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Abstract

Analog-mixed signal (AMS) circuits are widely used in various mission-critical applications neces-
sitating their formal verification prior to implementation. We consider modeling two AMS circuits as
hybrid automata, particularly a charge pump phase-locked loop (CP-PLL) and a full-wave rectifier
(FWR). We present executable models for the benchmarks in SpaceEx format, perform reachability
analysis, and demonstrate their automatic conversion to MathWorks Simulink/Stateflow (SLSF) format
using the HyST tool. Moreover, as a next step towards implementation, we present the VHDL-AMS
description of a circuit based on the verified model.
Category: academic Difficulty: medium

1 Context and Origins
Many analog-mixed signal (AMS) circuits are widely used in various mission cicritical ap-
plications and require formal verification prior implementation. Formal verification methods
construct a mathematical modelM with precise semantics, provide extensive analysis with re-
spect to some correctness requirement P, and verify thatM |= P [2]. This can be ascertained
through reachability analysis [1]. As an example of circuitry that can benefit from formal ver-
ification prior to field implementation and deployment, we provide two potential benchmarks
for hybrid verification research community, i.e., charge pump phase-locked loop (CP-PLL), and
full-wave rectifier (FWR).

CP-PLL integrated circuits are widely used in modern mobile, radio, and wireless com-
munication applications to synchronize a high-frequency signal with a low-frequency reference
signal. In [8], the auhtors use SpaceEx model checking tool [6] to verify the global convergence
with respect to phase and frequency lock for a digital PLL. An FWR converts an AC electric
input signal to a DC output signal, and formal verification through reachability analysis has
been reported using different model checking tools in [5], except SpaceEx. We develop hy-
brid automaton models of CP-PLL and FWR, and used SpaceEx [6], a reachability analysis
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Figure 2.1: Block diagram of the PLL circuit with a PI controller.

tool, to compute the over-approximated sets of reachable states 1. This a classical fixed point
computation tool that operates on symbolic states.

We also use HyST (Hybrid Source Transformer) [3] to automatically convert the hybrid au-
tomaton models developed in SpaceEx to MathWorks Simulink/Stateflow (SLSF) models 2. It
is a source-to-source translation tool that takes input in the SpaceEx model format, and trans-
lates it to the formats of HyCreate,Flow*, dReach, C2E2, Passel 2.0, and HyComp. Additional
tool support is being added from time to time. Verification and validation research community
may use HyST to automatically transform the hybrid automaton models in SpaceEx format to
other formats and perform reachability analysis using aforesaid model checking tools. Finally,
we present VHDL-AMS description of an FWR.

2 Hybrid Automaton Modeling of CP-PLL and FWR
In this section, we present the hybrid automaton modeling of CP-PLL and FWR.

2.1 CP-PLL Modeling
We consider a third-order CP-PLL as described in [1]. It consists of a reference frequency
signal generator, a phase frequency detector (PFD), a charge pump, a proportional-integral
(PI) controller, a voltage- controlled oscillator (VCO) and a frequency divider as shown in
Figure 2.1. The state variables are defined by the voltages across the capacitors Ci, Cp1, and
Cp3, i.e., vi, vp1, and vp respectively. Two more state variables are defined by the dynamics of
VCO and reference frequencies, i.e., φv and φref , respectively. CP-PLL is designed such that
φv locks on to φref , that may constitute the property of CP-PLL to be verified. This locking
is ensured by PFD using the phase difference of φref and φv to generate ’UP’ or ’DN’ signal
for the charge pump.

The ODEs from the CP-PLL circuit diagram can be readily formed using the traditional
circuit analysis techniques, i.e., Kirchoff’s voltage law (KVL) and Kirchoff’s current law (KCL).

