
A Condensed Goal-Independent Fixpoint

Semantics Modeling the Small-Step Behavior of

Rewriting

Marco Comini1 and Luca Torella2

1 DIMI, University of Udine, Italy — marco.comini@uniud.it
2 DIISM, University of Siena, Italy — luca.torella@unisi.it

Abstract

In this paper we present a novel condensed narrowing-like semantics that contains the
minimal information which is needed to describe compositionally all possible rewritings of
a term rewriting system. We provide its goal-dependent top-down definition and, more
importantly, an equivalent goal-independent bottom-up fixpoint characterization.

We prove soundness and completeness w.r.t. the small-step behavior of rewriting for
the full class of term rewriting systems.

1 Introduction

Nowadays the formalism of Term Rewriting Systems (TRSs) is used, besides for functional
programming, also for many other applications (like specification of communication protocols,
to mention one). There has been a lot of research on the development of tools for the formal
verification and (in general) automatic treatment/manipulation of TRSs. Within the proposals
there are semantics-based approaches which can guarantee correctness by construction. How-
ever they cannot employ directly the construction of the semantics, since in general it is infinite.
Thus some kind of approximation has to be used.

Given the potentiality of application of the TRS formalism, we have turned our attention
toward the development of semantics-based TRS manipulation tools with the intention to use
Abstract Interpretation theory as fundament to devise semantics approximations correct by
construction. However, as also noted by [9], defining a suitable (concrete) semantics is usually
the first crucial step in adapting the general methodology of Abstract Interpretation to the
semantic framework of the programming language at hand. When a concrete semantics is
used to define, via abstract interpretation, abstract (approximate) semantics to be employed
to develop semantics-based manipulation tools, it is particularly relevant if it is condensed
and defined compositionally. In the literature, a semantics is said to be condensing when the
semantics of an instance of an expression (term, goal, call) can be obtained with a semantic
operation directly from the semantics of the (un-instantiated) expression. In such a situation,
only the semantics for most general expressions can be maintained in denotations. We say
that a semantics is condensed when the denotations themselves do not contain redundancy, i.e.,
when it is not possible to semantically derive the components of a denotation from the other
components. Indeed, the abstract semantics operations which are obtained from a condensed
concrete semantics involve the use of the join operation (of the abstract domain) at each iteration
in parallel onto all components of rules, instead of using several subsequent applications for all
components. This has a twofold benefit. On one side, it speeds up convergence of the abstract
fixpoint computation. On the other side, it considerably improves precision.

In [2], we developed an automatic debugging methodology for the TRS formalism based on
abstract interpretation of the big-step rewriting semantics that is most commonly considered

L. Kovacs, T. Kutsia (eds.), SCSS 2013 (EPiC Series, vol. 15), pp. 31–49 31

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

in functional programming, i.e., the set of constructor terms/normal forms. However, the
resulting tool was inefficient. The main reason for this inefficiency is because the chosen concrete
semantics is not condensing and thus, because of its accidental high redundancy, it causes the
algorithms to use and produce much redundant information at each stage. In contrast, the
same methodology gave good results in [5] because it was applied to a condensed semantics.

The constructor terms/normal forms semantics is not condensed because it contains all
possible rewritings, but there are many possible rewritings which can be obtained by some
other ones, since rewriting is closed under substitution (stability) and replacement (t Ð→

R

∗ s

implies C[t]p Ð→
R

∗ C[s]p). Thus, in [1] we tried to directly devise a semantics, fully abstract

w.r.t. the big-step rewriting semantics, with the specific objective to avoid all redundancy while
still characterizing the rewritings of any term. In particular we searched a semantics which

• has a compositional goal-independent definition,
• is the fixpoint of a bottom-up construction,
• is as condensed as possible.

Unfortunately (in [1]) we just partially achieved this goal since the semantics is defined only for
some classes of TRSs. In the meantime, for a (quite) different language, in [4, 3] we obtained—
for the full language—a semantics with the mentioned characteristics, by following a different
approach:

1. Define a denotation, fully abstract w.r.t. the small-step behavior of evaluation of expres-
sions, which enjoys the mentioned properties.

2. Obtain by abstraction of this small-step semantics a denotation (which enjoys the men-
tioned properties) correct w.r.t. the big-step behavior.

This approach has the additional advantage that the small-step semantics can be reused also
to develop other semantics more concrete than the big-step one (for instance semantics which
can model functional dependencies that are suitable to develop pre-post verification methods).

