
EPiC Series in Computing

Volume 46, 2017, Pages 1–13

LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Programming by Composing Filters

Jeffrey M. Fischer1 and Rupak Majumdar2

1 Data-Ken Research
jeff@data-ken.org

2 Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

rupak@mpi-sws.org

Abstract

We present a formal model for event-processing pipelines. Event-processing pipelines
appear in a large number of domains, from control of cyber-physical systems (CPS), to large
scale data analysis, to Internet-of-things applications. These applications are characterized
by stateful transformations of event streams, for example, for the purposes of sensing,
computation, and actuation of inner control loops in CPS applications, and for data
cleaning, analysis, training, and querying in data analytics applications.

Our formal model provides two abstractions: streams of data, and stateful, probabilistic,
filters, which transform input streams to output streams probabilistically. Programs are
compositions of filters. The filters are scheduled and run by an explicit, asynchronous,
scheduler.

We provide a transition system semantics for such programs based on infinite-state
Markov decision processes. We characterize when a program is scheduler-independent,
that is, provides the same observable behavior under every scheduler, based on local
commutativity.

1 Introduction

Event-based processing is at the core of many applications from many different domains, from
sensing and control of cyber-physical systems to low-level high-throughput packet processing
to large-scale data analysis. Consequently, many domain-specific languages and systems have
been developed for writing event processors. In the domain of synchronous hardware systems,
for example, synchronous languages such as Lustre provide an elegant declarative language
that structures event processing as transformations on streams [6, 4, 13, 25]. In the domain of
continuous control systems, languages such as Simulink and Stateflow provide a visual notation
to structure the flow of (continuous) sensor data, control computations, and actuation signals. In
packet processing, systems such as Click [19, 1] provide a modular way of composing individual
packet transformers into asynchronous packet processing systems. In data analytics, systems
such as Spark [2] or Linq [22] provide a functional API that can be composed to form complex
data processing pipelines. Streaming databases provide languages to query and process streams
of uncertain data [7, 9, 8, 18]. Superficially, these languages or language abstractions look
quite different. But at their core, all these formalisms consist of a representation for streams

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 1–13

Programming by Composing Filters Fischer and Majumdar

and (often asynchronous) transformations of input streams into output streams in a stateful
way. In addition, for many applications, it is important to explicitly model uncertainties, e.g.,
probabilistic nature of the underlying data or randomization in the processing.

In this paper, we present filter language (FL), a formal model for stateful data processing
pipelines which captures the essence of stateful and asynchronous processing of data streams
with explicit support for uncertainties. The core abstractions in FL are streams of (possibly
continuous-valued) events, and filters, a trasducer with (potentially infinite) internal state
mapping input streams of events to output streams. Filters can be connected through their
input and output ports. Filters can be probabilistic, that is, the transition function can depend
on the outcome of a probabilistic sample. A FL program is a set of filters interconnected into a
graph. The execution of an FL program is asynchronous: a co-operative scheduler picks a filter
to be executed atomically in each step.

We provide a transition system semantics for FL programs, based on infinite-state Markov
decision processes. Our semantics captures the operational intuition that programmers have
about processing sensor streams. In contrast to probabilistic languages such as PDL [20], our
semantics involves actions chosen by the asynchronous scheduler: under a given scheduling policy
(and an initial distribution), we recover the stochastic process semantics in these languages.

FL programs are non-deterministic: depending on the choice of schedulers, the outputs of
the program can be different. A particular question of interest is when a program is scheduler-
independent, that is, when the behavior of the program is independent of the choice of schedulers.
We characterize a confluence theorem for FL programs: if each filter is (locally) commutative,
the entire program is guaranteed to be confluent, that is, the distribution over the states
on termination of the program is identical no matter which scheduler was used. Our result
generalizes similar folklore results on stream processing (e.g., for mapreduce pipelines) to the
probabilistic setting.

Our study of programming with filters is motivated by Internet-of-Things (IoT) applications,
which combine sensing-computation-actuation of traditional control loops with data processing
and distributed analytics. We have implemented FL as a Python API called ThingFlow.1

Our design of ThingFlow ensures that there is a core abstraction that is simple enough to
run on resource-constrained sensors while providing interfaces to many different systems (such
as databases, storage, and machine learning pipelines). We have implemented a number of
applications on top of ThingFlow, including home automation and control applications involving
sensing, computation, learning, and control. Our experience with the FL abstraction indicates
that it provides a simple abstraction and semantics for stream processing systems which is close
to the intuition of the domain expert.

2 Informal Overview and Examples

We informally introduce FL through examples.