1The tool is available online from the SpaceEx website at: http://spaceex.imag.fr/.
2The executable models are included on the ARCH website and are also available online from the HyST

website at: http://verivital.com/hyst/.
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We apply KCL at node 1 of the circuit used to implemented the analog PI controller shown in
Figure 2.1

ii = iCi
(2.1)

We can write the above equation in terms of voltage across capacitor Ci as

Ci.v̇i = ii. (2.2)

Rearranging the above equation, we obtain

v̇i = ii
Ci

(2.3)

We apply KCL at node 2 of the the circuit used to implemented the analog PI controller in
Figure 2.1 to get

ip = iCp1 + iRp2 + iRp3 (2.4)

Replacing the current terms with voltage terms in right hand side of above equation, we get

ip = Cp1v̇p1 + vp1

Rp2
+ (vp1 − vp)

Rp3
. (2.5)

Rearranging the above equation for v̇p1, we get

v̇p1 = − vp1

Cp1

(
1
Rp2

+ 1
Rp3

)
+ vp

Cp1Rp3
+ ip
Cp1

. (2.6)

Next, we may apply KCL at node 3 to get

iCp3 = iRp3 (2.7)

Re-writing the above equation in terms of voltages, we get

Cp3v̇p = vp1 − vp

Rp3
(2.8)

Rearranging the above equation leads to

v̇p = vp1

Cp3Rp3
− vp

Cp3Rp3
. (2.9)

For the VCO, the output phase φv is the integral of the frequency and the input voltages, i.e.,
vi, and vp [7]. We also include the frequency division factor N to obtain the ODE as

φ̇v = Ki

N
vi + Kp

N
vp + 2π

N
f0 (2.10)

and
φ̇ref = 2πfref . (2.11)

Here, Ki and Kp are the voltage-to-frequency gains for vi and vp respectively, and f0 is the
frequency of VCO. These ODEs depict the continuous dynamics within each discrete location.
The input to the PI controller, i.e., [ii, ip]T , is generated by the charge pump depending upon
the relative phase of φv and φref . This phase difference is measured by PFD, which generates
an ‘UP’ signal if φref leads φv, and ‘DN’ signal if φv leads φref . An ’UP’ signal will charge the
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Figure 2.2: Hybrid automaton model for CP-PLL system.

capacitors, hence increasing the voltages across the capacitors of the proportional and integrator
channel, i.e., vp and vi, respectively, leading to an increased VCO frequency. On the other hand,
a ’DN’ signal from PFD will tend the charge pump to produce current in reverse direction to
discharge the capacitors, hence reducing the voltages in the PI channel. The reduced vp and
vi voltages will result in a reduced φv to make it track φref . Depending upon the status of
Up/Down signals, there may be four discrete locations (i.e., the input varies for each discrete
location) as follows:

1 Both0 (i.e. Both OFF): The input vector is given by [ii, ip]T = [0, 0]T

2 Up1 (i.e. UP ON): The input vector is given by [ii, ip]T =
[
Iup

i , Iup
p

]T

3 Both1 (i.e. Both ON): The input vector is given by [ii, ip]T =
[
Iup

i + Idn
i , Iup

p + Idn
p

]T

4 Dn1 (i.e. DN ON): The input vector is given by [ii, ip]T =
[
Idn

i , Idn
p

]T

Accordingly, using the above ODEs and the inputs defined, a hybrid automaton is shown in
Figure 2.2. The component values used in the model are as per Table 1 of [1]. Moreover, the
input values are: Iup

i = 10.1µA, Idn
i = −10.1µA, and Iup

p = 505µA, Idn
p = −505µA. The guard

conditions for discrete transitions are formed depending upon φref and φv. As discussed earlier,
the PFD output depends on whether φref leads or lags with respect to φv. If the initial discrete
location is Both0, the automaton jumps to Up1 if φref leads as φref = 2π, otherwise it jumps
to Dn1 if φv leads as φv = 2π. There is a design requirement to introduce a time delay, td,
required to switch off both the charge pumps. This is represented by the location Both1. Once
the lagging signal reaches zero, the automaton jumps to this location and, once t = td, the
automaton transitions back to Both0.

2.2 FWR Modeling
We consider an FWR as described in [5]. It is basically a full-wave diode bridge, that consists
of two diodes D1 and D2, a capacitor C and the load resistor R as shown in Figure 2.3. An AC
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Figure 2.3: Schematic diagram of FWR.
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Figure 2.4: Hybrid automaton model for FWR system.

input signal is supplied to the circuit through a center-tapped transformer. For the modeling
purpose, and without the lack of generality, we use two AC sources as shown in Figure 2.3. This
circuit converts the input AC voltage Vin to a DC voltage Vo, at its output measured across R.
We may need to verify that Vo is stable within ±1%Vmax for the steady-state operation, where
Vmax is the maximum value of the input AC signal.

