
Automatic identification of sewer fault types using 

CCTV footage 

Joshua Myrans1, Zoran Kapelan2, Richard Everson1 
1 University of Exeter, Harrison Building, North Park Road, Exeter, Devon, UK, EX4 4QF 

jm494@exeter.ac.uk 

Abstract  

Water companies all over the world regularly perform inspections of their sewer networks. 

The data collected this way is then analysed by human technician which is time consuming 

and expensive. Previous work by the authors has developed methodology that can 

automatically detect faults in sewer pipes using standard CCTV footage. This paper presents 

a methodology to automatically identify types of detected faults aiming to further improve the 

efficiency and accuracy (i.e. consistency) of surveys. The methodology calculates a feature 

descriptor for individual frames of CCTV footage, before predicting the contents using a 

multi-class Random Forest classifier. Demonstrated on a comprehensive library of frames 

extracted from real-life CCTV footage of a UK water company, the methodology correctly 

identified the fault type in 71% of frames. Most common fault types were included in this 

experiment, covering a wide range of pipe sizes and materials, including vitrified clay, PVC 

and brick. Overall, this preliminary work shows promise for application in industry, proving 

an effective tool for analysing CCTV surveys.  
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1 Introduction 

Water companies in the UK must maintain thousands of kilometres of sewers, the 

condition of which is usually monitored using regular CCTV surveys. These surveys 

record the otherwise inaccessible interior of pipes using remote cameras, continuing 

to annotate the footage according to the WRc Manual of Sewer Condition 

Classification [1]. This annotation is usually performed after recording, by trained 

technicians, identifying the location, type and severity of faults. However, sewer 

surveys are extremely time consuming, prone to human error [2] and expensive. This 

paper presents a preliminary methodology to identify the type of a detected fault, using 

a machine learning classifier. 
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This is not the first work aiming to identify faults in sewer networks, multiple 

academics have approached this problem from many perspectives. Some of the earliest 

work by Duran et al. [3] suggested retrofitting the camera with a laser profiler. The 

laser’s readings were used as inputs to a sequence of neural networks predicting the 

type of structural faults. Similarly, Sinha et al. [4] applied fuzzy neural networks to 

key features extracted from the footage to identify the presence of cracks in pipes. This 

work on crack detection has continued to flourish, with new techniques such as 3D 

scene reconstruction [5] and advanced pattern recognition tools [6] proving capable of 

the task. Outside the field of crack detection, Guo et al. [7] compared neighbouring 

frames of CCTV footage, identifying anomalies in the footage for further 

investigation. Most recently Halfawy and Hengmeechai [8] utilised optical flow to 

track the operator’s camera motion to identify regions of interest within the footage. 

This work was continued, demonstrating the effectiveness of HOG features in 

combination with a SVM classifier to detect tree root intrusions [9]. 

The methodology presented here, builds on previous work, which identifies the 

presence of faults with at least 80% accuracy [10] [11]. Given the ability to detect 

faults, this new methodology identifies a fault’s type based on its classification (i.e. 

Crack, Deposit, Root Intrusion etc.). Previous work in the field has largely 

concentrated on individual fault types, most notably cracks. This results in a large 

ensemble of extremely specialised classifiers, to accurately determine a fault type. 

This can perform well, as demonstrated by Hawari et al. [12], achieving an accuracy 

of >84% when detecting cracks, deformations, deposits and displaced joints in small 

scale experiments. In contrast, the technique presented here uses a single holistic 

methodology to determine fault type. Improving the efficiency of automatic fault 

identification, reducing the need for many specialised techniques, whilst maintaining 

a comparable level of performance and easy integration with other fault detection 

techniques.  

2 Methodology 

The fault type identification methodology, can be broken down into three stages: ‘Pre-

processing’, ‘Feature Extraction’ and ‘Classification’ as demonstrated in Figure 1. 

This methodology is designed to identify faults within images, already identified as 

containing faults, as such the following assumptions are made: 

 Images processed by the methodology contain at least one fault. 

 Footage is of high enough quality for a human to identify the type of fault 

present in an image. 

 Sufficient data, with a good representation of all sewer faults, is available 

to train the machine learning classifier. 

As the methodology is designed to work alongside fault detection methodologies, the 

first assumption should be met with correct implementation. Similarly, if a human 

Automatic Identification of Sewer Fault Types Using CCTV Footage J. Myrans et al.

1479



technician is unable to discern the contents of an image, due to poor lighting, resolution 

etc., it is unreasonable to assume the methodology is able to. Finally, being a data 

driven technique, its effectiveness is limited by the data used during its calibration. If 

a fault type is underrepresented or dissimilar to the training examples, the 

methodology is likely to perform poorly on that fault type. 

