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Abstract 
Functionally graded materials (FGMs) are complicated composites created using the 

concept of continuous variation of material property in one or more predetermined 
directions. FGMs have been used in the manufacturing of structural parts that are 
subjected to non-uniform functioning requirements in recent years. In a thermal 
protection system, for example, FGMs combine the benefits of traditional ceramics, 
such as corrosion and heat resistance, with those of metal, such as mechanical strength 
and rigidity. They are common in engineering practice, so static analysis and dynamic 
analysis for FGM plate structures are necessary. The radial point interpolation method 
(RPIM) meshless method has been used based on the point interpolation method (PIM) 
by including the radial basis function (RPF) in the interpolation formulation and has 
shown good performance in computational engineering. One of the advantages of this 
method is that it satisfies the Kronecker’s delta function, which overcomes the 
limitations of critical boundary conditions for the traditional meshless method. 
Furthermore, RPIM shape function satisfies the high-order continuity constraint, which 
the low-order finite element methods (FEM) method does not. This paper presents a 
meshless approach for the static and dynamic analysis of FGM plates whose material 
properties vary through the thickness. Numerical examples are solved and the results 
are compared with reference solutions or the results of FEM given by SOMSOL 
program to confirm the accuracy of the proposed method. 
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1 Introduction 
In computational mechanics, the study of structural statics and dynamics issues is extremely 

important and its analysis necessitates greater modeling work due to the interaction of many various 
variables under sophisticated external loadings. Due to the numerous requirements of engineering 
applications in reality, finding an analytical solution is typically challenging and impossible in most 
of cases. As a result, numerical computational methods emerge as a viable option for estimating a 
solution. The finite element method (FEM), for example [1,2], emerged as a solution to this problem 
and has since become the most widely used numerical tool for solving it. Such numerical computing 
approaches are now inescapable in today's world. Meshfree or meshless approaches, such as [3–5], 
have evolved as an alternative in the last two decades, where a collection of distributed "nodes" in the 
domain is employed instead of a set of elements "or mesh" as in the FEM. Meshfree approaches don't 
usually require meshing. It's worth noting that the idea of meshing here differs from the concept of 
background cells, which are often required for doing domain integrations. Another notion is "really" 
meshfree or meshless approaches, in which no meshing is required at all, including the background 
cells for domain integrations, as shown in [5–7]. The meshless local Petrov-Galekin (MLPG) 
approach, created by the previous author, is used to analyze static, dynamic, and fracture issues in 
nonhomogeneous, orthotropic, functionally graded materials, Reissner–Mindlin and laminated plates 
[8–12], as well as Radial basis functions (RBF) (Wang and GR Liu, 2000; GR Liu, 2002) have often 
been used in MFree methods [13]. The Uflyand-Mindlin theory of vibrating plates is an extension of 
the Kirchhoff–Love plates theory that considers shear deformations over a plate's thickness. Yakov 
Solomonovich Uflyand [14] (1916-1991) proposed the hypothesis in 1948, and Raymond Mindlin 
[15] proposed it in 1951, with Mindlin citing Uflyand's work. As a result, we must refer to this theory 
as the Uflyand-Mindlin plate theory, as done in Elishakoff's handbook [16] and publications by 
Andronov [17], Elishakoff, Hache, and Challamel [18], Loktev [19], Rossikhin and Shitikova [20], 
and Wojnar [21]. Elishakoff [22] proposed in 1994 that the fourth-order time derivative in Uflyand-
Mindlin equations be ignored. Eric Reissner offered a similar, but not identical, idea in a static context 
in 1945 [23]. The Uflyand-Mindlin plate theory is applied to thick plates, as the shear deformation 
and rotary inertia effects can be included. The first-order shear deformation theory of plates is known 
as the Uflyand-Mindlin theory because a first-order shear deformation theory calls for a linear 
displacement variation throughout the thickness. 

2 FGM plates 
FGMs are mathematically represented as a continuous variation of mechanical characteristics 

along the thickness direction. There are several types of FGMs, but the power-law distribution, which 
is valid for the elastic modulus E and material density ρ[1, 2], is the most widely used formula. The 
power-law distribution is given by for two material characteristics P1 and P2 as the material at the top 
(material 1) and bottom (material 2) of the two faces of the beam or plate. 

  (1) 

where 
  (2) 

and n is the power-law index, represents an increase in the proportion of the volume fraction; z 
is the coordinate variable in thickness. . 
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Figure 1 shows the change of the component volume, including f (z) with respect to the FGM 

plate thickness ratio when the n-value changes. For very large values n > 100, f (z) is very small - it 
can be considered that the material of the plate consists only of metal. For very small n values, n < 
0.01- can be considered as the material of the plate consisting only of ceramic. The combination of 
metal and ceramic materials is linear when n = 1. 

