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Abstract

We summarise the definitions and some technical aspects of a familiy of description logics that
introduce concept constructors (so-called tooth-operators) which, under various constraints, accumu-
late weights of concepts. We demonstrate how these operators can be fruitfully and elegantly applied
to a number of cognitively motivated classification problems which are difficult to handle with the
standard expressive means of description logics.

1 Introduction

Many aspect of how humans form and combine concepts are notoriously difficult to capture formally. In
Description Logics (DLs), concepts are normally represented in terms of sets (extensions) and by means
of definitions, such that, if an item satisfies the definition of a concept, it will be considered an instance
of the concept’s extension, otherwise it will not. Moreover, concept combination is usually intended in a
compositional fashion, that is, the meaning of a complex concept functionally depends on the meaning of
the primitive concepts (or predicates) that compose it. Unfortunately, empirical evidence in psychology
and cognitive science have shown that most concepts often lack a precise definition, that categorisation
presents a certain degree of indeterminacy, and that it is subject to context dependency. Moreover, a
number of cognitive phenomena linked to concept combination are rarely taken into account in logic-
based approaches. Overextension in conjunction [3], situational effects [4], dominance effects [5], and
attributes emergence [6] are just a subset of the phenomena that hardly reconcile with compositionality
of the extensions: the sole sets of entities that fall under two concepts, without additional information, do
not determine the set of entities that fall under the combined concept. How to integrate these phenomena
in a logic-based framework is still an open challenge. We here summarise a formal analysis of the work
of Hampton [6, 5, 7, 3] as developed in [1], where an abstract setting to represent three particular concept
formation aspects is given: overextension, when a concept classifies more than what is constrained
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by its parts, underextension, when it classifies less, and dominance, when some parts of a concept
dominate the classification question. Building on the DLALC, we introduce a family of operators which
apply to finite lists of concept descriptions and return a composed concept whose instances are those that
satisfy ‘enough’ of the listed concept descriptions. The motivation for this work is to bridge traditional
techniques of knowledge representation with cognitively grounded views of human classification by
contributing to the project of extending DLs to model cognitively relevant features of classification [2].

2 Weighted concept combination: The∇∇-operator logic
We introduce a class of m-ary operators, denoted by ∇∇ (spoken ‘tooth’), for combining concepts in
ALC. Each operator works as follow: i) it takes a list of concept descriptions, ii) it associates a vector
of weights to them, and iii) it returns a complex concept that applies to those instances that satisfy
enough of a concept description, where ‘enough’ is modeled by means of a threshold. We assume a
set of atomic concepts NC and a set of atomic roles NR. For C,C1, . . . , Cm ∈ NC , R ∈ NR, t ∈ R,
m ≥ 1, ~w ∈ Rm, the set of ALC∇∇ concepts is described by the grammar:

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C | ∇∇t~w(C1, . . . , Cm)

The semantics of the operator is obtained by extending the definition of the semantics ofALC as follows.
Let I = (∆I , ·I) be an interpretation of ALC. We define the value of a d ∈ ∆I under a ∇∇-concept
C = ∇∇t~w(C1, . . . , Cm) by setting:

vIC (d) =
∑

i∈{1,...,m}

{wi | d ∈ CIi } (1)

The interpretation (i.e., the extension) of a∇∇-concept in I = (∆I , ·I) is then:

(∇∇t~w(C1, . . . , Cm))I = {d ∈ ∆I | vIC (d) ≥ t} (2)

To better visualise the weights an operator associates to the concepts, we sometimes use the notation
∇∇t((C1, w1), . . . , (Cm, wm)) instead of∇∇t~w(C1, . . . , Cm).