Unfortunately in the case of the TRS formalism we do not have a suitable small-step se-
mantics to start with. For Curry we defined the small-step semantics by collecting just the
most general traces of the small-step operational semantics, which correspond (in our case) to
the rewriting derivations of the terms f(x1, . . . , xn). The problem is that we cannot obtain,
just from the traces of all f(x1, . . . , xn), the rewriting derivations of all (nested) terms, without
using again (directly or indirectly) the rewriting mechanism. In fact, usually f(x1, . . . , xn) is
immediately a normal form, because we cannot instantiate variables; however, there are many
instances which can trigger the rules. Narrowing [7] can seem a possible solution to this prob-
lem but we have an issue related to the interference of non-confluence (i.e., non-determinism)
with non-linearity, as shown by this example.

Example 1.1
Let us consider the following TRS R:

coin → Tail Head ≠ Tail → True diff (x)→ x ≠ x
coin →Head Tail ≠ Head → True

We have rewriting derivations diff (x) Ð→ x ≠ x ↛, diff (Head) Ð→ Head ≠ Head ↛, diff (Tail) Ð→
Tail ≠ Tail ↛, while diff (coin)Ð→∗ True. Moreover, we have the narrowing derivation diff (x) ε↝
x ≠ x /↝.

32

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Narrowing can instantiate variables (according to rules), but a variable is instantiated with the
same term in all of its occurrences (it would make little sense to do differently, for a top-down
resolution mechanism). However, Example 1.1 shows that it is not possible to retrieve that
diff (coin)Ð→∗ True from all possible narrowing derivations of diff (x), since the only narrowing
derivation (of diff (x)) does not reach True.

In this paper we define a variation of narrowing (linearizing narrowing) which admits dif-
ferent instances of variables with multiple occurrences. With linearizing narrowing we define
a denotation, fully abstract w.r.t. the small-step behavior of rewriting, which enjoys the men-
tioned properties for generic TRSs without restrictions. The outline to achieve this is the
following.

• We gather all linearizing narrowing derivations into trees (Definition 3.10).
• We show that all possible rewritings can be reconstructed from linearizing narrowing trees

(Theorem 3.14).
• We define top-down condensed denotations OJRK by collecting just the linearizing nar-

rowing trees of most general terms (f(Ð→xn)) and we prove that, with a suitable semantic
evaluation function E , we can reconstruct any linearizing narrowing tree starting from

OJRK (Theorem 3.23).
• By using E we define a (bottom-up) immediate consequence operator whose least fixpoint
F JRK is equal to OJRK (Theorem 3.30). Thus from F JRK we can reconstruct all possible
rewritings of R and we have full abstraction w.r.t. the rewriting behavior (Corollary 3.31).

Note that the proofs of all results are in the appendix.

2 Preliminaries

We assume that the reader is familiar with the basic notions of term rewriting. For a thorough
discussion of these topics, see [10]. In the paper we use the following notions and notations.

We writeÐ→on for the list of syntactic objects o1, . . . , on. Given a monotonic function F ∶L→ L,
over lattice L whose bottom is � and lub is ⊔, by F ↑k we denote function λx.F k(x) and by
F ↑ω function λx.⊔{F k(x) ∣k ∈ N}. By lfp(F) we denote the least fixed point of F (and recall
that, for a continuos F , lfp(F) = F ↑ω).

Terms and Substitutions

Σ denotes a signature and V denotes a (fixed) countably infinite set of variables. T (Σ,V)
denotes the terms built over signature Σ and variables V. Σ is partitioned in D, the defined
symbols (also called operations), and C, the constructor symbols (also called data constructors).

T (C,V) are called constructor terms. The set of variables occurring in a term t is denoted by
var(t), while the sequence (in order) of variables occurring in a term t is denoted by Ð→var(t). A
term is linear if it does not contain multiple occurrences of any variable. LT (Σ,V) denotes the
set of linear terms.

t∣p denotes the subterm of t at position p, and t[s]p denotes the result of replacing the
subterm t∣p by the term s.