The deflection of the plate FGM is still represented by the deflection at the neutral plane of the 
plate, and is denoted by W. the vecter displacements can the expressed as  

  (3) 

Where  denote rotations of the cross section of plate about the Y  and X axes, 
recpectively.  

The linear strains in plate FGM are as follows 

  (4) 

By simply removing the components for the isotropic materials, the stresses can be 
expressed as 

  (5) 

where K is the shear effectiveness factor, K = 5/6 for Uflyand-Mindlin plate, v is Poisson’s 
ratio, and E is Young's modulus, and 

0 0
0 0
1 0 0

u z w
v z x u
w y

j
j

= =

ì üì ü é ùï ï ï ïê úí ý í ýê úï ï ï ïî þ ë û î þ

L d

,x yj j

0 / 0
0 0 /
0 / /
/ 1 0
/ 0 1

x z x
y wz y

z y z xxy x
x yxx
yyz

e
e

g j
jg

g

¶ ¶
¶ ¶

= =¶ ¶ ¶ ¶
¶ ¶
¶ ¶

ì ü é ù
ï ï ê ú ì üï ï ï ïê úí ý í ýê úï ï ï ïê ú î þï ï ê úë ûî þ

Ld

zzs

0 0 011 12
0 0 012 11

0 0 0 066
0 0 0 066
0 0 0 0 66

x x
y y

xy xz
yzxz

yz yz

Q Q
Q Q

Q

KQ

KQ

s e
s e

t g
gt

t g

ì ü ì ü
ï ï ï ï
ï ï ï ï
ï ï ï ï
í ý í ý
ï ï ï ï
ï ï ï ï
ï ï ï ï
î þ î þ

=

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

Figure 1: Relationship between f(z) and thickness ratio z/h 
by index n 
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  (6) 

The stiffness coefficients for the Mindlin plate can be calculated as 

  (7) 

  (8) 

  (9) 

where M = E1/E2. The other coefficients are given by 

  (10) 

  (11) 

  (12) 

  (13) 

In order to facilitate the calculation, presentation of formulas as well as program development, 
in this paper, the authors have separated into two parts called bending and shear. Strains are defined 
as 
  (14) 

The strain-displacement matrices for bending and shear contributions are obtained by 
derivation of the shape functions by 

  (15) 

Where 

  (16) 

We then obtain the plate strain energy as 

  (17) 

where ∂Ω represents the boundary of the domain Ω. 
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Df and Dc are the bending and shear stiffness matrices in the form 

  (18) 

where kapa is 

  (19) 

The stiffness matrix of the Mindlin plate is then obtained as 

  (20) 

The mass matrix of the Mindlin plate is then obtained as 

  (21) 

Where ɸ is a vector of the shape functions, I is the inertia matrix given by 

  (22) 

The vector forces P is defined as 

  (23) 

3 RPIM meshless method 
The RPIM meshless method has been developed based on the point interpolation method 

(PIM) by including the radial basis function (RPF) in the interpolation formulation and has shown 
good performance in computational engineering. The accuracy of interpolation for the point of 
interest depends on the nodes in the support domain. To ensure an efficient and accurate 
approximation, an appropriate support domain should be chosen. For a point of interest at xQ, the 
dimension of the support domain ds is determined by 
  (24) 

Where α is the dimensionless size of the support domain, and dc is the nodal spacing near the 
point at xQ. 

Consider a continuous function u(x) defined in a domain Ω, which is represented by a set of 
field nodes. The u(x) at a point of interest x is approximated in the form of 

  (25) 

Where pi(x) is a given monomial in the polynomial basis function in the space coordinates xT = 
[x, y], ai is the coefficient for pi(x) which is yet to be determined, m is the number of monomials. 

In this study, the quadratic basis functions  are used for all numerical computations. 
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  (26) 

4 Numerical results 
In order to demonstrate the efficiency and the applicability of the present method to static 

analysis and dynamic analysis problems, the authors present the results obtained from the survey 
based on an analytical model that combines the theory of S-FSD with the RPIM. Used in the RPIM to 
integrate the weak form. The boundary conditions of the plate are denoted as follows: simple support 
(S), clamped (C), and freestyle (F).  