Filters. A basic FL component is called a filter. Filters implement state transducers: they
accept (multiple) streams of inputs and produce (multiple) streams of outputs, and maintain
internal state. State transitions can be probabilistic. Each filter has a set of input ports and a
set of output ports, which determine the flow of events in the system, and transfer functions
that determine how to process events coming into the input ports and what events to send along
the output ports. Filters can maintain (potentially unbounded) internal state. For example, in

1 Our implementation is available at https://github.com/mpi-sws-rse/thingflow-python.

2

https://github.com/mpi-sws-rse/thingflow-python

Programming by Composing Filters Fischer and Majumdar

control-related applications, the state can be real numbers derived from sensor measurements.2

The transition function implemented by a filter can be probabilistic. The intuition is that each
filter is intended to implement a focused task; complex behaviors are obtained by composing
filters.

Programs and Scheduling. A FL program is a directed graph whose vertices are filters and
whose edges, called connections, connect the output ports of filters to input ports of other filters.
In general, the input or output port of a filter can be connected to output or input ports of
multiple other filters. If an output port o of a filter A is connected to the input port i of a filter
B, we say that B subscribes to A through the port mapping o 7→ i.

Informally, a FL program processes sequences of events asynchronously. A FL program is
scheduled by an application-level scheduler. At each step, the schedule picks a filter and an input
port of the filter, and the filter processes the first event queued at its input port by changing its
internal state and producing (potentially 0, 1, or multiple) events along its output ports. The
events on the output ports are enqueued in the input ports of all downstream filters connected
to those output ports. While events along each connection is FIFO-ordered, the sequence of
execution is non-deterministic and depends on the order picked by the asynchronous scheduler.
For example, if two events appear at two input ports of a filter, the order of execution of the
two events is not determined a priori. “Free” input ports (not connected to an upstream filter)
represent external inputs to the system (e.g., sensor streams) and “free” output ports represent
external outputs.

We now describe some concrete example programs.

Example: Functional pipelines Data analysis applications such as Microsoft’s Linq or
Apache Spark provide a functional API to transform sequences. For example, these APIs provide
functions to transform a sequence of values by applying a function on each element (map), to
select a subsequence based on a predicate (select), and to perform an accummulation (reduce).
As a concrete example, one can transform a stream of sensor values by extracting the value,
filtering all readings above a threshold, and counting:

sensor.map(lambda x: x.val).select(lambda x: x > 20).reduce(lambda c, e: c+1, 0)

Here, we use lambda x: f(x) as concrete syntax for a lambda-abstraction.
One can view such pipelines as FL programs: map, select, and reduce are filters with

exactly one input and one output ports. The first two are stateless. The last (reduce) maintains
state through the accummulated value acc.

Example: Synchronous dataflow languages Synchronous dataflow languages such as
Lustre [6] provide an elegant declarative programming model close to FL. A program in Lustre
consists of variables representing streams of values and a set of equations defining filters.
Programs have a synchronous interpretation: solving the equations synchronously gives the new
values of the streams based on old values. For example, the example above could be expressed
as the following equations:

X1 = sensor.val
X2 = X1 when X1 > 200

2 Our use of the term filter is inspired by applications of FL programs in control and signal processing, where
probabilistic transducers solve the “filtering problem” of state estimation from noisy measurements. This also
avoids the common connotation that Mealy machines and state transducers are discrete-state, deterministic
machines.

3

Programming by Composing Filters Fischer and Majumdar

PID	 controller	 Sensor	 Kalman	 filter	 Actuator	

Figure 1: A PID control pipeline

Count = 0 -> pre(Count) + 1 when X2 > 200

Here, the variables sensor, X1, X2, Count represent streams of values, when is a sampling
operation on streams, pre(X) is the stream X delayed by one time unit, and

X = 0 -> E

denotes the stream whose first element is 0 and thereafter the same as E.

There is no explicit notion of state in Lustre, because state can be maintained as just another
stream of values (and use of the pre operation). To a first approximation, Lustre programs can
be seen as an FL program with one filter (to ensure synchronous semantics). Code generation
for Lustre programs using finite automata internally build this filter. The semantics of FL can
be seen as a probabilistic extension to Lustre’s semantics.

Example: PID control A simple implementation of control loops for continuous dynamical
systems consists of a sequence of filters that read multiple sensor streams, transform the sensor
streams into state estimates, computes a control action, and outputs the action to an actuator.
Figure 1 shows an example FL pipeline. Both the Kalman filter and the PID controller maintains
explicit internal state. The Kalman filtering algorithm maintains a “current belief,” which is a
probability distribution on the state, and updates the belief based on new sensor readings. The
PID controller maintains the controller gains (and may switch between different modes based
on the state). Specifically, the Kalman filter keeps track of the mean and covariance matrix of a
Gaussian representing the distribution of states as a vector and matrix over reals. Note that the
Kalman filter has two input ports: one from the sensor and one from the output of the PID
controller. It receives a real-valued sensor measurement and a real-valued control output from
the controller. It outputs the state estimate (the current mean) on its output port. Languages
like Simulink and Stateflow are used to implement controllers and provide a visual framework
to connect filters.