Given a substitution ϑ = {x1/t1, . . . , xn/tn} we denote by dom(σ) and range(σ) the domain
set {x1, . . . , xn} and the range set ⋃ni=1 var(ti) respectively. The identity substitution is denoted
by ε. By tσ we denote the application of σ to t. σ↾V denotes the restriction of substitution σ
to set V ⊆ V. σϑ denotes the composition of ϑ and σ i.e., the substitution s.t. x(σϑ) = (xσ)ϑ
for any x ∈ V. Given two substitutions ϑ1 and ϑ2 and two terms t1 and t2, we say that ϑ1

33

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

(respectively t1) is more general than ϑ2 (respectively t2), denoted ϑ1 ⪯ ϑ2 (respectively t1 ⪯ t2)
if and only if there exists a substitution σ s.t. ϑ1σ = ϑ2 (respectively t1σ = t2). We denote by
≃ the induced equivalence, i.e., ϑ ≃ σ if and only if there exists a renaming ρ s.t. ϑρ = σ (and
σρ−1 = ϑ). With σ ↑ σ′ we indicate the lub (w.r.t. ⪯) of σ and σ′.

A substitution ϑ is an unifier for terms t and s if tϑ = sϑ. t and s unify/are unifiable when
there exists a unifier. A unifier σ for t and s is a most general unifier, denoted as σ = mgu(t, s),
when σ ⪯ ϑ for any unifier ϑ of t and s.

Rewriting

A term rewriting system (TRS for short) R is a set of rules l → r where l, r ∈ T (Σ,V), var(r) ⊆
var(l), l = f(t1, . . . , tn) and f ∈ D. t1, . . . , tn are the argument patterns of l → r and need
not necessarily be in T (C,V), unlike in functional programming, where only constructor-based
TRSs are considered (i.e., with ti ∈ T (C,V)). We denote by RΣ the set of all TRSs defined on
signature Σ.

Given TRS R, a rewrite step t
pÐ→
R

t′ is defined if there are a position p in t, l → r ∈ R and

a substitution η with dom(η) ⊆ var(l) such that t∣p = lη and t′ = t[rη]p. As usual, we omit to
write position p when it is not relevant and omit R when is clear from the context. Moreover
we use Ð→∗ to denote the transitive and reflexive closure of the rewriting relation Ð→.

A term t is called a normal form, denoted by t↛, if there is no term s such that tÐ→∗ s.
A substitution {x1/t1, . . . , xn/tn} is R-normalized (w.r.t. a TRS R) if all ti are normal forms

(which trivially includes the case when ti ∈ T (C,V)).

Full Narrowing

In the paper with s≪X we denote a renamed apart variant s of an element belonging to a set
of syntactic objects X, i.e., a renaming of variable names of some x ∈ X that does not contain
variables that appear in the context of the definition where s ≪ X is used (this is also called
“using fresh variables names in s”).

The combination of variable instantiation and rewriting is called narrowing [7]. Formally, a

(full) narrowing step t
σ,p↝
R

t′ is defined if there is a position p in t, l → r ≪R and σ = mgu(t∣p, l)

such that t∣p ∉ V and t′ = (t[r]p)σ. In such a case we have that tσ
pÐ→
R

t′. Again, we omit to

write position p when it is not relevant and omit R when is clear from the context.
t /↝ denotes that there is no term s such that t↝ s.

3 Modeling the small-step rewriting behavior

In this section we introduce the concrete semantics which is suitable to model the small-step
rewriting behavior. In order to formally state such relationship we first need to formally define
the concept of small-step rewriting behavior.

Definition 3.1 (Rewriting behavior) Given t0 ∈ T (Σ,V) and R ∈ RΣ the small-step rewrit-
ing behavior of t0 in R is

BssJt0 in RK ∶= {t0 Ð→
R

t1 Ð→
R

⋯Ð→
R

tn−1 Ð→
R

tn ∣∀ti ∈ T (Σ,V)} (3.1)

and the small-step rewriting behavior of R is BssJRK ∶= ⋃t∈T (Σ,V) BssJt in RK.

34

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

This notion of observable behavior induces the definition of TRS equivalence:

∀R1 ,R2 ∈ RΣ.R1 ≈ss R2 ∶⇐⇒ BssJR1 K = BssJR2 K (3.2)

Thanks to the following property we can restrain the check of Bss equivalence of two TRSs to
linear terms. Moreover in the sequel we will also restrict our attention only to denotations for
linear terms.

Proposition 3.2 Let R1 ,R2 ∈ RΣ. Then R1 ≈ss R2 ⇐⇒ R1 is a variant of R2 ⇐⇒ ∀t ∈
LT (Σ,V). BssJt in R1 K = BssJt in R2 K.