Static analysis problems of FGM plate 
  (27) 

By using the Hamilton Principle, we may express the equations of motion of Mindlin plates as 
  (28) 
where M, K, f are the system mass and stiffness matrices, and the force vector, respectively, and ü, u 
are the accelerations and displacements. Assuming a harmonic motion we obtain the natural 
frequencies and the modes of vibration by solving the generalized eigenproblem 

  (29) 

where X the mode of vibration, representing the vibration pattern corresponding to the eigenvalue λ. 
The eigenvalue λ is the square of the angular frequency ω, and the frequency f = ω /2π is measured in 
Hz (number of cycles/second). Each frequency value ω corresponds to a specific type of oscillation. 
There are many methods of solving a system of equations to find the private vecter and vibration 
patterns of the system. 

4.1 Problem 1 
The square FGM plate with a sheet thickness of h = 0.01 (m) is manufactured from material as 

shown in Table 1. It uses the number of nodes 11x11 shown in Figure 2, the shear effectiveness factor 
K = 5/6. The RPIM method uses parameters: α = 2.01, ϴ = 3. The displacement results of the FGM 
plate have the above data. The force acting on the FGM plate is a uniformly distributed force with the 
value P = 1000 (Pa). The results of the RPIM method on displacement fields are compared with the 
COMSOL simulation software presented in Table 2. To determine the correctness of the program, the 
deflection value of the center point of the plate is compared with RPIM and COMSOL software as 
well as the convergence of the deflection value of the center of the plate through the node sizes 4x4, 
10x10, 16x16, 20x20, 26x26, and 30x30. They are shown in Table 3 and Figure 6, Figure 7 shows the 
error between RPIM and COMSOL in the node sizes 10x10. On the other hand, the first 5 frequencies 
are also shown in the paper and compared with the results of the COMSOL simulation software, they 
are shown in Table 4 and Figure 8. Table 2 and Table 3 show that the median displacements of the 
FGM plate, Table 4 show the first 5 mode shape of FGM plate, it compared with the results of other 
methods have an acceptable error (less than 5%). This error comes from the imposition of the values 
of the coefficients α and ϴ in the RPIM meshless method. Furthermore, the RPIM meshless method is 
essentially an interpolation method, so the error problem is not to blame. 
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Materials Young’s modulus (Pa) Poisson’s ratio 𝜌 (kg/m3) 
Metal (SUS 304) 207e9 0.3 8166 
Ceramic (Al2O3) 380e9 0.3 3800 

Table 1: Material properties of FGM plate problem 1 

 
 
 

Boundary 
conditions a/h Method n W (e-5m) ϴx (e-4 rad) ϴy (e-4 rad) 

CCCC 100 RPIM 
1 

4.7310 1.4502 1.4502 
Comsol 4.7183 1.4660 1.4660 

%(Ml/Cs) 0.2684 1.0895 1.0895 
Table 2: The table shows displacement fields and the error of the two methods 

 

 
Figure 2: Nodal distribution in the square plate 

with 11͓11 regular scattered nodes 

 
Figure 3: The figure shows displacement in the Z 

direction of the FGM plate size 11x11 nodes 

 
Figure 4: The figure shows displacement of the 

rotation in the X direction of the FGM plate size 11x11 
nodes 

Figure 5: The figure shows displacement of the 
rotation in the Y direction of the FGM plate size 11x11 
nodes 

Figure 3, Figure 4, and Figure 5 show displacement fields in the Z direction, the rotation in the X 
direction, and the rotation in the Y direction, respectively. The maximum displacement value in the Z 
direction at the center of the plate is 4.7310 (e-5m), zero at the four edges. The displacement value of 
the rotation in the X direction is 1.4502 (e-4rad), the smallest is 1.4502 (e-4rad), equal to 0 at all four 
edges. The same for the displacement field of the rotation in the Y direction. The total error of the 
RPIM method is less than 5%. 
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Boundary 
conditions a/h Method n 4x4 10x10 16x16 20x20 26x26 30x30 

CCCC 100 RPIM 1 4.7765 4.7310 4.7077 4.7064 4.7077 4.708
9 

Comsol 4.7629 4.7183 4.7173 4.7151 4.7159 4.717
3 

%(RPIM/Cs
) 0.2843 0.2684 0.2039 0.1848 0.1741 0.178

3 
Table 3: The table shows survey of displacement values in the Z direction through the number of nodes 

 
Table 4: The table shows the results of calculating the frequencies and the error of the two methods (RPIM 

and COMSOL) 

 
Figure 6: The chart shows the change of deflection value 

of the two methods (RPIM and COMSOL) through the change 
of node (CCCC) 

 
Figure 7: Convergence comparisons curves 

of the central deflection among RPIM and 
COMSOL for square FGM plate 

 

  

  

