
SimuLTE-MEC: Extending SimuLTE for
Multi-Access Edge Computing

Giovanni Nardini, Antonio Virdis, Giovanni Stea and Angelo Buono
1 Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
g.nardini@ing.unipi.it, antonio.virdis@unipi.it,

giovanni.stea@unipi.it, a.buono2@studenti.unipi.it

Abstract
Multi-access Edge Computing (MEC) is a novel paradigm to enrich current 4G and

future 5G cellular networks by placing cloud-computing-based capabilities at the edge
of the network. This will allow operators and service providers to endow the cellular
network with enriched services. In this paper we describe the modeling and
development of a MEC extension for the SimuLTE framework.

1 Introduction
The upcoming 5G era is foreseen to improve the performance of communication networks and to

offer a wide range of new services to end users, by allowing different technologies, like Wi-Fi and
cellular communications, to cooperate. Multi-access Edge Computing (MEC) represents one of these
technologies, which promises to enable context-aware and real-time computing capabilities, by
placing computational resources as close as possible to the users. The added value of MEC is the
possibility to interact with the network elements to gather context information and to exploit them in
order to optimize performance indicators, from both the user and the network operator standpoint.
MEC is still in its early days, hence its possible benefits are currently being studied by the research
community. Architectural choices, algorithms for optimizing both computational and network
resources, solutions for minimizing latency and relocating computational resources are open research
challenges [5]. In such context, system-level simulations are an effective solution that can be used for
analyzing the performance of the MEC system and for prototyping new types of services.

In this paper, we present the modeling and the implementation of a MEC architecture for the
OMNeT++ ecosystem. We integrate the MEC architecture within SimuLTE [3], which provides a
complete framework for simulating LTE/LTE-Advanced networks. This way, one can evaluate the
performance of MEC services with realistic conditions of the underlying network infrastructure. On
one hand, our modeling choices aims at keeping the architecture as compliant as possible to the
specifications defined by the European Telecommunications Standards Institute (ETSI) for MEC. On
the other hand, we implemented the framework so that one can easily write its own MEC-based

EPiC Series in Computing

Volume 56, 2018, Pages 35–42

Proceedings of the 5th International
OMNeT++ Community Summit

A. Förster, A. Udugama, A. Virdis and G. Nardini (eds.), OMNeT 2018 (EPiC Series in Computing, vol. 56),
pp. 35–42

service and plug it seamlessly within the model. The rest of the paper is organized as follows: Section
2 provides a brief overview of the MEC paradigm, including a high-level description of the
framework proposed by ETSI. Section 3 describes the components of SimuLTE that comes into play
when adding MEC. Section 4 describes the implementation of the MEC architecture within SimuLTE,
whereas Section 5 shows the implementation of an exemplary MEC-based application and how to
configure a simulation of such service. Section 6 concludes the paper.

2 Multi-access Edge Computing
With MEC, the edge of the communication network is enriched by nodes with large computation

capabilities. Such nodes, typically called Mobile Edge (ME) servers or ME hosts, can be placed, for
example, close to the radio base stations of the cellular network and can interact tightly with the latter
in order to obtain valuable information on the status of the radio network and its users. This
information can be exploited to offer new services that are context-aware and can take advantage of
the reduced latency between the service and the end user, compared to, e.g., a cloud service. Examples
of MEC-based use cases include computational offload for Internet-of-Things applications, smart
transportation and dynamic content optimization.

Moreover, MEC is flexible, since ME applications run in a virtualized environment. This means
that computational resources can be allocated on demand to users requesting a particular service or
task. This allows the supervisor of the ME architecture (e.g., the network operator) to optimize the
utilization of computational resources and possibly migrate a user’s application to another ME host.

2.1 ETSI MEC Architecture
A framework for MEC is being standardized by the European Telecommunications Standards

Institute (ETSI) [1]. According to that architecture, shown in Figure 1, functions are organized in two
layers, namely the ME System Level and the ME Host Level.

The ME System Level is responsible for keeping a global vision about the status of all the ME
Hosts in the system. In particular, it receives ME Application Instantiation requests from applications
running at the user side (or from the operator or third-party applications). It first checks the
requirements needed by the application, such as maximum communication latency, computational
resources and availability of ME services. Then, it takes care of selecting – and instructing
accordingly – the most suitable ME Host where the corresponding ME Application has to be
instantiated, i.e. the ME Host that can satisfy the above requirements.

Figure 1: Overview of the MEC architecture

proposed by ETSI

ME System Level

ME Host Level

ME PlatformMeApp MeApp

Virtualisation Infrastructure

...