3.1 The semantic domain

We now define a notion of “hypothetical rewriting” which resembles full narrowing [7], but
it “decouples” multiple occurrences of variables. This way we maintain the potentiality to
choose different evolutions of the rewritings of redexes once variables are instantiated with non
constructor terms.

The semantic domain of our semantics will be made of trees with all possible derivations of
this variation of narrowing.

3.1.1 Linearizing Narrowing

Definition 3.3 (Term Linearization) Let t ∈ T (Σ,V), r ∈ LT (Σ,V) and σ∶V → V. We say
that (r, σ) is a linearization of t, denoted (r, σ) = lin(t), if rσ = t and var(t) ⊆ var(r). The
substitution σ will be called delinearizator.

If a term is linear then lin(t) = (t, ε), while for non-linear terms we can have different possibilities
(for instance lin(f(x,x)) = (f(x, y),{y/x}) = (f(z, x),{z/x}) = . . .). However the following
constructions which involve linearization are actually independent upon the particular choice
of linearization, in the sense that all possible different results are variants (analogously to what
happens for the choice of different mgu’s).

It may be useful to note that a delinearizer σ has one binding for each (further) multiple
occurrence of a variable.

Definition 3.4 (Linearizing Narrowing Derivation) Let t, s ∈ LT (Σ,V) and R ∈ RΣ.

There exists a linearizing narrowing step t
θ,pÔ⇒
σ,R

s if there exist a position p of t, l → r ≪ R,

θ′ = mgu(t∣p, l) and σ∶V → V such that

t∣p ∉ V, (s, σ) = lin(t[rθ′]p), θ = θ′↾var(t).

We omit to write position p when it is not relevant and omit R when is clear from the context.

A sequence t0
θ1Ô⇒
σ1

t1 . . .
θnÔ⇒
σn

tn is called linearizing narrowing derivation. With t0
θÔ⇒
σ

∗ tn we

denote the existence of a linearizing narrowing derivation such that θ = θ1⋯θn and σ = σ1⋯σn.

Note that in linearizing narrowing derivations we do not apply mgu θ to all reduct (t[r]p)θ as
narrowing does. This would not make any difference since terms are kept linear by construction
and thus θ cannot alter the context outside positions being reduced.

Linearizing narrowing is correct w.r.t. rewriting (as narrowing is) as proven by the following
theorem which is the analogous of Theorem 3.8 of [8] (Theorem 1 of [7]) where we use linearizing

35

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

narrowing instead of narrowing. Actually linearizing narrowing is more general than narrowing,
in the sense that when we have a narrowing derivation then we will surely have a linearizing
narrowing derivation which possibly compute more general instances (in case there are non-
linear terms).

Theorem 3.5 Let R ∈ RΣ, s0 ∈ LT (Σ,V), t0 ∈ T (Σ,V), η0 an R-normalized substitution such
that t0 = s0η0 and V ⊂ V such that var(s0) ∪ dom(η0) ⊆ V . If t0 Ð→∗ tn then there exist a term
sn ∈ LT (Σ,V) and substitutions ηn, θ, σ such that

s0
θÔ⇒
σ

∗ sn, tn = snσηn, (θηn)↾V = η0↾V , ηn is R-normalized,

where s0
θÔ⇒
σ

∗ sn and t0 Ð→∗ tn employ the same rewrite rules at the same positions.

Note that while it is always possible to transform rewrite derivations into linearizing narrowing
derivations (in the sense of Theorem 3.5), the opposite does not hold in general as we will show
in Example 3.7. As anticipated, we gather all linearizing narrowing derivations (of the same
term t) into a tree.

Definition 3.6 (Linearizing Narrowing Trees) Let t ∈ LT (Σ,V). A linearizing narrowing
tree T for t is a (not necessarily finite) labelled tree which is rooted in t and where

1. paths are linearizing narrowing derivations;
2. sibling subtrees have the same root terms if and only if their incoming arcs have different

substitutions.

We denote with LNTΣ (or simply LNT when clear from the context) the set of all the
linearizing narrowing trees (over Σ). Moreover, for any t ∈ LT (Σ,V), we denote with LNTt the
set of all linearizing narrowing trees for t.

Point 2 ensures that all sibling steps in a linearizing tree are pairwise distinct and thus that we
cannot have two different paths of the tree with the same terms and labels.