Frequency [Hz] Mode RPIM FEM(Comsol) Error (%) 
 1 121.16 121.25 0.0673 
 2 245.98 247.19 0.4915 
 3 245.98 247.19 0.4915 
 4 370.08 364.12 1.6113 
 5 438.11 443.43 1.2131 
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Figure 8: The first 4 mode shape of square FGM plate. It is found that the 5-frequency digital terminal 
corresponds to the 5 frequencies simulated in the commercial simulation software COMSOL 

4.2 Problem 2 
The annulus FGM plate with a sheet thickness of h = 0.01 (m) is manufactured from material as 

shown in Table 5. The annulus plate has outer diameter R1 = 1 m, inner diameter R2 = 0.2 m and node 
size of the annulus plate shown in Figure 9. the shear effectiveness factor K = 5/6. The RPIM method 
uses parameters: α = 2.01, ϴ = 3. The force acting on the FGM plate is a uniformly distributed force 
with the value P = 1000 (Pa). The results of the RPIM method on displacement fields are compared 
with the COMSOL simulation software presented in Table 6. To determine the correctness of the 
program in problem 2, the authors change the power-law index to be 1, 5, 10, respectively, to 
investigate the annulus FGM plate, it shows in Figure 11. On the other hand, the first 5 frequencies 
are also shown in the paper and compared with the results of the COMSOL simulation software. 
Table 7 show the first 5 mode shape of FGM plate, it compared with the results of other methods have 
an acceptable error (less than 5%). This error comes from the imposition of the values of the 
coefficients α and ϴ in the RPIM meshless method. Furthermore, the RPIM meshless method is 
essentially an interpolation method, so the error problem is not to blame. 

 

 
Figure 9: Nodal distribution in the annulus FGM plate 

Materials Young’s modulus (Pa) Poisson’s ratio 𝜌 (kg/m3) 
Metal (SUS 304) 207e9 0.3 8166 
Ceramic (Al2O3) 380e9 0.3 3800 

Table 5: Material properties of FGM plate problem 2 

Figure 12, Figure 13, and Figure 14 show displacement fields in the Z direction. The maximum 
value is 6.1151 (e-4m), 0 at the outer diameter, (a). The maximum value is 7.2624 (e-4m), 0 at the 
outer diameter, (b). The maximum value is 7.7314 (e-4m), 0 at the outer diameter, (c).The total error 
of the RPIM method is less than 5%. 

Boundary conditions a/h Method n w (e-4m) 
CCCC 100 RPIM 

1 
6.1151 

Comsol 6.1033 
%(Ml/Cs) 0.1932 

CCCC 100 RPIM 
5 

7.2624 
Comsol 7.2454 
%(Ml/Cs) 0.2330 

CCCC 100 RPIM 
10 

7.7314 
Comsol 7.7143 

%(Ml/Cs) 0.2210 

Dynamic Analysis In Functionally Graded Material Plate Using A Meshless Method M.D.Dinh et al.

31



Table 6: The table shows displacement fields and the error of the two methods of problem 2

 
Figure 10: The chart shows the change of E(z) with the power-law index, a = 1; b = 5; c = 10. 

 

 
Figure 11: The figure shows 

displacement in the Z direction of 
the  annulus FGM plate (a) 

 
Figure 12: The figure shows 

displacement in the Z direction of 
the annulus FGM plate (b) 

 
Figure 13: The figure shows 

displacement in the Z direction of 
the annulus FGM plate (c) 

 
Frequency 

[Hz] 
Mode RPIM FEM (Comsol) Error(%) 

 1 34.52 34.73 0.6083 
 2 66.77 67.02 0.3744 
 3 66.77 67.02 0.3744 
 4 108.62 111.73 2.8631 
 5 108.62 111.73 2.8631 

Table 6: The table shows the results of calculating the frequencies and the error of the two methods RPIM  
and COMSOL. n =1 
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Table 7: The first 5 mode shape of annulus FGM plate with n = 1 

5 Conclusion 
 

The article proposed a displacement calculation model of the FGM plate using an analytical model 
combining the theory of S-FSD with the RPIM meshless method. Numerical examples of FGM plate 
displacement are performed and discussed in detail. The factors affecting the displacement of the 
FGM plate, such as boundary conditions and attenuation index, are also investigated. The results 
show that using the new proposed model with fewer unknowns but still giving results consistent with 
the results obtained from the RPIM meshless method, which is used to survey all calculation cases in 
the paper and always has an error of less than 5%. The method enables us to treat the essential 
boundary conditions as conveniently as the FEM, effectively and accurately, and its application to 
other complex problems in FGM structures such as nonlinear analysis, thermal-stress calculation is 
promising.  
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