Figure 2: Example of a MEC-enhanced LTE

deployment

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

36

Within the ME Host, the ME Platform provides services defined in [2] that can be exploited by
ME Applications. To cite some: the Smart Relocation Service handles migration of ME applications
to other ME Hosts; the Radio Network Information Service (RNIS) is used to gather information from
the network elements (e.g. number of users connected to a specific radio base station); the Bandwidth
Manager defines the priority of data traffic destined to ME Applications within the ME Host; the
Location Service provides information on the users’ position. The Virtualisation Infrastructure is the
core of the ME Host, since it is responsible of running ME Applications as instances of virtual
machines and allowing them to communicate both inside (e.g., with the services within the ME
Platform) and outside the ME Host (e.g., with users’ local application).

2.2 MEC in LTE networks
MEC will be one of the key elements of the upcoming 5G ecosystem. From communication

standpoint, the LTE-A technology (or, more likely, its evolution) will also be part of the 5G
architecture. For this reason, MEC is foreseen to interact with the LTE-A as its communication
counterpart.

LTE and LTE-A includes a Radio Access Network (RAN) part and an Evolved Packet Core (EPC)
part. A simplified representation of an LTE-A network is shown in Figure 2. The LTE RAN is
composed of eNodeBs (eNBs) and User Equipments (UEs). eNBs are the base stations handling radio
cells, whereas the UEs are the cellular users that attach to the eNBs for communicating. The EPC side
is an IP-based network, whose exit point is the Packet Data Network Gateway (PGW). The latter
receives the packets destined to the UEs and forwards them to the correct eNB. This is accomplished
by tunneling the communication using the GPRS Tunneling Protocol (GTP). At the eNB, the packet is
de-tunneled and sent to the UE over the radio interface. Given the UEs’ mobility, a handover
procedure is carried out when a UE changes its serving eNB due to, e.g., stronger received signal. In
this case, the PGW has to redirect incoming traffic towards the new eNB, whereas on-the-fly packets
can be steered using the X2 interface that connects neighboring eNBs directly.

In such context, ME hosts can be deployed anywhere in the EPC. However, it is likely that they
will be placed close to the eNBs as depicted in Figure 2 so that a single ME host will be limited to the
UEs connected to a small number of adjacent eNBs. As a result, service continuity must be
maintained when a UE exploiting a MEC application moves far away from its ME host, possibly
impairing the communication latency. Besides, it might be difficult to maintain context and radio
awareness if the ME host is geographically remote. Thus, service migration should be guaranteed,
e.g., when a UE performs a handover and moves into the geographical reach of another ME host.

3 Overview of SimuLTE
In this section, we provide a brief background on the main components of SimuLTE, with

particular emphasis on the elements interacting with the MEC architecture.
SimuLTE is a framework for system-level simulations of LTE and LTE-A cellular networks [3].

With reference to Figure 3, it provides complete models for both UEs and eNBs. The latter implement
LTE radio capabilities thanks to the LTE Network Interface Card (NIC), which in turn includes one
submodule for every layer of the LTE protocol stack, namely Packet Data Convergence Protocol
(PDCP), Radio Link Control (RLC), MAC and PHY. Upper-layer protocols – from IP to applications
– are instead provided by the INET framework. The X2 interface within the eNB allows it to
communicate with neighboring eNBs, in order to enable, e.g., handover and interference-coordination
algorithms.

As far as the EPC side of the LTE network is concerned, the eNB has a module implementing
GTP, providing means for tunneled communication to/from the PGW. The PGW is the entry/exit

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

37

point of the LTE network and provides routing between the eNBs and the rest of the Internet. A
module, called Binder, is responsible to store network-wise information and all the modules of the
LTE network (i.e., UEs, eNBs, PGW) can obtain such information by accessing it via direct method
calls. Mobility of UEs can be simulated through the models provided by the INET framework.
However, external tools can also be used to simulate the movement of UEs, e.g. simulating LTE-
capable vehicles by integrating SimuLTE with Veins framework [4].

4 Modeling MEC within SimuLTE
We modeled a framework that allows a UE to dynamically request the initialization and the

termination of one or more applications within a ME Host and to communicate with such applications
so that a specific task is accomplished. We implemented the above architecture so as to allow one to
develop its own ME Application and plug it seamlessly within SimuLTE. In this section, we first
describe how we endowed SimuLTE with MEC capabilities. Then, we show the model of the
communication flow between a UE and an application running inside the ME host.

