

S,T(A → (B ∧C))

S,T(A → B),T(A → C)

S,F(A → (B ∧ C))

S,F(A → B)|S,F(A → C)

S,F(A → (B ∨ C))

S,F(A → B),F(A → C)

S,F((A ∨B) → C)

S,F(A → C)|S,F(B → C)

S,F((A ∧ B) → C)

S,F(A → C),F(B → C)

Figure 4: Rules of [6, 21] to treat implicative formulas.

The rules of Figure 4 allow to reduce implicative formulas to implicative atomic formulas,
that is implicative formulas whose antecedent and consequent are propositional variables. The

56



Fast Decision Procedure for Dummett Logic Guido Fiorino

F(A → B),F(A → C)

F(A → (B ∨ C))

F(A → C),F(B → C)

F((A ∧B) → C)

Figure 5: The factorization rules of D.

problem of deciding a set of formulas containing atomic implicative formulas and atomic formu-
las only is reducible to the problem of reachability on a graph [21]. To get sets whose implicative
formulas are atomic a price has to be paid. First, it is always necessary to treat T-implicative
formulas, and in the case of formulas of the kind T(p → (B ∨ C)) and T((A ∧ B) → C)
branches are generated. Multiple premise calculi treat formulas of the kind T((A ∧ B) → C)
and T(p → (B ∨C)) by means of single-conclusion rules. Second, the F-rules above decompose
the F →-formulas either by increasing their number in the conclusion or by introducing a new
branch. Note also that such rules do not introduce in the conclusions any stable information.
As we discussed in the previous section, we consider useful from a practical perspective to
discover stable information in order to reduce the search space.

With regard to the F →-formulas, the calculi of [6, 21] and D give rise to decision procedures
behaving in the opposite way. The calculi provided in [6, 21] employ the rules in Figure 4 to
insert in a set all the possible F →-formulas. The calculus D employs the rules in Figure 5
to reduce the number of F →-formulas in the sets. In the case of D the reason to reduce this
number is related to the presence of the multiple premise rule F →, whose number of conclusions
depends on the F →-formulas in its premise. We aim to devise a decision procedure using the
rules in Figure 5 in order to reduce as much as possible the number of F →-formulas before to
apply the rule F →.

The rules to handle Tcl-formulas The calculus D has rules for the formulas signed with
Tcl, this amounts to have ad-hoc rules to treat T¬¬-formulas, a kind of formulas for which [1]
does not have ad-hoc rules but takes back to the rule Fc¬.

To avoid backtracking still preserving the completeness, in [1] the application of the rule
Fc has to be deferred until no F-rule is applicable. This means that the calculus defers to
analyze the stable formulas of the kind Fc(¬A) (in other words the calculus does not analyze
the double negated formulas). On the contrary D analyzes the double negated formulas by
means of Tcl-rules. The advantage of analyzing formulas of the kind Fc(¬A) for every case of
A is that the discovery of new stable subformulas of Fc(¬A) is not deferred to a stage when no
other rule, included the rule F →, is applicable. The early discovery of stable formulas gives
advantages since this information allows to shrink the search space by means of Simplification.
Summarizing, the Tcl-rules of D are the rules allowing to analyze Fc¬-formulas. Among them
Tcl-Atom is the only non-invertible rule. In Section 5 it is proved that to avoid backtracking
it is sufficient to defer the application of Tcl-Atom until no other rule is applicable.

We notice that the side information can also be characterized into the logic calculus by
introducing appropriate connectives and signs along the ideas presented in Remark 4.

5 A Strategy to Decide Dummett Logic and Its Complete-

ness

The implementation described in the next section uses the rules of the calculus according the
following strategy. The non-invertible rules F → and Tcl-Atom are applied only when no
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invertible rule of Figures 1-3 is applicable. This strategy is necessary to avoid backtracking in
proof search. Rule F → is applied when no rule but Tcl-Atom is applicable. This guarantees
that the application of the non-invertible rule F → is invertible, that is, no information necessary
to the completeness is lost. Rules in Figure 5 allow to reduce the number of F →-formulas to be
handled by F →, thus are applied before to apply F →. Finally rule Tcl-Atom is applied. Every
application of Tcl-Atom is invertible because the F-atomic formulas is the only information
which is lost.