So far, the individual filters have been deterministic; while the theory behind Kalman
filtering uses probabilities, the implementation of the filter itself is deterministic and manipulates
symbolic representations of underlying probability distributions. However, more complex filtering
algorithms, such as particle filtering [24], make explicit probabilistic decisions. A particle filter,
like a Kalman filter, maintains as internal state a finite representation of the distribution of the
system’s state. However, unlike a Kalman filter, the distribution is not maintained symbolically
but as a set of samples drawn from the distribution. When a new sensor input is read, the filter
executes a randomized procedure to generate a new sample from the updated distribution.

Since probabilities are fundamental in many applications in data processing and control in
an uncertain environment, in FL, we include probabilities in the model and its semantics. Thus,
each filter defines a stochastic process over a potentially infinite state space. Accordingly, the
semantics of FL programs are given by infinite-state Markov decision processes.

4

Programming by Composing Filters Fischer and Majumdar

3 Transition System Semantics

We now give a semantics for FL as infinite-state Markov decision processes. For readability,
we do it in two steps. First, we give a semantics for deterministic filters, whose transition
functions are non-probabilistic. This semantics is a (non-probabilistic, infinite) labeled transition
system. Then, using the intuition developed in the deterministic case, we define the probabilistic
semantics. The probabilistic semantics is a Markov decision process over general infinite state
spaces; to keep the semantics self-contained, we also state the necessary measure-theoretic
preliminaries (see, e.g., [5]).

3.1 Deterministic Filters and FL Programs

Fix an alphabet Σ (not necessarily finite) of events. We write Σ∗ for the set of finite strings
over Σ. For strings u, v ∈ Σ∗, we write u · v for their concatenation. A stream is a (finite or
infinite) sequence over Σ.

A filter F = (I,O,Q, δ,O, q0) consists of a finite set of input ports I, a finite set of output
ports O, a (not necessarily finite) set of internal states Q, a transition function δ : Q×(I×Σ)→ Q,
an output function O : Q × (I × Σ) × O → Σ∗, and an initial state q0 ∈ Q. A run of F on a
sequence (i0, σ0)(i1, σ1) . . . ∈ (I ×Σ)∗ is a sequence of states q0, q1, . . . such that q0 is the initial
state of F , and for each j ≥ 0, we have δ(qj , (ij , σj)) = qj+1; moreover, this run produces a
sequence of outputs O(q0, (i0, σ0), o) · O(q1, (i1, σ1), o) . . . for each o ∈ O.

We extend δ to a sequence of inputs in the natural way: δ(q, ε) = q and δ(q, (i, σ) · w) =
δ(δ(q, (i, σ)), w), for (i, σ) ∈ I × Σ and w ∈ (I × Σ)∗. Similarly, we extend O to a sequence of
inputs: O(q, ε, o) = ε and O(q, (i, σ) · w, o) = O(q, (i, σ), o) · O(δ(q, (i, σ)), w, o).

A (deterministic) FL program P = (V,E) is a directed graph where V is a set of filters and
E is a set of connections between filters in V . Each connection in E is of the form (v, v′, o, i),
where v, v′ ∈ V , o is an output port of v and i is an input port of v′.

For a filter v ∈ V , we write Iv, Ov, Qv, δv, Ov, and q0v, respectively, to denote its components.

Example 1 (Kalman Filter). We model the Kalman filter example from Section 2 as a deter-
ministic filter with one input port y (the measurement) taking values in Rd, one output port
x (the mean and covariance matrix representing the estimate), taking values in (Rn,Rn×n).
The internal states maintain the prior mean and covariance matrix; the set of internal states is
thus Rn × Rn×n. The (deterministic) transition function applies the Kalman filter algorithm to
derive the new mean and covariance from the old mean and covariance and the measured input.
The output function outputs the state.

3.2 Deterministic Semantics

Let P = (V,E) be a FL program. A configuration of the program P is a tuple (q, e), where q
maps each filter v ∈ V to an internal state in Qv and e maps each connection (v, v′, o, i) ∈ E
to a sequence in Σ∗. Intuitively, q gives the internal states of each filter and e gives the queue
contents for each connection. Let C be the set of all configurations.

The semantics of P is given as a labeled transition system over configurations in C. We
introduce some notation first. For a map q from filters to their states, a filter v, and a state
q ∈ Qv, we write q[v 7→ q] for the function that maps v to q and every other filter v′ to q(v′).
Similarly, we write e[e 7→ w] for a function that maps the connection e to w ∈ Σ∗ and every
other connection e′ to e(e′).

There is a transition (q1, e1)
e−→ (q2, e2) between configurations if the following holds:

5

Programming by Composing Filters Fischer and Majumdar

1. There is a connection e = (v, v′, o, i) ∈ E, and e1(v, v′, o, i) = σ · w for some σ ∈ Σ and
w ∈ Σ∗.

2. q2 = q1[v′ 7→ δv′(q1(v′), (i, σ))].