4.1 Modeling the ME host
The main building block of our modeling is the MeHost, which is shown in Figure 4. The MeHost

is a compound module including VirtualisationInfrastructure and MePlatform submodules, as per
ETSI specifications. MeApplications are simple modules created on demand upon the reception of a
request from UEs. They extend the IMEApp module interface, which the gates used to connect with
the VirtualisationInfrastructure and, possibly, with the services exported by the MePlatform. module
interface, which the gates used to connect with the VirtualisationInfrastructure and, possibly, with the
services exported by the MePlatform.

Moreover, the MeHost includes a GTP module so that it can be placed anywhere in the EPC of the
LTE network. Since every communication within the EPC is tunnelled using the GTP protocol (as
described in Section 2.2), the GTP module provides the MEHost with the capabilities for
encapsulating/decapsulating data packets within GTP packets.

Packets received from the EPC are decapsulated by the GTP and forwarded to the
VirtualisationInfrastructure module. With reference to the left part of Figure 5, the latter includes the
complete protocol stack, from the PPP interface to the transport protocol. On top of the latter, the
VirtualisationManager is the module responsible for managing the life cycle of MeApplications: it
handles UE requests for instantiation/termination of MeApplications and, once the latter are created,
forwards data packets to the correct ones. To do this, it keeps a data structure called meAppMap that
associates the requesting UE-side application to the gate where the MeApplication module is
connected. The VirtualisationManager interacts with the ResourceManager, which keeps track of the

Figure 3: Overview of SimuLTE

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

38

computational resources currently in use within the MEHost. In fact, we assume that each MEHost
has a maximum amount of resources (RAM, storage and CPU) that can be allocated to
MeApplications. Such amounts are configurable via NED/INI and can be different for each MEHost.
When a request for creating a new MeApplication reaches the VirtualisationManager, the latter
queries the ResourceManager to check whether the computational requirements of the application can
be satisfied given the available resources. In the affirmative case, the ResourceManager marks the
requested amount of resources as occupied, otherwise the application is not created. Allocated
resources are then released when the MeApplication terminates (RAM, storage and CPU) that can be
allocated to MeApplications. Such amounts are configurable via NED/INI and can be different for
each MEHost. When a request for creating a new MeApplication reaches the VirtualisationManager,
the latter queries the ResourceManager to check whether the computational requirements of the
application can be satisfied given the available resources. In the affirmative case, the
ResourceManager marks the requested amount of resources as occupied, otherwise the application is
not created. Allocated resources are then released when the MeApplication terminates.

The MePlatform module (Figure 5, right) is instead the container of MeServices defined by [2]. In
particular, it has an array of IMeService modules. An IMeService defines the module interface that
needs to be implemented by every MeService. The number and the type of each MeService can be
specified in the INI configuration file. Our implementation comes with a simplified version of the
RNIS, used for recovering information from one or more eNBs of the LTE network (like UEs’
channel quality and bandwidth utilization).

4.2 Modeling the communication flow
The life cycle of a MeApplication is controlled by MeAppPackets, which are exchanged between

UEs and MeHosts and define the evolution of the status of the MeApplication. We model six types of
packets, defined as follows. START_MEAPP and STOP_MEAPP are used by the UEs to request,
respectively, initialization and termination of a MeApplication. Among the other fields, the
MeAppPacket specifies the name of the MeApplication to be created, as well as its computational
requirements. ACK_START_MEAPP and ACK_STOP_MEAPP provides the feedback to the UEs
about the success of the request. Once the MeApplication is up and running, the UE can send
INFO_UEAPP packets, which in turn can be answered by the MeApplication with INFO_MEAPP
packets. Clearly, the type of data exchanged between the UE and the MeApplication depends on the
type of application. To this aim, one can implement its own packet by inheriting the MeAppPacket
structure and adding the required fields.

Figure 4: Modeling of the MeHost

Figure 5: Modeling of the VirtualisationManager (left) and

MePlatform (right)

PPP

IP

Virtualisation
Infrastructure

Virtualisation
Manager

UDP

Resource
Manager MeService[0]

MePlatform

MeService[1]

MeService[N-1]

...

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

39

For the sake of concreteness, Figure 6 shows an example of the messages exchanged between a
UE and the MeHost. First, the UE sends a START_MEAPP packet to the MeHost in order to activate
a new MeApplication. The packet is parsed by the VirtualisationManager that, in turn, forwards the
request to the ResourceManager. The latter allocates the requested resources and replies to the
VirtualisationManager, which performs the instantiation of the MeApplication. In practice, it creates
and initializes a new module for the MeApplication within the MeHost, connects its gates to both the
VirtualisationInfrastructure and the MEPlatform, and adds an entry to the application map. If the
creation is successful, a positive acknowledgement is transmitted to the UE.

