

Technical Breakdown of a Time-Series Data Federation
system

Ashley Sommer1, Matt Stenson1, Ross Searle1
1 Commonwealth Scientific and Industrial Research Organisation, Brisbane 4102,

Australia

Corresponding author: ashley.sommer@csiro.au

Abstract. A very large volume of climatic and agricultural data is captured and recorded by
on-farm monitoring devices that is uploaded to various different data service providers. It is
consistently difficult for land managers to discover, access, understand and use the data due
to its disparate nature, limited access to it and multiple proprietary formats used. The Soil
Sensing project is developing tools and technologies to help improve the ability to discover,
access, understand, and use time-series farm-scale data across disparate data providers. This
is achieved by the development and deployment of loosely-coupled web services in the form
of a Data Streams Integrator system (DSI), which implements a combined brokered and
federated data supply chain pattern. The DSI is composed of the Data Brokering Layer, the
Observations and Measurements translation layer, the Sensor Observation Service interface
and a metadata registry and repository.

Keywords: Soil, Agriculture, Farm data, Metadata, Federation, Observations &
Measurements, Sensor Observation Service, O&M, SOS, DBL, TimeseriesML, SensorML

1 Introduction
Over the past decade in Australia, the amount of farm-scale time-series data
collected and stored has increased immensely, due to the decreasing cost and
increasing prevalence of easy-to-deploy and easy-to-use commercial, on-farm,
sensor devices [1]. Meteorological data such as temperature, humidity, rainfall and
wind-speed, as well as agricultural domain properties including soil moisture, soil
temperature and other soil properties are regularly uploaded to sensor data services
[1]. The end user is usually given access to the gathered data only via a web
interface, and often in a restricted or limited manner. When a downloadable format

Engineering
EPiC Series in Engineering

Volume 3, 2018, Pages 2000–2010

HIC 2018. 13th International
Conference on Hydroinformatics

G. La Loggia, G. Freni, V. Puleo and M. De Marchis (eds.), HIC 2018 (EPiC Series in Engineering, vol. 3),
pp. 2000–2010

or an API endpoint is provided, it typically uses a proprietary data format, often via a
bespoke interface with ad-hoc API calls. Modern farms in Australia often have
multiple sensor devices deployed from various different manufacturers and, as a
result, the farm data are stored across multiple, different services. It is consistently
difficult for land managers to discover, access, understand and use the data due to the
disparate nature, limited access and multiple proprietary formats used by sensor data
service providers.

The Soil sensing – new technology for tracking soil water availability, managing risk
and improving management decisions project jointly funded through CSIRO and the
Australian Government’s National Landcare Program (the Soil Sensing project) has
developed a system to federate access to meteorological and agricultural data across
various disparate data service providers. This is achieved by the development and
deployment of loosely-coupled services in the form of a Data Streams Integrator
(DSI) system [1]. The goal of the DSI is to provide an implementation of a combined
Brokered and Federated [3] data supply chain pattern as described in Data
Specification Framework for the Foundation Spatial Data Framework [3].

2 The Data Stream Integrator Architecture
The standards and formats to be adopted and used by the components of the DSI
were determined by a workshop comprising stakeholders from industry, academic
partners and client application developers. It was decided to base the system on
published Open Geospatial Consortium (OGC) standards, specifically, using the
Observations and Measurements [13] data model, with embedded TimeseriesML
[14] and SensorML, and exposed via a Sensor Observation Service interface. It was
agreed that the use of open published standards is key to encourage the adoption of
the DSI.

Components of the DSI (Figure 1) include:
● Data Brokering Layer (DBL) – This concept was developed in the eReefs project

[2]. In the DSI, the DBL acts as a metadata harvester, metadata cache and
semantic search tool. Used for discovering available data sources, it provides a
machine-readable linked-data-compatible API for searching and discovering all
known datasets in a consistent format.

● SOS Native Data Service (SOS service layer) - An implementation of the Open
Geospatial Consortium Sensor Observation Service (SOS) Interface Standard,
that enables client applications to interface with using existing standard client
libraries.

● O&M Translator (O&M translation Layer) – A data broker consumes the
bespoke and proprietary observational data formats used by the various data
service providers and presents it to clients through the SOS interface using the
standard Observation and Measurements (O&M) data model. Optionally, the

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2001

O&M Translator has the ability to deliver a TimeseriesML representation of
observation results for a cleaner, less verbose output.

● Additional Metadata (SinNC Metadata Repository) - An external and stand-alone
metadata registry and repository created to augment the limited Data Provider
metadata captured by the DBL. This was created to be a general-purpose tool, not
specific to this use-case or this project.

Figure 1 - A simplified visual representation of the components within the Data Streams Integrator

system.