Example 3.7
Consider TRS R of Example 1.1. The linearizing narrowing tree starting from term diff (x) is:

diff (x) x ≠ x1

True

{x/Head, x1/Tail}
ε

True
{x/Ta

il, x1/Head}

εε

{x1/x}

This linearizing narrowing derivation diff (x)
{x/Head,x1/Tail}

ÔÔÔÔÔÔ⇒
{x1/x}

∗ True can be read as: if there is a

term t that can rewrite both to Head and Tail , then diff (t) rewrites to True. Indeed diff (coin)
does rewrite to True (a possible rewriting derivation is diff (coin) Ð→ coin ≠ coin Ð→ Head ≠
coin Ð→ Head ≠ Tail Ð→ True).

In this case is not possible to transform these linearizing narrowing derivations into rewrite
derivations (since diff (x)Ð→ x ≠ x↛, as well as diff (t)Ð→ t ≠ t↛, for all t ∈ T (C,V)).

This example also shows that linearizing narrowing can have longer derivations w.r.t. (stan-
dard) narrowing since diff (x) ε↝ x ≠ x /↝.

36

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Definition 3.8 (Variance on LNT) Let t ∈ LT (Σ,V) and T1, T2 ∈ LNTt. We say that T1 and
T2 are local variants if there exists a renaming ρ, such that T1ρ = T2.

Two linearizing narrowing trees are local variants if and only if they have the same root t and
their steps are equal up to renaming of variables which do not occur in t.

Note: Since the actual choices of local variable names is completely irrelevant, from now on,
with an abuse of notation, by LNT we will actually indicate its quotient w.r.t. local
variance. Moreover all linearizing narrowing trees presented in the sequel will actually
be an arbitrary representative of an equivalence class.

Definition 3.9 (Order on LNT) Let denote with paths(T) the set of all the paths of T start-
ing from the root.

Given T1, T2 ∈ LNT, we define T1 ⊑ T2 if and only if paths(T1) ⊆ paths(T2).
Given a set T ⊆ LNTt, the least upper bound ⊔T is the tree whose paths are ⋃T ∈T paths(T).

Dually for the greatest lower bound ⊓.

It is worth noticing that, for any t ∈ LT (Σ,V), LNTt is a complete lattice.
By Point 2 of Definition 3.6, paths is injective, thus it establishes an order preserving iso-

morphism (LNTt, ⊑) −−−−−−−−−→Ð→←←Ð−−−−−−−−−
paths

prfxtree
(paths(LNTt), ⊆), where the adjoint of paths, prfxtree, builds

a tree from a set of paths (by merging all common prefixes). So we have two isomorphic rep-
resentations of linearizing narrowing trees and in the sequel we can simply write d ∈ T for
d ∈ paths(T). The set representation is very convenient for technical definitions, while for
examples the tree representation is better suited.

Definition 3.10 (Linearizing Narrowing Tree of a term) Let t ∈ LT (Σ,V) and R ∈ RΣ.
A linearizing narrowing tree NJt in RK for term t in TRS R is

NJt in RK ∶= {d ∈ LNTt ∣d uses rules from R}

Intuitively, NJt in RK denotes the linearizing narrowing behavior of linear term t in TRS R
modulo local variance (i.e., local variables are up to renaming).

Example 3.11
Given the following TRS R:

m(H (x))→ d(x,K(x)) d(C (x),K (E(y)))→ f(x,x, y, y)
f (A, x , y ,F)→ B(y, y) f (E(x), y ,A,A)→K(E(y))

The linearizing narrowing tree NJm(x) in RK is:

m(x) d(x1,K(x2)) f(x3, x4, y, y1)
B(y, y2)

{x3/A,y1/F}
{y2/y}

K(E(x4)){x3/E(x5),

y/A,y1/A}

ε

{x1/C(x3),
x2/E(y)}

{x4/x3, y1/y}

{x/H(x1)}

{x2/x1}

Linearizing narrowing trees “capture” the behavioral TRS equivalence ≈ss since the TRS
equivalence induced by N coincides with ≈ss .

Theorem 3.12 Let R1 ,R2 ∈ RΣ. Then R1 ≈ss R2 if and only if, for every t ∈ LT (Σ,V),
NJt in R1 K = NJt in R2 K.

37

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Even more, from linearizing narrowing trees we can completely reconstruct the small-step
rewriting behavior. To formally prove this we need to introduce the following operation to build
rewriting derivations from linearizing narrowing derivations.