 

 

Figure 1. The three-stage structure if the fault type identification methodology 

The first ‘Pre-processing’ stage of the methodology, extracts frames, identified as 

faulty from the raw CCTV footage, re-sizes them, and finally converts the image from 

colour to grayscale. In doing so each frame of CCTV footage is treated as an individual 

image, receiving its own classification. Experiments showed that colour to be noisy, 

dependant on varying illumination within the footage. Similarly, a lower resolution of 

128 x 128 pixels is used, as experiments showed minimal improvement and increased 

processing times for higher resolutions. 

Continuing to the second ‘Feature Extraction’ stage, a processed frame’s GIST feature 

descriptor is calculated [13]. The GIST descriptor represents the image in a much 

lower dimensional space, simplifying the classification problem. Initial 

experimentation showed the GIST descriptor to perform well, comparable to the HOG 

descriptor used by Halfawy and Hengmeechai [8], and much faster than other feature 

descriptors, such as SIFT and SURF. A GIST descriptor is calculated by convolving 

the pre-processed image with a series of 32 Gabor wavelets and summing the 

convolved values over 16 equally sized grid cells. The resulting 512 values are 

appended to form the final feature descriptor, ready for classification. 

The final ‘Classification’ stage applies a trained multi class Random Forest [14], to 

the extracted GIST descriptor. The workhorse of the methodology, this machine 

learning classifier identifies the type of fault in the image. A Random Forest is an 

ensemble classifier, containing a collection of randomly ‘grown’ decision trees. Each 

tree in the forest makes an independent prediction of the frame’s contents, before the 

entire ensemble vote on the assigned fault type. A Random Forest was chosen over 
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other multi-class machine learning classifiers for it’s easy to understand structure and 

its previous successes in the fault detection methodology [10]. The key to an effective 

Random Forest, like all machine learning classifiers, is effective training. In this 

methodology we apply the Extra Trees algorithm [15], which grows the internal 

decision trees by randomly selecting a parameter of GIST descriptor and splitting it 

randomly. This is dissimilar to standard Random Forests, which splits parameters 

based on the maximum normalised information gain. 

3 Case study 

3.1 Data 

The testing and development of this methodology has been performed on real-world 

data provided by UK water company Wessex Water. The footage covered over 30km 

of pipe ranging in diameter (150 -1500mm), shape (circular, egg, horseshoe) and 

material (vitrified clay, PVC and brick). From this footage a selection of 2424 faults 

distributed as shown in Table 1.  

Table 1. Distribution of fault types in extracted CCTV frames 

Fault type Subtype Percentage (%) 

Joint Displaced, Open 33.7 

Deposits Attached, Settled 18.6 

Surface - 12.9 

Crack Longitudinal, Circumferential, Multiple, Spiral 12.0 

Roots Fine, Tap, Mass 10.2 

Infiltration Running, Gushing 4.5 

Obstacles Intruding Junctions, Masonry, Protrusion 3.9 

Broken / Collapsed - 2.3 

Hole - 1.1 

Brickwork Missing mortar, Displaced bricks, Missing bricks 0.5 

Deformation - 0.3 

 

To make best use of the available dataset, 25-fold cross validation is used to separate 

the frames into training and testing sets [16]. Cross validation splits the randomly 

shuffled dataset into 25 equally sized groups (folds). Each of the 25 folds is in turn set 

aside to form the test dataset, whilst the remaining 24 folds are used to train the 

Random Forest classifier; the generalisation accuracy of the method is then estimated 

by averaging the accuracy over the 25 validation sets. In addition, any frames 

containing multiple fault types were excluded from the experiment, reducing the 

number of usable frames to 1972. Finally, initial experiments showed faults with less 

than 100 examples to be underrepresented, as such they are grouped into an ‘other’ 

class. This left a classifier capable of detecting: ‘joints’, ‘deposits’, ‘surface’, ‘crack’, 

‘roots’, ‘infiltration’ and ‘other’. 
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3.2 Results & Discussion 

Applied to the collection of still images, the methodology achieved an overall accuracy 

of 71%, correctly assigning the type of fault in each case. The breakdown of the 

methodology’s success by fault is demonstrated in the Table 2. It is also worth noting 

that each prediction took less than 1/25th of a second on a standard laptop computer, 

enabling the methodology to run in real-time. 

Table 2. Confusion rate matrix for the fault type identification methodology over 7 classes 

using non-stratified data. 