Having defined the basic∇∇-operator, a number of derived operations are easily obtained. An initial
technical study ofALC∇∇ was undertaken in [2], and the problem of ‘knowledge dependence’ was stud-
ied in [8]. For the discussion in this paper, it is of interest to consider the set of entities that maximally
satisfy a combination of concepts C1, . . . Cm of ALC. The semantics of∇∇max is as follows:(

∇∇max((C1, w1), . . . (Cm, wm))
)I

= {d ∈ ∆ | vIC (d) ≥ vIC (d′) for all d′ ∈ ∆} (3)

Defining∇∇max in terms of∇∇t would require to use a universal role, which significantly increases the
expressive power of ALC [9], as shown in [2].

3 Three Problems in Classification

3.1 Overextension
In the 80s, Hampton started a series of experiments to evaluate how people interpret conjunctive phrases
such as sports which are also games or games which are also sports ([5]). The classical semantic in-
terpretation of these cases would interpret their meaning in terms of conjunction: the extension of the
two phrases would correspond to the intersection of the set of games and the set of sports. However,
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experimental results showed something different. In his experiments, Hampton first provided a list of
activities and asked people to evaluate which items in the list were sports and which were games (with
the possibility of overlapping). After some weeks, people were asked again to evaluate which items
in the list could have been considered sports which are also games and, conversely, games which are
also sports, and the results were interpreted to verify if people followed a rule corresponding to an in-
tersection or conjunctive interpretation. The answer is no: a number of sports (games) that were not
considered games (sports), according to the first classification, were considered as members of the con-
junction in the second part of the experiments. This phenomenon is called overextension in conjunction,
but the problem of non-extensional combination applies equally to disjunctions (and negation).

The tooth operator can capture some of these insights. Firstly, we can lower the threshold for the
classification under C or under D. That is, in the combination of C and D the importance of the list of
features defining C and D is relaxed. So, more instances shall fall under either concepts, returning a
larger intersection. Given C = ∇∇s((P1 , w1), . . . , (Pm , wm)) and D = ∇∇t((Q1 , v1), . . . , (Qn , vn)), a
family of overextending compositions of C and D can be introduced:

C uO D = ∇∇x((P1 , w1), . . . , (Pm , wm)) u∇∇y((Q1 , v1), . . . , (Qn , vn)) (4)

where s ≥ x or t ≥ y or both. The effect of lowering the threshold for classifying an entity under
the composing concepts has the consequence of raising the importance of a (number of) features for
the composed concept (whether it is their salience or their diagnosticity). Globally lowering the thresh-
old amounts to assuming no information about which specific feature is important in the combination,
whereas directly raising the weight of a number of features entails knowing that those are the important
ones, when combining the concepts. Thus, a second strategy for combining concepts that overextends
the intersection is by raising the weights of some of the features in C and D.

3.2 Underextension
Overextension’s specular, or dual, phenomenon is that of underextension, that is, when considered in the
context of conjunction, the phenomenon in which objects categorised as instances of two categories are
not classified as belonging to the (underextending) conjunction of the categories. Actually, when related
to underextension, Hampton’s experiments were mostly directed to examine the disjunction of common
sense concepts, and to verify the consistency of people’s judgements with respect to the set union rule
[7]. So, in that context, underextension would happen when an item categorised under a concept is
not categorised as an item of the disjunction of that concept and another concept. For instance, an item
could be categorised as a game, but then could be not considered as an instance of game or sport (maybe
because it was a very atypical game). Here, we are dealing with another intuition. The idea is that
underextension in conjunctions would mean to identify particularly typical members of the intersection
of two concepts. As a particular case, we can then define a prototype concept of the regular intersection
of the concepts. Similarly to overextension, we can treat the case of underextension, that is, by raising
the threshold required for classifying the composing concepts. One interpretation of this case is that
when combining two concepts, only instances that are more typical of the two concepts can enter the
combination of the two concepts. By means of the ∇∇max, we can define underextension operators as
follows. Given C = ∇∇s((P1 , w1), . . . , (Pm , wm)) and D = ∇∇t((Q1 , v1), . . . , (Qn , vn)), we set:

C uU D = ∇∇max((P1 , w1), . . . , (Pm , wm)) u∇∇max((Q1 , v1), . . . , (Qn , vn)) (5)

Another way of introducing underextension is to constrain the intersection of C and D by im-
posing that the instances must maximise the combination of the features of C and D: C u D u
∇∇max

(
(P1 , w1), . . . , (Pm , wm), (Q1 , w1), . . . , (Qn , vn)

)
.