Definition 3.13 Let R ∈ RΣ and d = s0

θ1Ô⇒
σ1

s1

θ2Ô⇒
σ2

. . .
θnÔ⇒
σn

sn be a linearizing narrowing deriva-

tion. The linear narrowing to rewriting operator is defined as

⌊d⌋ ∶= {t0 Ð→ t1 . . .Ð→ tk ∣
ξ is an R-normalized substitution, 0 ≤ k ≤ n,
η = θ1 ↑ σ1 ↑ . . . ↑ θk ↑ σk, ∀0 ≤ i ≤ k. ti = siηξ

} (3.3)

We abuse notation and lift ⌊⋅⌋ also to sets as ⌊S⌋ ∶= ⋃d∈S⌊d⌋.

Intuitively, this operation takes a prefix d of a linear narrowing derivation and, if it can simulta-
neously satisfy all its computed answers and delinearizators, with substitution η, then it builds
a rewriting sequence by applying ηξ to all terms of d, for any R-normalized substitution ξ.

Theorem 3.14 Let R ∈ RΣ and t ∈ LT (Σ,V). Then BssJt in RK = ⌊NJt in RK⌋.

Hence NJt inRK is indeed a condensed representation of BssJt inRK. Now the next step for the
construction of a semantics with the desired characteristics is to achieve compositionality. To
do so we should look for a denotation for most general terms f (Ð→xn) (of a TRS R) which could
be used to retrieve, with suitable semantic operations, NJt in RK for any t ∈ LT (Σ,V).

3.2 Operational denotations of TRSs

The operational denotation of a TRS can be defined as an interpretation giving meaning to the
defined symbols over linearizing narrowing trees “modulo variance”. Essentially we define the
semantics of each function in D over formal parameters (whose names are actually irrelevant).

Definition 3.15 (Interpretations) Let MGTD ∶= {f (Ð→xn) ∣ f/n ∈ D, Ð→xn are distinct variables}.
Two functions I, J ∶MGTD → LNTΣ are (global) variants, denoted by I ≅ J , if for each

π ∈MGTD there exists a renaming ρ such that (I(π))ρ = J(πρ).
An interpretation is a function I ∶MGTD → LNTΣ modulo variance2 such that, for every

π ∈MGTD, I(π) is a linearizing narrowing tree for π.
The semantic domain IΣ (or simply I when clear from the context) is the set of all inter-

pretations ordered by the pointwise extension of ⊑.

The partial order on I formalizes the evolution of the computation process. (I, ⊑) is a complete
lattice and its least upper bound and greatest lower bound are the pointwise extension of ⊔
and ⊓, respectively. In the sequel we abuse the notations for LNT for I as well. The bottom
element of I is �I ∶= λπ.{π} (for each π ∈ MGTD). In the sequel we abuse the notations for
LNT for I as well.

It is important to note that MGTD (modulo variance) has the same cardinality of D (and
is then finite) and thus each interpretation is a finite collection (of possibly infinite elements).
Hence we will often explicitly write interpretations by cases, like

I ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π1 ↦ T1

⋮
πn ↦ Tn

for

I(π1) ∶= T1

⋮
I(πn) ∶= Tn

2i.e., a family of elements of LNTΣ, indexed by MGTD, modulo variance.

38

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

In the following, any I ∈ I is implicitly considered as an arbitrary function MGT → LNT
obtained by choosing an arbitrary representative of the elements of I in the equivalence class
generated by ≅. Actually, in the sequel, all the operators that we use on I are also independent
of the choice of the representative. Therefore, we can define any operator on I in terms of its
counterpart defined on functions MGT → LNT.

Moreover, we also implicitly assume that the application of an interpretation I to a specific
π ∈ MGT, denoted by I(π), is the application I(π) of any representative I of I which is

defined exactly on π. For example if I = (λf (x , y). f(x, y) {x/c(z)}ÔÔÔ⇒
ε

c(y, z))/
≅

then I(f(u, v)) =

f(u, v) {u/c(z)}ÔÔÔ⇒
ε

c(v, z).
While defined symbols have to be interpreted according to TRS rules, constructor symbols

are meant to be interpreted as themselves. In order to treat them as a generic case of function
application, we assume that any interpretation I is also implicitly extended on constructors as
I(c(Ð→xn)) ∶= c(Ð→xn). In the sequel we will use ϕ when we refer to a generic (either constructor
or defined) symbol, whence f for defined symbols and c for constructor ones.