The task of bringing together disparate sources of data, with the goal of making it
visible and accessible via a common interface in a common format, is not new. The
FSDF project analysed a variety of data supply chains and proposed a taxonomy
based primarily on the location of the transformation process within the architecture
(Figure 2). The Data Streams Integrator is a hybrid brokered/federated system,
incorporating aspects of both rows 4 and 5 in the diagram. The “federated” scenario
represents the provision of a native SOS interface directly by the data provider for
the end user to consume. Most data service providers, however, do not implement
systems in this way, therefore to utilise the data in a SOS format, it is processed by
the O&M Translation Layer matching the “brokered” scenario in Figure 2.

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2002

Figure 2 - Supply Chain Patterns, after Figure 5 in [3]

2.1 Data Brokering Layer
Originally developed as part of the eReefs project in 2013-2014, the Data Brokering
Layer (DBL) [2] is a middleware service that acts as a metadata harvester, metadata
cache, metadata mediator and semantic search engine. The service is implemented in
Python as a Flask1 web service. Known data providers are described as Data
Provider Nodes (DPNs) using the DPN Ontology [4]. The DBL is able to gather a
specific subset of metadata from many data provider service types using a number of
different harvester implementations. The DBL harvester periodically queries defined
service endpoints of known data providers for a catalogue of datasets, then extracts a
selection of metadata from each to store in a common semantic format within the
DBL metadata cache. The metadata cache is implemented using a MongoDB2
document storage database both in-memory and on-disk. The DBL metadata cache

1 http://flask.pocoo.org
2 https://en.wikipedia.org/wiki/MongoDB

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2003

provides the capability for users of the DBL to access a mediated aggregation of
metadata for all datasets from all known service providers. This enables development
of lightweight client applications, which can simply use a single API endpoint of
aggregated metadata to power their functionality. The DBL also allows users to
perform semantic search functions across the metadata cache to discover specific
datasets, rather than rely on simple keywords filtering or consuming a broad set of
unfiltered data layers, therefore streamlining discovery and access to relevant data.

The eReefs implementation of the DBL was ported to a newer version of Python and
support was added for non-gridded data provider sources, specifically time-series
data sources.

Both gridded and time-series dataset types are now supported by the DBL. In the
case of previously supported gridded datasets, metadata harvesters have been
implemented for several THREDDS Data Server (TDS) [5] service types including
ISO [6], OpenDAP [7] and Web Map Service (WMS) [8]. For newly supported time-
series datasets, metadata harvesters have been implemented for Senaps (formerly
Sensorcloud) [9], DataFarmer [10], SILO Climate data from the Queensland
Department of Science, Information Technology and Innovation [11] and the
WeatherStation API from Western Australia Department of Agriculture and Food
(DAFWA) [12].

2.2 The O&M Translation Layer
The majority of new work for the Soil Sensing project was development of the O&M
Translation Layer. It works closely with the SOS interface described in Section 2.3
below. Translation of data representation from the native forms to O&M is
implemented using Object-Oriented Python according to the O&M standard [13].
This component is built with a modular, extensible, backend system, with support for
each different data provider written as drop-in modules. At the time of writing,
backend connector modules have been written for Senaps [9], DataFarmer [10],
SILO [11] and DAFWA [12].

The SOS interface receives requests for observations with optional temporal and
spatial filters, or filters for other properties, from client applications and passes them
to the O&M Translation layer. This component determines the correct data source to
service the request, and uses that backend to retrieve the required data from the
provider in the provider’s native format. After receiving the results, the component
reshapes the data (using Pandas Dataframes3), into a structure that can be used to

3 https://pandas.pydata.org/pandas-docs/stable/dsintro.html

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2004

build the O&M observation data representation. For each backend there is also the
option to construct a TimeseriesML [14] representation of the observation results,
which provides a less verbose response payload.

Finally, the O&M translation layer adds additional required metadata to the response,
serialises it to the required format and passes it back to the SOS interface. The
default O&M serialisation format is XML+GML [15]. However, an RDF/OWL
representation [16] is partially supported and a JSON implementation [18] is
planned.

2.3 The Sensor Observation Service
The SOS component is the primary and preferred way for clients to interface with
the system. It is built in accordance with the required SOS Interface Standard [19]
using SOAP bindings, and has two other service bindings; KVP (key-value-pair) and
REST. The SOAP binding is implemented using Spyne; a Python Remote-
Procedure-Call (RPC) service library for building RPC and SOAP interfaces. The
KVP and REST bindings are built using Sanic, a fast, modern, asynchronous micro-
service library. While the SOAP and KVP bindings are defined by the SOS standard,
the REST binding was developed locally, based on the KVP binding specification,
with a REST-like interface documented using the SwaggerUI (OpenAPI)4
presentation tool. All three of the bindings implement four standard SOS endpoint
functions; GetCapabilities, GetObservation, DescribeSensor and
GetFeatureOfInterest. Each binding can receive a request from a client, ensure it is
in the correct structure with valid parameters, present the request to the O&M
Translation layer for execution by the appropriate backend implementation, and
finally return the response to the client.