The decision procedure can be implemented in polynomial space by means of a depth-first
strategy. Because to the side information introduced in the conclusion of F →, the depth of
the deduction is quadratic in the formulas to be proved. As a matter of fact, to insert the side
information, in every set S of the conclusion of F → are introduced as many ∧ connectives
as the F →-formulas in the premise. This number is bounded by the size n of the formula
to be decided. If the data structures of the implementation allow to store the formulas once,
that is, independently of the number of their occurrences, then this is the new information that
needs to be stored. Along a branch the number of applications of rule F → is bounded by
n. Since every application of F → introduces in a set n new connectives ∧ at most, it follows
that to handle the side information, along a branch are introduced n2 new ∧ connectives at
most. As regards the rules treating the side information, we point out that the sign of a side
information is T. This implies that all its occurrences in the set are replaced by ⊤. If the data
structures represents the different occurrences of a formula once, then the replacement takes
constant time. Every application of the simplification rules deletes one connective and takes
constant time. The analysis of the other rules is straightforward, thus we conclude that, since
along a branch the rule F → introduces n2 connectives ∧, the depth of the deductions is at
most quadratic. We also note that although the depth of a branch is O(n2), only O(n) rules
from Figures 1 and 2 are applied. This implies that as in the calculus of [1], the number of
branches of the deductions is factorial in n.

Remark 3. An alternative to our approach is to decide Dummett logic via a decision procedure
for propositional Intuitionistic logic. Paper [3] introduces the notion of Generalized Tableaux to
decide intermediate logics. A Generalized Tableau is a tableau for propositional Intuitionistic
logic plus a rule to be applied once as first rule of the deduction. The aim of this rule is to
introduce formulas obtained by instantiating the axiom scheme of the logic under consideration.
For the case of Dummett logic, to decide a given formula A, the special rule introduces the
set of formulas obtained by instantiating in every possible way the propositional variables the
axiom schemata (p → q)∨ (q → p) with the formulas in Rsf(A)={B|B is subformula of A and
B is a propositional variable or B ≡ C → D or B ≡ ¬C}. Since |Rsf(A)| = O(|A|) and there
are |Rsf(A)| choices for p and q, it follows that the special rule introduces O(|A|2) formulas (|A|
denotes the cardinality of A). Thus the number of connectives to be handled in the deduction
is O(|A|3). Paper [18] proves that propositional intuitionistic logic is decidable in O(n lg n)-
SPACE, hence this technique requires O(n3 lgn)-SPACE and the depth of the deductions is
O(|A|3).

6 The Implementation and the Performances

We devote this section to give an account of our implementation EPDL1. The first issue we face
is how EPDL handles the side information. We emphasize that the side information Bj has
sign T, this means that such instances of Bj will occur in the subsequent sets with sign T. The

1EPDL is downloadable from http://www.dimequant.unimib.it/~guidofiorino/epdl.jsp.
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formula Bj occurring in F((Ai ∧ Bj) → Bi) conveys the information that when TAi and FBi

are realized, also TBj has to be realized. Since the rules of Simplification are used, we want use
the stable information TBj and possibly the information derivable from TBj to reduce the size
of the proofs. The side information is not necessary to get the completeness of the calculus, thus
there are different ways to handle it, both in the logical calculus and in the implementation.
It has to be noticed that if the side information is not treated properly, then there can be
disadvantages. For example, in the implementation we can decide not to apply to the side
information rules having two conclusions but only the rules having one, so useless branching is
not introduced into the proof (thus, if Bj is of the kind C ∨D, then the rule T∨ is not applied;
if Bj is of the kind C ∧ D, then the rule T∧ is applied to deduce the two stable formulas
TC and TD). With respect to the efficiency, there is another remark that deserves attention
and we have considered in the implementation but not in the presentation of the calculus. Let
us consider the case that starting from the j-th conclusion of F →, j > 1, in a subsequent
step the formula TAi (i ∈ {1, . . . , n} and i 6= j) is inserted. By Simplification the formula
F((Ai ∧ Bj) → Bi) becomes F(Bj → Bi) and a useless branch arises. The branch is useless
because to get the completeness only FBi is necessary (note that this is the formula we get if
we apply the rule Dum). In the presentation of the logical calculus we have decided not to be
concerned about these aspects related to the efficiency. We have faced them at the development
stage. To avoid the disadvantages quoted above the new connective % is introduced. The aim
of % is to identify conjunctive formulas whose right operand is a side formula. Since the right
operand of % is the side information, the truth value of % depends on its left operand. The
rules treating formulas of the kind A%B behave as the rules for conjunctive formulas, thus
T(A%B)