3. Let e′1 = e1[(v, v′, o, i) 7→ w]. Define

e2(e) =

{
e′1(e) · O(q1(v′), (i, σ), o′) if e ≡ (v′, ·, o′, ·)
e′1(e) otherwise

Informally, the first event in some input port of a filter v is processed by v, the internal state of
v is updated according to its transition function δv, and new events are added to the output
ports of v according to its output function.

Notice that the transition relation is non-deterministic, and depends on the ordering in
which events are consumed by the filters. We formalize this non-determinism by introducing
a scheduler. A scheduler is a partial function that takes as input a configuration (q, e) and
returns a connection (v, v′, o, i) ∈ E. A scheduler is maximal if it returns a connection whenever
there exists some connection e ∈ E with e(e) 6= ε. In the following, we represent a scheduler
simply as a word over E, with the understanding that in each step, the scheduler returns the
corresponding connection from the word and whenever it returns a connection (v, v′, o, i), the
current configuration (q, e) is such that e(v, v′, o, i) is not ε. Given a maximal scheduler e1e2 . . .,
we write

(q, e)
e1−→ (q1, e1)

e2−→ . . .

for the unique execution starting from (q, e) and following the scheduler. We say that the
execution terminates if this sequence is finite. If the execution terminates in a configuration
(q∗, e∗), we call q∗ a final state of the program, and note that e∗ must map every connection in
E to ε (since the scheduler was maximal).

Note that termination and the final state depends on the scheduler: it is easy to construct a
program P , a starting configuration (q, e), and two schedulers such that the program terminates
for the first scheduler but does not terminate for the second, or one in which both executions
terminate but in different final states.

To reason about probabilistic behaviors, we shall now extend the deterministic semantics
with probabilities. We first recall some measure theoretic preliminaries.

3.3 Measure-Theoretic Preliminaries

A σ-algebra B on a set Ω is a collection of subsets of Ω such that ∅ ∈ B and B is closed under
complementation and countable union. A measurable space (Ω,B) consists of a set Ω and a
σ-algebra B on Ω. We say a set E ⊆ Ω is measurable (w.r.t. B) if E ∈ B. Given measurable
spaces (Ω,B(Ω)) and (Ω′,B(Ω′)), a map f : Ω → Ω′ is measurable if f−1(S) ∈ BΩ for each
S ∈ B(Ω′). Such a measurable map is called a (Ω′,B(Ω′))-valued random variable over (Ω,B(Ω)).

Given a measurable space (Ω,B), we can define the product space (Ω×Ω,B2), where B2 is the
smallest σ-algebra containing the measurable rectangles A×B, where A,B ∈ B. By induction,
we can define a measurable space (Ωk,Bk) for all k ≥ 1 and a measurable space (Ω∗,B∗) over all
finite sequences from Ω. Let B∗ be the class of all sets E =

⋃∞
k=0E

k such that Ek ∈ Bk for all
k ≥ 0. Then, B∗ is the minimal σ-algebra of sets in Ω∗ containing all sets Ek ∈ Bk for k ≥ 0.

Finally, we define the measurable space (ΩN,BN) consisting of infinite sequences over Ω and BN
is the smallest σ-algebra that contains all subsets of ΩN of the form C(A,n) = {x ∈ ΩN | xn ∈ A}
for all A ∈ B and n ∈ N.

6

Programming by Composing Filters Fischer and Majumdar

Let (Ω,B(Ω),PΩ) be a fixed probability space. Let (Q,B(Q)) be a measurable space. A
stochastic process over Q is a collection {Xn | n ∈ N} of (Q,B(Q))-valued random variables
defined on (Ω,B(Ω),PΩ). These random variables induce probability distributions over (Q,B(Q))
defined as PΩ ◦X−1

n for each n ∈ N.
An (infinite-state) Markov decision process (MDP) ((Q,BQ), A, T) consists of a measurable

space (Q,BQ) of states, where we assume Q is a Polish space, a finite set A of actions, and
a transition kernel T : Q × B(Q) × A → [0, 1] such that for each q ∈ Q and a ∈ A, the map
T (q, ·, a) is a probability measure on (Q,B(Q)), and for each S ∈ B(Q) and a ∈ A, the map
T (·, S, a) is a B(Q)-measurable function.

A scheduler s is an infinite sequence over the set A of actions. Given a scheduler s, an MDP
defines a stochastic process where

P[Xn ∈ S | Fn−1, sn−1](ω) = T (Xn−1(ω), A, sn−1),P− a.s.

for all n ∈ N, S ∈ B(Q), where Fn−1 is the smallest σ-algebra that makes all the random
variables X0, . . . , Xn−1 measurable from (Ω, Fn−1) to (Q,B(Q)).

3.4 Probabilistic FL and Probabilistic Semantics

We now define the semantics of probabilistic FL programs as (infinite-state) Markov decision
processes.