2.4 The Metadata Repository
The newest component of the DSI is the Metadata Repository (SinNC). In most
cases the metadata provided by the data services is extremely lightweight and not
backed by standardised and governed terms, leading to ambiguity and decreasing the
potential for the data to be understood, trusted and used. As part of the DSI system
we have implemented a flexible metadata system based on RDF (Resource
Description Framework5), that allows for the capture of extra context information
about either the data, the sensor or its use through provenance.

4 https://en.wikipedia.org/wiki/OpenAPI_Specification
5 https://www.w3.org/2001/sw/wiki/RDF

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2005

The repository’s purpose is to store all of the metadata about data service providers
known to the DSI, plus metadata about datasets exposed by the service providers.
This is required because the DBL metadata cache stores only the smaller subset of
metadata that is required to perform DBL functions. The DescribeSensor and
GetFeatureOfInterest endpoints on the SOS interface are able to generate SOS
responses that contain descriptive metadata models using SensorML [16] and GML
[17]. The extended metadata used to populate the SOS metadata models is retrieved
from our Metadata Repository, on-demand, at runtime.

The Metadata Repository is populated using harvester scripts that periodically crawl
known data provider backends. Populating SinNC for a particular data service is
normally a one-off job involving mapping existing metadata to managed
vocabularies, and linking to extra metadata that may be known, but not exposed,
through the existing service.

SinNC is built using modern RDF and Linked Data6 technologies. The database is a
RDF Quad-store implementation powered by Apache Jena Fuseki7, with a Python
service interface to allow easy metadata searching, storing and retrieving.

3 Retrospective
It was decided early that the DSI’s O&M and SOS layer implementations should be
as light-weight as possible, supporting only the features needed to get a minimum
compliant O&M and SOS output generated. This meant forgoing existing open-
source implementations like 52 North [20], and writing a bespoke O&M and SOS
stack from scratch. However, even a lightweight implementation was a much bigger
task than originally anticipated, especially when introducing support for additional
technologies such as TimeseriesML and SensorML. It required implementing not
only the externally visible O&M and SOS class models, but also the internally used
SWE, SWES, OWS and GML class models that O&M and SOS are built upon. This
has advantages over using existing off-the-shelf solutions in terms of flexibility and
customisation, at the expense of additional development time.

An alternative service interface standard came to the attention of the project team
when the OGC published the SensorThings API specification [21]. While too late to
change the project scope and direction at that time, it was recognised that the
SensorThings API may have been a better choice than SOS for the service interface.
It would have allowed the ability to keep the O&M data model, but have a faster and

6 https://www.w3.org/standards/semanticweb/data
7 https://jena.apache.org/documentation/fuseki2/

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2006

more light-weight interchange format, and would have been easier to implement
client-side applications for consumers of the service.

4 Looking Forward
The project team is working toward having data from more Data Providers exposed
through the Data Streams Integrator. While the existing backend connectors are
expected to cover the majority of the known use cases, there will be instances that
will require writing new modules for the O&M Translation layer. We will also work
with data providers to directly provide O&M and SOS service interfaces by default
so that no on-the-fly translation is necessary. This will allow us to move more toward
the ideal Federated Supply Chain scenario.

There are currently several Data Providers that do not provide a publicly accessible,
fast and easy-to-use API that can be accessed at runtime for real-time data translation
through the O&M translation layer. For these cases recent data is regularly “screen-
scraped” from the service provider ahead of time and stored in a cloud-based Senaps
instance. The translator then uses Senaps as the data source at runtime for O&M
translation. This solution is less than ideal because duplicating, storing and
maintaining Data Providers’ data is an additional cost to the project. The project
team is working with Data Providers to get access to APIs that can be used at
runtime, to avoid scraping the data ahead of time.

The project team is working with client application developers, and end-users to test
our proposition that this style of system adds value in the form of easier to access
data, aggregated views of data across multiple providers, and time savings.

There are currently no usage metrics captured by the Data Streams Integrator nor any
of its components thus it is not possible, at this stage, to analyse usage of the system.
It is anticipated that the addition of detailed usage metrics will allow the team to
fine-tune the features, capabilities, and performance of the system in response to how
it is being used.

A final thought is the potential to move the whole Data Streams Integrator to an
operational home at the end of its development period. That would allow the
development team to hand off the day-to-day running of the system to a dedicated
operational team.