TA,TB
T% is an additional rule of the implementation. Beside the rule T% there are the

Simplification rules related to %, all behaving as the Simplification rules for ∧ except for the
case ⊤%B handled by the rule

S

S[⊤%B/⊤]
Simp⊤%.

Rules for the formulas of the kind S(A%B), with S ∈ {F,Fc,Tcl}, do not need to be imple-
mented. Indeed, A%B always occurs in the antecedent of an F →-formula and this implies that
in the proof table the formula A%B occurs with sign T.

Remark 4. After the rule T% is applied, EPDL treats the side information as a standard
formula. The subsequent rules applied to side information can give rise to useless branches.
To avoid the generation of branches, another implementation is possible along the following
ideas: (i) introduce a new sign T̃ to mark the side information; (ii) treat T(A%B) by the rule

T(A%B)

TA, T̃B
T%−new; (iii) treat the T̃-formulas by the rule

T̃(A ∧B)

T̃A, T̃B
T%. We recall the side

information is not necessary to preserve the completeness. Thus the T̃-rules for the remaining

connectives are not needed; (v) introduce the rule
S, T̃A

S[A/⊤], T̃A
ReplaceT̃ to exploit the stable

information conveyed by the side information A.

Stable formulas convey information related to the preservation of the forcing relation. In
order to exploit Simplification as much as possible, our strategy is to treat as soon as possible
all the stable information. In particular, the choice of the rule F∧ is delayed until no other rule
in Figure 1 is applicable.
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Formula LC-models EPDL
Nish.9 9 0.01
Nish.10 49 0.01
Nish.11 192 0.01
Nish.12 895 0.01
GdeJ.9 3 0.07
GdeJ.10 6 0.11
GdeJ.11 11 0.15
GdeJ.12 21 0.19
Fin.97 224 5.02
Fin.98 230 5.16
Fin.99 238 5.32
Fin.100 245 5.61
201.2 43.16 0.21
201.3 362 3.14
201.4 2183 35.96
201.5 12186 378

Formula LC-models EPDL
202.2 0.06 0.01
202.3 0.41 0.02
202.4 4.16 0.15
202.5 43.79 1.18
204.17 14.10 0.01
204.18 17.80 0.01
204.19 22.12 0.01
204.20 27.06 0.01
205.3 61.61 0.03
205.4 214 0.08
205.5 762 0.24
205.6 2932 0.68
206.2 0.16 0.01
206.3 28.74 0.01
206.4 1683 0.01
206.5 N.A. 0.01
(207.3) 46 0.31
(207.4) 200 3.71
(207.5) 805 40.23
(207.6) 3280 406

Formula LC-models EPDL
(208.1) 0.02 0.01
(208.2) 0.52 0.01
(208.3) 21.46 0.02
(208.4) 442 0.06
(210.17) 16.98 0.01
(210.18) 21.20 0.02
(210.19) 26 0.02
(210.20) 31.48 0.02
(211.17) 381 0.20
(211.18) 458 0.24
(211.19) 522 0.28
(211.20) 589 0.32
(212.1) 0.03 0.01
(212.2) 2.00 0.01
(212.3) 133 0.01
(212.4) 1589 0.01

Figure 6: Time comparison between LC-models and EPDL.