Let (Ω,B(Ω),PΩ) be a fixed probability space. Let (Q,B(Q)) and (Σ,B(Σ)) be measurable
spaces. A probabilistic filter

F = (I,O,Q, δ,O, q0)

consists of a finite set of input ports I, a finite set of output ports O, a measurable space
(Q,B(Q)) of internal states, an output function O : Q× I × Σ×O → Σ∗, and an initial state
q0 ∈ Q, as for filters, but the transition function δ : Ω × Q × (I × Σ) → Q, takes the sample
space Ω into account.

We assume that δ(·, q, (i, σ)) is a measurable function from Ω to Q for any q ∈ Q and
(i, σ) ∈ I × Σ. The first condition ensures that δ(·, q, (i, σ)) is a random variable and induces a
probability measure over B(Q): PQ[δ(·, q, (i, σ)) ∈ C] = PΩ[ω | δ(ω, q, (i, σ)) ∈ C]. Second, we
assume that the map O : Q× I ×Σ×O → Σ∗ is measurable (over the corresponding measurable
spaces).

Finally, define δ−1 : B(Q) × Q × (I × Σ) → B(Ω) as δ−1(C, q, i, σ) = S iff S =
{ω ∈ Ω | δ(ω, q, i, σ) ∈ C}. We assume that PΩ[δ−1(C, ·, ·, ·)] : Q × I × Σ → [0, 1] is mea-
surable for all C ∈ B(Q). We will need these conditions to define the transition kernel in the
semantics.3

Note that a probabilistic filter defines a continuous-space, discrete time, stochastic dynam-
ical system. FL programs combine such dynamical systems in an asynchronous way, with
communication mediated through queues.

A probabilistic FL program is a graph (V,E), where V is a set of probabilistic filters and E is
a set of connections. We define the semantics of probabilistic FL programs as an (infinite-state)
Markov decision process (MDP). Fix a probabilistic FL program (V,E). As in the deterministic
case, a configuration is an ordered pair (q, e), where q maps every probabilistic filter v ∈ V to
one of its internal states in Qv, and e maps each connection in E to Σ∗. As before, let C be the
set of all configurations. Since the product of measurable spaces is measurable, we can define a
measurable space (C,B(C)) over the set of configurations.

3 In practice, these assumptions do not restrict the set of useful programs. Indeed, we do not know natural
examples which do not satisfy these assumptions.

7

Programming by Composing Filters Fischer and Majumdar

The semantics of (V,E) will be given as an MDP over the state space (C,B(C)), and set of
actions E. We now define the transition kernel.

We define the transition kernel T : C × B(C) × E → [0, 1] as follows. Let (q, e) ∈ C be
a configuration, e = (v, v′, o, i) ∈ E, and e(e) = σ · w. We first define a transition function
∆ : Ω × C × E → C that states how a configuration is updated in one step. Roughly, ∆ is
the same as the deterministic semantics, except that it takes the outcome Ω as an additional
argument and passes it on to the δv′ that is chosen by e ∈ E.

Formally, ∆(ω, (q, e), (v, v′, o, i)) updates q to q[v′ 7→ δv′(ω,q(v′), (i, σ)), and e to the map
e′′ defined as:

e′′(e) =

{
e′(e) · O(q(v′), (i, σ), o′) if e ≡ (v′, ·, o′, ·)
e′(e) otherwise

where, as before, e′ = e[(v, v′, o, i) 7→ w]. We define the inverse ∆−1 : B(C)× C × E → B(Ω) as
the inverse image of B(C) under ∆(·,q, e, e). Finally,

T (q, e, C, e) = PΩ[∆−1(C,q, e, e)]

Notice that by our assumptions on δv for each v ∈ V , we have that T (·, C, e) : C → [0, 1] is
a measurable function for all e ∈ E and C ∈ B(C) and that T (q, e, ·, e) : B(C) → [0, 1] is a
probability function for all e ∈ E and all (q, e) ∈ C.

We abuse notation to write Ts(q, e) for the probability distribution over configurations
obtained by starting from an initial point distribution at (q, e) and applying a scheduler s.

4 Scheduler Independence and Local Commutativity

A desirable property for a FL program is scheduler-independence: the effect of a stream of
inputs should be independent of the order in which events are consumed by the scheduler. A
deterministic FL program P is scheduler-independent if for any initial configuration, either P
does not terminate from the initial configuration for any scheduler, or P terminates in the same
configuration for all schedulers.

For probabilistic FL programs, it is easy to construct examples of programs and schedulers
such that the termination probabilities, starting from the same initial configuration, are different.
For simplicity, we restrict to programs and schedulers which terminate almost surely. A
probabilistic FL program is scheduler-independent if for any two schedulers, whenever the
program terminates almost surely for both programs, both schedulers terminate with the same
distribution on states.

One can give simple structural conditions for scheduler-independence. For example, all FL
programs whose graph of connections is a tree is scheduler-independent.

We now give a sufficient condition for a FL program to be scheduler-independent in terms of
local commutativity of filters. Again, we first describe the main ideas for the deterministic case
and then extend to the probabilistic case.