For modeling purposes, we consider Rd as the forward resistance of each diode. Let the
current through Rd, C, and R be iRd, iC , and iR, respectively. The input sinusoidal voltage
be Vin = Vmaxsin(2πft), and the output voltage across the load resistor R be Vo, where, Vmax

is the maximum amplitude of the sinusoidal signal and f is its frequency. For model checking
purposes, we use SpaceEx that requires hybrid automaton model with linear dynamics, so we
model the input AC signal using a second-order differential equation [5]. We define another
state variable x0 and model the AC input by ODEs defined as

ẋ0 = Vin (2.12)

and
V̇in = − (2πf)2

x0 (2.13)

The solution of above system is Vin = Vmaxsin(2πft) such that the initial conditions are
x0 = −Vmax

2πf and Vin = 0. Next, we consider the FWR circuit dynamics to form ODE for Vo.
The circuit dynamics depend upon the operation of diodes D1 and D2. Accordingly, we may
form three different topological instances, i.e., D1 ON and D2 OFF, D1 OFF and D2 ON, and
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Figure 3.1: SLSF plots for PLL showing stable limit cycles and φv locking onto φref within 0.2
mSec.

both the diodes OFF when Vin ≤ Vo. There could be a fourth topological instance, i.e., both
the diodes ON at the same time, but this is not practical due to the nature of the sinusoidal
input. Therefore, we may consider three topologies one by one to form the ODEs and start
with the topology with D1 ON and D2 OFF. The invariants for this topological instance are
Vin ≥ Vo ∧ −Vin ≤ Vo. Applying KCL at the node joining C and R in Figure 2.3, we get

iRd = iC + iR (2.14)

and we can express the above equation in terms of voltages as

Vin − Vo

Rd
= CV̇o + Vo

R
. (2.15)

Rearranging the above equation provides

V̇o = Vin

RdC
− Vo

(
1

RdC
+ 1
RC

)
. (2.16)

By the same token, for D1 OFF and D2 ON with invariants Vin ≤ Vo∧−Vin ≥ Vo, we use KCL
at the same node in Figure 2.3 to get

V̇o = − Vin

RdC
− Vo

(
1

RdC
+ 1
RC

)
. (2.17)

For the topology when both D1 and D2 are OFF, the sinusoidal input signal is cut off from the
entire circuit and the load voltage is only provided by the capacitor. The invariants for this
topological instance are Vin ≤ Vo ∧ −Vin ≤ Vo. Therefore, we get

V̇o = − Vo

RC
. (2.18)

Accordingly, the hybrid automaton model of FWR is shown in Figure 2.4. In addition, we
consider the VHDL-AMS description of FWR in Section A, where the circuit is externally
supplied by Vin.

3 SLSF Simulations and Reachability Analysis
Formal verification of CP-PLL constitutes verifying its frequency-locking property, i.e., whether
φv locks onto φref . For this purpose, we need to compute the phase difference between φv and
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Figure 3.2: Comparison of SpaceEx reach sets and SLSF trajectories for PLL.
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Figure 3.3: Comparison of SpaceEx and SLSF for the output voltage of FWR in the steady
state, showing the simulation trace containment within overapproximated sets of reachable
states.

φref . The SLSF plots for the phase difference vs. integrator voltage, voltage of capacitor p1 vs.
integrator voltage vi, and the phase difference versus time are shown in Figure 3.1. The first
two plots depict a stable limit cycle highlighting stability properties of CP-PLL. In the third
plot, we show that the phase difference between φref and φv reaches zero within 0.2 mSec.,
signifying that φv locks onto φref within such time intervals.