Now, data packets flow between the UE and the MeApplication, through the
VirtualisationManager. If necessary, the MeApplication can communicate with services within the
MePlatform to carry out its operations. For example, it can contact the RNIS to collect information
about the radio network.

When the UE has completed its task, it sends a STOP_MEAPP packet. The ResourceManager
deallocates the resources, which are again available for other MeApplications, and the
VirtualisationManager destroys the module representing the MeApplication. Again, an
acknowledgement is transmitted to the UE.

Figure 6: Example of communication flow

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

40

5 Implementing and simulating a MEC-based service
In this section, we describe the implementation of a simple MEC-based application within the

architecture described in the previous section. Then, we show how to configure a simulation that
exploits such application.

We consider the use case of a vehicular environment, where drivers of vehicles are notified when
entering a danger zone (DZ). In particular, a ME service running within a ME host keeps a map of
geographical areas with potential dangers, e.g. roadworks, traffic jam, a slippery road etc. Each
vehicle runs a local application that periodically reports its position to a ME application, representing
the UE-side counterpart. Every time the ME application receives a position update from its
corresponding vehicle, it queries the ME service and, if the reported position is within a DZ, sends
back an alert to the vehicle. In order to implement such MEC-based service, we need to implement i)
the UE-side application sending the vehicle position, ii) the ME application receiving the updates, iii)
the ME service that checks when a vehicle has entered a DZ and iv) new types of MeAppPackets
including the relevant information for the application. We call the first one UEWarningAlertApp and
it has the traditional form of a UdpApp from INET. Its counterpart at the MeHost is the
MEWarningAlertApp: it is a simple module extending the IMEApp interface, which receives packets
from the UEWarningAlertApp and passes them to the MEWarningAlertService. The latter is
implemented by inheriting the structure of the IMEService interface and creates a warning packet to
be sent back to the MEWarningAlertService when an alert condition is verified. We also define
WarningAlertPackets, which add the relevant fields to the base MeAppPacket for communicating the
vehicles’ coordinates and a boolean flag that is set when an alert has to be signaled.

We now show the configuration of the scenario in Figure 7, which simulates three vehicles under
the coverage of one eNB, moving along a road having a DZ at a specific point, denoted by the four-
sided polygon. Vehicles’ mobility is simulated through Veins. Due to lack of space, details on how to
configure network deployment and mobility are omitted and can be found in [4]. For each vehicle,
called car[*], we define one UdpApp, whose typename is UEWarningAlertApp. As shown in the
code snippet in Figure 8, the application is configured so as to send one packet to the MeHost every
100ms. Note that also the required resources can be specified within the INI file. On the other hand,
the meHost module configuration (Figure 9) specifies the total available resources, the number of
MeServices (one, in this case) and the type of the implemented service, namely the
MEWarningAlertService. The DZ can be specified by setting the coordinates of the four edges within
the MEWarningAlertService. The complete scenario configuration can be found on GitHub*.

* https://github.com/inet-framework/simulte

Figure 7: Simulation scenario

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

41

6 Conclusions
In this paper, we proposed a MEC extension for SimuLTE. The design has been carried out with

the aim of allowing one user to easily enrich the model with new applications and services, while
maintaining the compliance with the ETSI standards. After giving an overview of the MEC
environment, we described the modeling of the MEC architecture within SimuLTE, with emphasis on
the communication flow between the user and MEC entities. Finally, we presented the use case of a
MEC service for assisted driving and described how to implement and configure the main simulation
parameters for such scenario.

References
[1] ETSI GS MEC 003, “Mobile Edge Computing (MEC); Framework and reference architecture”,

2016-03

[2] ETSI GS MEC 002, “Mobile Edge Computing (MEC); Technical requirements”, 2016-03

[3] A. Virdis, G. Stea, G. Nardini, “Simulating LTE/LTE-Advanced Networks with SimuLTE”, in
Obaidat M.S., Kacprzyk J., Oren T., Filipe J. (eds) “Simulation and Modeling Methodologies,
Technologies and Applications”, Springer, 2016

[4] G. Nardini, A. Virdis, G. Stea, “Simulating Cellular Communications in Vehicular Networks:
Making SimuLTE Interoperable with Veins”, OMNeT++ Comm. Summit 2017, Bremen, DE

[5] E. Ahmed, M.H. Rehmani, “Mobile Edge Computing: Opportunities, solutions and challenges”,
Elsevier Future Generation Computer Systems, vol.70, pp.59-63, May 2017

Figure 8: UE-side configuration

Figure 9: MeHost configuration

SimuLTE-MEC: Extending SimuLTE for Multi-Access Edge Computing G. Nardini et al.

42