This definition is non-equivalent to (5) only in the case of mutually incompatible attributes defining
C and D. We leave this aspect for future work.
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3.3 Dominance

Hampton’s experiments showed another interesting phenomenon, namely the dominance effect. In the
simplest case of the composition of just two concepts, one of the two concepts ‘weighs more’, so to
speak, than the other in the definition of the conjunction. More precisely, the dominance effect was
analysed with respect to typicality. Hampton’s aim was in fact to predict the typicality of an item in
a conjunction of two classes on the basis of the typicality of the item in each of the conjuncts. In his
analyses, he discovered that the weights of the two constituent concepts in the determination of an item’s
typicality were usually not equal. On the contrary, dominance of a concept with respect to a second was
frequently observed. For instance, the weight of the concept sports was almost twice the weight of
games in determining the typicality of items in both of the concepts sports which are also games and
games which are also sports [6]. Following these insights, one can distinguish between a concept Head
(sports in the example), and a concept Modifier (e.g. games).

Given C = ∇∇s((P1 , w1), . . . , (Pm , wm)) and D = ∇∇t((Q1 , v1), . . . , (Qn , vn)), we present three
strategies to model dominance operators. A first strategy is to define dominance as:

C uD1 D = ∇∇s
′(

(P1 , w1), . . . , (Pm , wm)
)
u∇∇t

′(
(Q1 , v1), . . . , (Qn , vn)

)
(6)

where s′ ≥ s and t′ ≤ t. In this case, globally raising the threshold of the dominant concept amounts to
include the typical instances of C into the composition, whereas globally lowering the threshold of the
non-dominant concept includes possibly non-D instances. This means that a sport that is also a game
must be primarily a sport.

A second strategy is to unpack (or flatten) the definitions of C and D and raise the weights of the
most salient features ∅ 6= S(C) ⊆ {1, . . . ,m} of the dominant concept C for the composition, whilst
including some required elements R(D) ⊆ {1, . . . , n} of D to compute a new minimal threshold. We
may set:

C uD2 D = ∇∇π(C,D)
(
(P1 , w

π
1 ), . . . , (Pm , w

π
m), (Q1 , v

π
1 ), . . . , (Qn , v

π
n)
)

(7)

where π is a function that re-assigns weights such that π(wi) = wπi > wi for all i ∈ S(C) (and π(x) = x
otherwise) and π(C,D) = Σi∈Sπ(wi) + Σj∈Rπ(vj) is a new threshold that accumulates the inflated
weights for the salient features of C and the required weights from D.

A third strategy to define a dominant concept would be to collect those instances that maximise the
sum of weights of the dominant concept (using e.g. the∇∇max operator of [2]).

Notice that these types of compositions are generally non-commutative, as the first combined con-
cept (the head) is more important than the second.

4 Future Work

Future work will be dedicated to further investigate the logical properties of the operators and their
natural extensions, and to employ them in a systematic fashion to the modelling of salient cognitive
features of concepts, concept combinations in general, and conceptual blending in particular [10, 11].

Moreover, the landscape of over/under-extension and dominance should be analysed in a more fine-
grained manner, considering interdependencies, special cases, and the introduction of further (conjunc-
tive) classification problems. Eventually, we will aim to justify the formal fine-theory of conjuctive (and
disjunctive etc.) classification in a detailed empirical study.

Further lines of research will deepen the comparison with the formal studies on typicality (e.g.
[12, 13, 14]), the relation and combination with similarity frameworks based on a notion of distance
(e.g. [15, 16, 17]), and the connections to linear classification models as begun in [8].
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