4.1 Deterministic FL

The main idea to ensure scheduler independence is that each filter is “locally commutative,” in a
sense we make precise below. For a set Σ, we write M[Σ] for multisets over Σ. For an alphabet
Σ, the Parikh image Π: Σ∗ →M[Σ] maps a word w ∈ Σ∗ to a multiset Π(w) such that Π(w)(a)
is the number of occurrences of a in w. For a language L, we define Π(L) = {Π(w) | w ∈ L}.

A filter F = (I,O,Q, δ,O, q0) is commutative if

8

Programming by Composing Filters Fischer and Majumdar

transition commutativity for every pair of words w1, w2 ∈ (I×Σ)∗ such that Π(w1) = Π(w2),
and each state q ∈ Q, we have δ(q, w1) = δ(q, w2) and

output commutativity for each output port o ∈ O, we have Π(O(q, w1, o))) = Π(O(q, w2, o)).

For example, the map filter and the reduce filter for associative, commutative operators are
locally commutative. A FL program (V,E) is locally confluent if each filter in V is commutative.
Theorem 1 shows local confluence implies scheduler independence.

Theorem 1. Locally confluent FL programs are scheduler independent: for any initial configu-
ration, either the program does not terminate for any scheduler, or the program terminates in
the same final configuration for any two schedulers.

Notice that this theorem makes no finiteness assumption on the states or events. Thus, any
FL program where individual filters implement commutative and associative operators (e.g.,
aggregation operations) are guaranteed to be scheduler-independent. We remark that the notion
of commutativity generalizes commutative functions to commutative monoids. The proof of the
theorem is based on an inductive argument similar to Newman’s lemma from term rewriting [3];
we omit the details.

We now prove Theorem 1. First, we define an equivalence relation on configurations:
(q, e) ≡ (q′, e′) iff q = q′ and for each e ∈ E, Π(e(e)) = Π(e′(e)).

Lemma 1. 1. Let (V,E) be a locally confluent program. if (q, e)
e1−→ (q1, e1) and (q, e)

e2−→
(q2, e2), then there are configurations (q3, e3) and (q4, e4) such that (q1, e1)

e2−→ (q3, e3),

(q2, e2)
e1−→ (q4, e4), and (q3, e3) ≡ (q4, e4).

2. Let s1 and s2 be two schedulers such that Π(s1) = Π(s2). If (q, e)
s1−→ (q1, e1) and

(q, e)
s2−→ (q2, e2) then (q1, e1) ≡ (q2, e2).

3. Consider two schedulers s1 and s2 such that Π(s1) ≤ Π(s2). If (q, e)
s1−→ (q1, e1) and

(q, e)
s2−→ (q2, e2), then for each e ∈ E, we have Π(e1(e)) ≤ Π(e2(e)).

The first part of the lemma holds from the definition of local confluence and the second part
by an inductive argument similar to Newman’s lemma from term rewriting [3]. The third part
follows by definition of commutativity and the monotonicty of the program (an event sent to a
queue is never cancelled).

Lemma 2. Let (q, e) be a configuration of a locally confluent program. Either there is no

terminating execution from (q, e) or for every two schedulers s1 and s2 such that (q, e)
s1−→ and

(q, e)
s2−→ both terminate, we have Π(s1) = Π(s2).

Proof. We show that there cannot be one terminating and a different non-terminating schedules
at the same time. Consider two schedules s1 and s2 such that s2 terminates. Since s1 is
non-terminating, Lemma 1 implies that Π(s1) is greater than Π(s2). Suppose s′1 is the minimal
prefix of s1 such that s1 = s′1 · (e, σ) · s′′1 for some e ∈ E, σ ∈ Σ, and scheduler s′′1 , that
Π(s′1)(e, σ) = Π(s2)(e, σ). By choice of minimality, we have that Π(s′1) ≤ Π(s2). Hence, the
number of outstanding events after executing s′1 is at most the number of outstanding events
after s2. However, since s2 is terminating, there are no outstanding events after it executes.
Thus, (e, σ) could not be picked by s1. The same argument can be used to show that every two
terminating schedules must have the same Parikh images.

To prove the theorem, we note that if Π(s1) = Π(s2), then (Lemma 1) the two schedules
terminate in the same state and there are no outstanding events in any connection.

9

Programming by Composing Filters Fischer and Majumdar

4.2 Probabilistic FL

A probabilistic filter is commutative if for each ω ∈ Ω, we have δ(ω, ·, ·) is commutative. A
probabilistic FL program is called locally confluent if each probabilistic filter is commutative.

Let e1 and e2 be edges in E. For each pair of outcomes ω1, ω2 ∈ Ω, we have that the
configuration reached by the scheduler e1e2 is equivalent (in the sense of the ≡ relation on
configurations) to the configuration reached by the scheduler e2e1. In the following, given two
sets A and A′, we write A ≡ A′ if there is a bijection f : A → A′ such that s ≡ f(s) for all
s ∈ A. Note that if A is measurable, and A ≡ A′, then A′ is measurable. We need the following
lemma.