We also analyze the hybrid automaton using SpaceEx, and a comparison of the first few
iterations for SpaceEx and SLSF is shown in Figure 3.2. We show that SLSF simulation
traces, and the over-approximated sets of reachable states computed using SpaceEx, match
for the first five iterations. CP-PLL requires thousands of cycles to lock, hence there will be
thousands of discrete transitions for the switching logic resulting inaccuracy due to SpaceEx
overapproximations [1]. It is evident from comparing the first five iterations in Figure 3.2 that
SLSF simulation traces are contained within the over-approximated sets of reachable states.
We also conclude that the SLSF traces exhibit stable limit cycles, and that frequency locking
is achieved within 0.2 mSec.

As evident from this benchmark, the performance of reachability analysis tools is not satis-
factory due to the high number of discrete transitions (practically being in order of thousands).
It is pertinent to highlight that in [4], the authors have used a variant of continuization [1]
to address this problem for the design of a yaw damper system for a 747 jet aircraft. Con-
tinuization is a process whereby the abstraction of a hybrid system having large number of
discrete transitions is obtained by a continuous system with an extra non-deterministic input.
The authors use HyST to automatically transform the model and perform reachability analysis
using Flow* and SpaceEx to display satisfactory results in [4]. A similar approach can be used
for this benchmark so as to perform reachability analysis using SpaceEx and Flow*.
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We perform the reachability analysis using SpaceEx under the steady-state conditions for
FWR, i.e., Vmax = 4V , Vo (0) = 4V , and f = 50Hz, as shown in Figure 3.3. The steady-state
SLSF time traces for the output voltage are contained within the over-approximated sets of
reachable states computed using SpaceEx.

During conversion from SpaceEx to SLSF using HyST, the conversion time noted for CP-
PLL is 1.633077 seconds and that for FWR is 1.936676 seconds. We used MATLAB Release
2015a on a Windows 7, 64 bit operating system with Intel Core i7-2600 CPU at 3.40 GHz and
16 GB RAM.

4 Key Observations
Hybrid automaton modeling and reachability analysis of CP-PLL using traditional model check-
ing tools, such as SpaceEx, is an extensive challenge. This is due to the reason that CP-PLL
requires thousand of cycles to lock, resulting in thousand of discrete transitions in the switch-
ing logic. Therefore, the SpaceEx analysis did not produce accurate reachability results if the
analysis is run for an extended duration of time. This requires some advanced techniques,
such as continuization [1] that is demostarted in [4] using HyST, SpaceEx, and Flow*. For
FWR, SpaceEx produced a run-time error due to non-affine dynamics as the model had pure
sinusoidal time-dependent signal as an input. Therefore, we have modeled the sinusoidal input
signal using the second-order ODEs to successfully compute the reachability analysis results.

5 Benchmark Outlook
Overall, these verification benchmarks have medium difficulty level, and can serve as a first step
towards a benchmark library to evaluate reachability and verification methods for AMS circuits.
These benchmarks are open to the continuous and hybrid systems verification community to
evaluate their methods and tools.
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A Appendix: VHDL-AMS Description of FWR
As discussed in Section 2, the FWR circuit behavior depends upon the state of the diodes being ON or OFF
due to the input sinusoidal signal. We assume that this signal is supplied externally, and form the description
as per Equation 2.16, Equation 2.17, and Equation 2.18. It should be mentioned that, in VHDL-AMS, we must
minimize the use of the division operation. VHDL-AMS models are typically comprised of two sections, i.e.,
an entity and an architecture. Entity describes the model interface to the outside world, whereas, architecture
describes the function or behavior of the model. A VHDL-AMS description is given below:

library ieee;
use ieee.electrical_systems.all;
use ieee.math_real.all;
entity fwr is

port ( terminal input: electrical;
terminal output: electrical );

end entity fwr;
----------------------------------------------------------------
architecture dot of fwr is

quantity vin across input to electrical_ref;
quantity vout across output to electrical_ref;
constant r : real := 1000; -- load resistance
constant rd : real := 0.1; -- diode forward resistance
constant cap : real := 0.001; -- capacitance

begin
if vin >= vout and -vin <= vout use

vin == vout’dot * r * rd + vout + vout * rd / r; -- diode D1 ON
elseif vin <= vout and -vin >= vout use

- vin == vout’dot * r * rd + vout + vout * rd / r; -- diode D2 ON
elseif vin <= vout and - vin <= vout use

vout == - vout’dot * r * cap; -- Both OFF
end if;

end architecture dot;
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