In Figure 6 we compare LC-models 2 based on [21] with our implementation EPDL3. The
formulas considered come from two sources. The first three families are formulas characterizing
intermediate logics (see [10, 14])4. Nish stands for Nishimura formulas, defined as follows:
Nish1 = p; Nish2 = ¬p; Nish3 = ¬¬p; Nish4 = ¬¬p → p; Nishk = Nishk−1 → (Nishk−3 ∨
Nishk−4), (k ≥ 5). GdeJ refers to Gabbay de-Jongh formulas, semantically characterized by k-

ary trees Kripke models and whose definition is the following: GdeJk =
∧k

i=0((pi →
∨

i6=j pj) →∨
i6=j pj) →

∨k
i=0 pi (k ≥ 1). Finally, the shortening Fin stands for the following sequence of

formulas: Fin1 = ¬p1∨¬¬p1, Fin2 = ¬p1∨ (¬p1 → ¬p2)∨ (¬p1 → ¬¬p2), Fink = ¬p1∨ (¬p1 →
¬p2)∨ (¬p1 ∧¬p2 → ¬p3)∨ · · · ∨ (¬p1 ∧ · · · ∧ ¬pk−1 → ¬¬pk) (k ≥ 3), which is valid on Kripke
models whose poset has at most k maximal elements.
The other families are formulas of ILTP library [23] (in the tables the names have been shortened
to save space and brackets around benchmark names denote unprovable formulas in Dum).
Considering the timings, EPDL is a clear winner in all the families. It is interesting to analyze
the growing ratio within each family. The growing ratio of EPDL is higher than LC-models
on the families 201 and 207, lower on the families Nish, GdeJ, 205, 206, 208 and 212, and
equal in the remaining families. As a further experiment the two provers have been run on two
sets containing 40000 randomly generated formulas. The formulas in the first set were built
on 23 connectives and 3 variables, the formulas in the second set consisted of 49 connectives
and 5 variables5. To decide all the formulas in the first set EPDL took 18.75 seconds and
LC-models took 18531. As regard the formulas of the second kind, EPDL took 66 whereas
LC-models took 969079 seconds. These results show that EPDL is faster than LC-models and,
more importantly, that EPDL scales better since its increasing factor between the two kinds of
families formulas is lower than LC-models.

2LC-models is downloadable from http://www.loria.fr/~larchey/LC.
3Experiments performed on Intel(R) Xeon(TM) CPU 3.00GHz, RAM 2GB. Timings expressed in seconds.

On 206.5 the computation was stopped after some hours because memory occupation was more than 90%.
Names of unprovable formulas are in parenthesis.

4Other formulas characterizing intermediate logics have been considered in the experiments. Results are
disregarded since both the provers decide them in few seconds.

5The formula SYJ201+1.001 is built on 23 connectives and 3 variables, whereas SYJ201+1.002 contains 49
connectives and 5 variables.

60



Fast Decision Procedure for Dummett Logic Guido Fiorino

Formula Basic +Fact +Side EPDL
201.2 0.36 0.22 0.39 0.21
201.3 8.25 2.94 7.45 3.14
201.4 191 39.91 116 35.96
201.5 4830 502 1629 378
203.7 1.94 0.01 0.09 0.00
203.8 17.17 0.01 0.24 0.00
203.9 171.63 0.01 0.59 0.01
203.10 1885 0.00 1.42 0.01

Formula Basic +Fact +Side EPDL
205.3 0.03 0.03 0.03 0.03
205.4 0.12 0.13 0.08 0.08
205.5 0.76 0.80 0.23 0.24
205.6 5.80 5.92 0.68 0.68
(207.3) 0.54 0.27 0.56 0.31
(207.4) 11.51 3.63 9.70 3.71
(207.5) 266 46.63 139 40.23
(207.6) 6692 573 1827 406

Figure 7: Time comparison between different versions of EPDL.

The Figure 7 provides an account both of the formulas on which the optimizations work
and a comparison between them. From left to right, “Basic” refers to EPDL lacking of the
factorization rules and of the side information in the conclusion of F →; “+Fact” stands for
Basic extended with the factorization rules; “+Side” denotes to Basic extended with the side
information in the conclusion. The comparison clearly evidences that the optimizations are
effective both individually and together. In particular, on SYJ201 and SYJ207 families of the
ILTP library both the optimizations contribute to improve the performances. As regard SYJ203,
the side information allows to reduce the timing. Finally, the factorization of F →-formulas
improves the performances of EPDL on SYJ205.

Despite EPDL is a decision procedure whose time complexity is exponential, figures empha-
size that by adding to the logical rules some optimizations, the result is a decision procedure
which is effective on a wide range of formulas and outperforms LC-models which implements a
polynomial time decision procedure.
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