 
Actual 

Joint Crack Deposits Roots Infiltration Surface Other 

Predicted 

Joint 0.86 0.27 0.21 0.26 0.24 0.28 0.15 

Crack 0.04 0.57 0.02 0.03 0.06 0.03 0.05 

Deposits 0.05 0.06 0.69 0.11 0.02 0.10 0.28 

Roots 0.00 0.01 0.01 0.54 0.02 0.02 0.01 

Infiltration 0.00 0.01 0.01 0.02 0.65 0.00 0.02 

Surface 0.03 0.04 0.04 0.04 0.00 0.56 0.04 

Other 0.01 0.01 0.03 0.01 0.01 0.02 0.45 

 

Given the above results it is clear to see the methodology is working. This is best 

demonstrated by the highlighted diagonal in Table 2 showing the True Positive Rate 

(TPR) for each fault type. TPR is the rate at which, given an image with a specific 

fault type, the methodology correctly identifies the fault’s type. Given ‘joints’ are the 

best represented fault type (roughly a third of the dataset, see Table 1), it is 

unsurprising the methodology is best at identifying them with a TPR of 86%. 

However, this saturation of ‘joints’ appears to have led to many other fault types being 

misclassified. In most other classes the highest False Positive Rate (FPR) is attributed 

to being misclassified as a ‘Joint’.  

To address the above issue, the experiment was re-run, stratifying the dataset to 

contain only 150 examples of each fault, reducing the size of the dataset to 1,050 

images. This second experiment achieved a reduced overall accuracy of 68% but, at 

the same time, it has improved the TPR of most other fault types, as shown in Table 

3.  
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Table 3. Confusion rate matrix for the fault type identification methodology over 7 classes 

using the stratified dataset. 

 
Actual 

Joint Crack Deposits Roots Infiltration Surface Other 

Predicted 

Joint 0.61 0.07 0.08 0.08 0.09 0.09 0.04 

Crack 0.14 0.67 0.03 0.05 0.03 0.07 0.05 

Deposits 0.08 0.03 0.62 0.07 0.00 0.04 0.07 

Roots 0.03 0.04 0.07 0.69 0.04 0.06 0.02 

Infiltration 0.03 0.03 0.02 0.03 0.82 0.01 0.02 

Surface 0.03 0.03 0.06 0.01 0.01 0.61 0.04 

Other 0.08 0.13 0.12 0.07 0.01 0.12 0.76 

 

Comparing Tables 2 and 3, the only fault types to achieve a reduced TPR after 

stratification of observed data are ‘joint’ and ‘deposits’, whilst all other fault types 

were better classified. ‘joints’ are now most likely to be misclassified as ‘cracks’, 

likely due to their similar physical appearance. On the other hand, ‘deposits’ and most 

other faults are likely to be mislabelled into the ‘other’ category, likely due to the 

diversity of the ‘other’ class. The ‘other’ fault category itself has seen a marked 

improvement, from a TPR of 45% to 76%. Similarly, ‘infiltration’ faults have achieved 

the highest TPR (82%), this could be attributed to their unique appearance, with most 

forms of infiltration (‘seeping’, ‘running’, ‘gushing’) appearing to be very similar. It 

is worth noting that ‘Infiltration’ faults are most commonly misclassified as ‘joint’ 

faults, likely because ‘infiltration’ faults often occur around pipe joints. 

4 Conclusion 

This paper demonstrates a preliminary methodology for identifying the type of sewer 

faults detected in CCTV footage. The methodology calculates a frames GIST 

descriptor [13] before using a multi class Random Forest [14] to identify the type of a 

given fault. In summary, the methodology shows promise for further investigation, 

achieving a 71% accuracy on this complex multi-class problem. The work was 

demonstrated on a comprehensive dataset, covering most common types of sewer pipe 

and fault as described by the WRc Manual of Sewer Condition Classification [1]. The 

case study shows that the methodology performs best on well represented faults, which 

are dissimilar to others in physical appearance, although over-represented faults often 

bias the methodology’s classifications. As such the methodology was applied to a 

stratified dataset, containing 150 examples of each fault type. This reduced the overall 

accuracy to 68%, but balanced the TPR of most fault types, as shown by Table 3. 

Future work aims to perform more comprehensive tests on the methodology, aiming 

to train the classifier on a larger, balanced collection of fault types. The methodology 

will also be compared to other similar techniques, such as an ensemble of binary 
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classifiers, to better understand the methodology’s performance. Finally, the new 

methodology will be combined with previous work [10] [11] and expanded to cover 

fault location and severity in continuous CCTV footage. These technologies will be 

combined to create a decision support tool capable of assisting engineers in the field, 

improving the speed and quality of CCTV surveys. 
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