5 Conclusions
Through the adoption and extension of existing standards, technologies and the
application of new technologies, a function time-series data stream aggregation

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2007

system that cleanly matches the ideologies of a brokered and federated Information
Supply Chain was built. The Data Brokering Layer was successfully re-purposed and
extended to facilitate the harvesting of time-series data from new data service
providers, and the new functionality kept available for use in other projects. The new
O&M Translator component creates valid OGC compliant representations of data
sourced from a variety of data provider services, and is able to communicate with
client applications through a standardised SOS interface. The new RDF-based
Metadata Repository augments the SOS capabilities with additional metadata to add
important context to the Sensor and Observation data. Work on the system is
continuing; tasks to add new functionality including adding support for more
backend service provider types, and implementing new O&M representation types is
planned. However, the system in its current form is deployed and working as
intended, with clients in the Agriculture sector and mobile application developers
using it in an evaluation and testing capacity. Figure 3 shows a screenshot of an
example web application used to showcase the capabilities of the DSI.

Figure 3 – Screenshot of an Example Application

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2008

Acknowedgement
This project is jointly funded through CSIRO and
the Australian Government’s National Landcare Program

References
[1] M.P. Stenson, A. Sommer, R. Searle, Federating and harmonising disparate soil

moisture data sources, Submitted - 13th International Conference of Hydroinformatics
(HIC2018) Palermo, Italy, 2018.

[2] J. Yu, B. Leighton, N. Car, S. Seaton, J. Hodge, The eReefs data brokering layer for
hydrological and environmental data, Journal Of Hydroinformatics, 18 (2015) 152-167.

[3] P. Box, B. Simons, S. Cox, S. Maguire, A Data Specification Framework for the
Foundation Spatial Data Framework, CSIRO, 2015.

[4] S. Cox, J. Yu, The Data Provider Node Ontology, CSIRO, 2015.
[5] B. Domenico, J. Caron, E. Davis, R. Kambic, S. Nativi, Thematic Real-time

Environmental Distributed Data Services (THREDDS): Incorporating Interactive
Analysis Tools into NSDL, Journal Of Digital Information, 2 (2006).

[6] U. Voges, F. Houbie, N. Lesage, M. Vautier, OGC I15 (ISO19115 Metadata) Extension
Package of CS-WebRIM Profile 10, Standard Implementation Specification, 2014.

[7] P. Cornillon, J. Gallagher, T. Sgouros, OPeNDAP: Accessing data in a distributed,
heterogeneous environment, Data Science Journal, 2 (2003) 164-174.

[8] Open Geospatial Consortium Inc., OpenGIS Web Map Service version 130, Specification
Document, Open Geospatial Consortium (OGC), 2006.

[9] M. Coombe, P. Neumeyer, J. Pasanen, C. Peters, C. Sharman, P. Taylor, Senaps: A
platform for integrating Time-Series with Modelling Systems., 22th International
Congress on Modelling and Simulation, Hobart, Australia, 2017

[10] Birchip Cropping Group, DataFarmer, Company webpage, online at
https://www.datafarmer.com.au/, accessed 2018-01-31.

[11] Queensland Department of Science, Information Technology and Innovation, SILO,
Government department website, online at https://www.longpaddock.qld.gov.au/silo/,
accessed 2018-01-30.

[12] Western Australia Department Of Agriculture And Food, DAFWA Weatherstation API,
Governement department website, online at https://www.agric.wa.gov.au/weather-api-10,
accessed 2018-01-30.

[13] S. Cox, Open Geospatial Consortium Inc. Observations and measurements, OGC
Abstract standard specification, OGC, 2013

[14] J. Tomkins, D. Lowe, Timeseries Profile of Observations and Measurements, OGC
Standard Implementation Specification, OGC, 2016

[15] S. Cox, Observations and Measurements - XML Implementation, OGC Standard
Implementation Specification, OGC, 2011

[16] S.J.D. Cox, An explicit OWL representation of ISO/OGC Observations and
Measurements, Proceedings of the 6th International Workshop on Semantic Sensor
Networks, 2013

[17] Portele, C., Cox, S. J. D., Daisey, P., Lake, R., & Whiteside, A., OpenGIS® Geography
Markup Language (GML) Encoding Standard, OGC Implementation Specification. OGC
07-036, 2007

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2009

[18] S.J.D Cox, P. Taylor, OGC Observations and Measurements - JSON Implementation,
OGC Standard Implementation Specification, OGC, 2015

[19] A. Bröring, C. Stasch, K. Echterhoff, Sensor Observation Service Interface Standard,
OGC Standard Interface Specification, OGC, 2012

[20] 52° North Initiative for Geospatial Open Source Software GmbH, 52 North, Company
website, online at http://52north.org, accessed 2018-02-01.

[21] Liang, Steve H.L., Chih-Yuan Huang, and Tania Khalafbeigi. OGC SensorThings API
Part I:Sensing, OGC, 2016

Technical Breakdown of a Time-Series Data Federation System A. Sommer et al.

2010