Lemma 3. Let (C,B(C), E, T) be an MDP giving the semantics of a locally confluent probabilistic
program (V,E). For e1, e2 ∈ E, configuration (q, e), A ∈ B(C), and A ≡ A′, we have∫

T ((q, e), dy, e1)T (y,A, e2) =

∫
T ((q, e), dy, e2)T (y,A′, e1)

For schedulers s1, s2 such that Π(s1) = Π(s2), and sets A ≡ A′, we have

Ps1 [A | (q, e)] = Ps2 [A′ | (q, e)]

The following theorem generalizes scheduler independence to the probabilistic case: for
any two schedulers that terminate almost surely, we have that the distributions over states on
termination are the same.

Theorem 2. Let P be a locally confluent probabilistic FL program and let (q, e) be an initial
configuration. Let s1 and s2 be schedulers such that P terminates almost surely from (q, e) under
both schedulers. Then, Ts1((q, e)) = Ts2((q, e)) almost surely.

The proof of the theorem follows probabilistic arguments generalizing the deterministic case.

5 Implementation

We have implemented FL as a Python API called ThingFlow and we have used it to implement
several event processing workflows in the domain of IoT and control systems. The core of
our API are streams of events. A publisher is a source of events, and introduces new events
into the workflow. Sources of these events may be sensors (any Python object that provides a
sample() method to read its value can be used as a sensor), external systems (e.g. message
queues), or other publishers. A subscriber consumes events. A filter implements both a publisher
and a subscriber interface. A publisher may create multiple output event streams along its
output ports. Likewise, a subscriber may accept multiple input event streams by subscribing to
upstream publishers along its different input ports. When a subscriber subscribes to a publisher,
it specifies a mapping between the publisher’s output port and its input port:

publisher.subscribe(subscriber, mapping=(’out_port’, ’in_port’))

As syntactic sugar, there exists a special default topic, which is used when no topic is specified
on a subscription.

publisher.subscribe(subscriber) # default mapping

10

Programming by Composing Filters Fischer and Majumdar

We use Python’s metaprogramming facilities to build pipelines of components, each of which
accepts a single input stream on the default topic and outputs a single event stream on the
default topic, without additional glue code.

The final component of the API is the scheduler. In many applications, it is important to
have explicit control over the scheduling of event processing. First, sensor interfaces are often
blocking, and the scheduler has to ensure that the entire pipeline does not block because a
specific sensor is sleeping; instead, blocking sensors are read on a separate thread. Second, in IoT
applications, it is desirable to process one event end-to-end through the pipeline than partially
process many events. Third, a specific scheduler can optimize away asynchronous calls along
a pipeline of processors and instead make a series of function calls. Accordingly, we allow the
developer to specify a scheduler and the implementation provides “standard” implementations
of schedulers on top of Python’s asynchronous framework asyncio. A pipeline of publishers
and subscribers must be explicitly scheduled. In particular, any publishers that source events
into the system (e.g. sensors) must be made known to the scheduler. The default scheduling
behavior replaces the asynchronous pipeline with synchronous calls on to the downstream filters.

We illustrate ThingFlow on a simple example. Consider a pipeline that captures the readings
of a light sensor and uses the sensed value in a decision logic to turn a light on or off. The
pipeline looks as follows:

lux = SensorAsOutputThing(LuxSensor())

lux.map(lambda e: e.val).transduce(SlidingMean(5)) \

.map(lambda v: v > threshold).GpioPinOut()

A sensor is any object with a sample() method, in this case a light sensor. It is wrapped in
a publisher by SensorAsOutputThing. The first map in the pipeline extracts the value from
the sensed data. The transduce is a filter that calculates a window-based average of the last
five readings. The second map transforms the sensed values into a Boolean stream, based
on comparison against a threshold. Finally, GpioPinOut() outputs the Boolean stream to an
actuator (in our implementation, an LED) through the Gpio bus.

The pipeline, by itself, does not process data. For this, we write a scheduler and expose all
sources of inputs to the scheduler:

scheduler = Scheduler(asyncio.get_event_loop())

scheduler.schedule_periodic(lux, 2)

The scheduler is based on Python’s asynchronous IO and periodically samples the sensor every
2s. Finally,

scheduler.run_forever()

starts scheduling the workflow (and continues scheduling until there are no more events or the
program is externally stopped). The API provides a number of common schedulers.

Static analysis of ThingFlow programs is an obvious open question. We hope our semantics
can provide the first step towards program analysis in this setting.

6 Conclusion

The notion of programming by composing stream transformers is a common idiom across many
domains. Our starting point for FL was to provide a unifying formalism for a programming model
encompassing transducers, probabilities, infinite-state, and asynchrony. While there are many
languages and formalisms that cover a subset of these features, we wanted to provide a simple
semantics based on transition systems for a model with all four features. One motivation for a

11

Programming by Composing Filters Fischer and Majumdar

simple programming abstraction is that verification and testing of programs can become easier.
Unfortunately, the verification problems posed by FL are not amenable to existing “off-the-shelf”
tools. We expect recent advances in abstraction-based infinite-state hybrid probabilistic system
verification [10, 11] as well as analysis tools for asynchronous systems [17, 12] would lead to
verification tools for FL programs. An interesting question is to understand useful abstract
domains for sub-classes of FL programs. We leave this for future work.

We chose a transition systems semantics because, in our experience, domain experts in control
and signal processing (our initial target domain) are more comfortable thinking “operationally.”
One could alternately study the denotational semantics for a compositional treatment of FL. This
would lead to an abstract perspective on asynchronous composition of probabilistic transductions.
We believe that the notion of arrows from functional reactive programming [15, 16, 23, 14, 26, 21].
can form the basis of such a semantics.

Acknowledgements. We thank Dave Beaver, Sze-Ning Chng, Holger Hermanns, Alexandra
Silva, and Sadegh Soudjani for many helpful discussions.

References

[1] S. P. Amarasinghe, M. I. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rabbah, and
W. Thies. Language and compiler design for streaming applications. International Journal
of Parallel Programming, 33(2-3):261–278, 2005.

[2] Apache Spark. http://spark.apache.org.

[3] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[4] G. Berry and G. Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992.

[5] P. Billingsley. Probability and measure. Wiley, 4 edition, 2012.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language for
programming synchronous systems. In Principles of Programming Languages (POPL),
pages 178–188. ACM, 1987.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In CIDR, 2003.

[8] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate data collection in
sensor networks using probabilistic models. In International Conference on Data Engineering,
ICDE 2006, page 48. IEEE Computer Society, 2006.

[9] A. Deshpande and S. Madden. MauveDB: supporting model-based user views in database
systems. In SIGMOD 06: International Conference on Management of Data, pages 73–84.
ACM, 2006.

[10] S. Esmaeil Zadeh Soudjani and A. Abate. Precise approximations of the probability
distribution of a Markov process in time: an application to probabilistic invariance. In
TACAS, volume 8413 of LNCS, pages 547–561. Springer, 2014.

12

http://spark.apache.org

Programming by Composing Filters Fischer and Majumdar

[11] S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate. FAUST2: Formal abstractions of
uncountable-state stochastic processes. In TACAS, volume 9035 of LNCS, pages 272–286.
Springer, 2015.

[12] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM
TOPLAS, 34(1):6:1–6:48, 2012.

[13] N. Halbwachs. Synchronous programming of reactive systems. In Computer Aided Verifica-
tion CAV ’98, volume 1427 of Lecture Notes in Computer Science, pages 1–16. Springer,
1998.

[14] P. Hudak. Principles of functional reactive programming. ACM SIGSOFT Software
Engineering Notes, 25(1):59, 2000.

[15] J. Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-3):67–111, 2000.

[16] J. Hughes. Programming with arrows. In Advanced Functional Programming, 5th Interna-
tional School, AFP 2004, volume 3622 of Lecture Notes in Computer Science, pages 73–129.
Springer, 2004.

[17] R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs. In POPL
2007, pages 339–350. ACM, 2007.

[18] B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic modeling
of streaming data. In International Conference on Data Engineering, ICDE 2008, pages
1160–1169. IEEE Computer Society, 2008.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The Click modular router.
ACM TOCS, 18(3):263–297, 2000.

[20] D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985.

[21] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows. J. Funct. Program.,
21(4-5):467–496, 2011.

[22] Microsoft Linq. https://msdn.microsoft.com/en-us/library/bb308959.aspx.

[23] J. Peterson, G. D. Hager, and P. Hudak. A language for declarative robotic programming.
In 1999 IEEE International Conference on Robotics and Automation, pages 1144–1151.
IEEE Robotics and Automation Society, 1999.

[24] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2006.

[25] S. Tripakis, C. Pinello, A. Benveniste, A. L. Sangiovanni-Vincentelli, P. Caspi, and M. D.
Natale. Implementing synchronous models on loosely time triggered architectures. IEEE
Trans. Computers, 57(10):1300–1314, 2008.

[26] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. In Practical Aspects of Declarative
Languages PADL 2002, volume 2257 of Lecture Notes in Computer Science, pages 155–172.
Springer, 2002.

13

https://msdn.microsoft.com/en-us/library/bb308959.aspx

	Introduction
	Informal Overview and Examples
	Transition System Semantics
	Deterministic Filters and FL Programs
	Deterministic Semantics
	Measure-Theoretic Preliminaries
	Probabilistic FL and Probabilistic Semantics

	Scheduler Independence and Local Commutativity
	Deterministic FL
	Probabilistic FL

	Implementation
	Conclusion