Definition 3.16 (Operational denotation of TRSs) Let R ∈ RΣ. Then the operational
denotation of R is

OJRK ∶= (λf (Ð→xn). NJf(Ð→xn) in RK)/
≅

(3.4)

Intuitively, O collects the linearizing narrowing tree of each f (Ð→xn) in R, abstracting from the
particular choice of the variable names Ð→xn.

Example 3.17
The operational denotation of TRS R of Example 1.1 is:

OJRK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coin ↦ coin

Tail

Head

ε
εε
ε

x ≠ y ↦ x ≠ y

True

True

{x/Tail , y/Head}

ε
{x/Head , y/Tail}ε

diff (x)↦ diff (x) x ≠ x1

True

True

ε
{x1/x}

{x/Head , x1/Tail}

ε
{x/Tail , x1/Head}ε

The (small-step) rewriting behavior of any term t can be “reconstructed” from OJRK by
means of the following evaluation function E .

3.2.1 Evaluation Function

When we have the interpretation with the linearizing narrowing tree of f (Ð→xn), we can easily

reconstruct the rewriting behavior of any f (Ð→tn) for (renamed apart)
Ð→
tn ∈ LT (C,V), by sim-

ply replacing the most general bindings along a derivation with constructor terms ti (clearly

39

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

pruning branches with inconsistent instances). However, with non-constructor nested terms
things gets more involved. In practice we have an interleaving of parts of all sub-derivations
corresponding to the evaluation of arguments, leaded by the derivation of f (Ð→xn). Intuitively the
basic building block of our proposal is the definition of a semantics embedding operation that
mimics parameter passing. Namely taken two linearizing narrowing trees T1, T2 and a variable
x of (the root of) T1, the tree-embedding operation T1[x/T2] transforms T1 by modifying its
steps accordingly to steps of T2, which provides specific actual parameter values to x in places
where x in T1 was originally “freely” instantiated.

In order to define T1[x/T2] we need to introduce an auxiliary (technical) relation which
works on single derivations. Note that in the sequel, to shorten definitions, when we adorn
linearizing narrowing derivations or trees with a term s, like ds or Ts, we mean that the head
of ds or the root of Ts is term s.

Definition 3.18 Let π ∈ LT (Σ,V), dg be a linearizing narrowing derivation with head g and
Tb ∈ LNTb. Then dg;π;Tb ⊢ d is the least relation that satisfies the rules:

dt;π;Ts ⊢ tµ
µ =←ÐÐmgu(s, π) (3.5a)

dt;π;Ts′ ⊢ d
dt;π;Ts ⊢ tµ

θ,qÔ⇒
σ
d
µ =←ÐÐmgu(s, π) , s θ,pÔ⇒

σ
Ts′ ∈ Ts, ∃q . s∣p = tµ∣q (3.5b)

dt0 ;π0;Ts0 ⊢ dt1 . . . dtn ;πn;Tsn ⊢ dtn+1

(t θ,pÔ⇒
σ
dt0);π;Ts0 ⊢ tµ

θ′,pÔ⇒
σ′′

dtn+1

µ =←ÐÐmgu(s0, π),
θ′ =←ÐÐmgu(tµ, tθ)↾var(tµ) ,
{x1/y1, . . . , xn/yn} = proj (var(πθ), σ),
Ts1 , . . . , Tsn ≪ Ts0 ,
π0 = πθ, ∀i ∈ {1, . . . , n} πi = π0{yi/xi},
∀j ∈ {0, . . . , n} Ð→vj =Ð→var(sj),
σ′′ = (σ ∪

n

⋃
i=1

Ð→vi /Ð→v0)↾var(tn+1)

(3.5c)

where

• proj (V,σ) = {x/y ∈ σ ∣ y ∈ V },
• ←ÐÐmgu(t, s) is an mgu θ of t and s such that ∀x ∈ var(t) xθ /∈ V.

Broadly speaking, the role of π in a statement dt;π;Ts ⊢ d is that of the “parameter pattern”
responsible to constrain “freely” instantiated formal parameters in dt to the actual parameters
values which are actually “coming” from Ts. More specifically, Rules 3.5 govern the inlaying of
the steps of a linearizing narrowing tree Ts into a derivation dt. In particular

• The axiom 3.5a stops any further possible inlaying.
• The rule 3.5b considers the case when we want to proceed with an inner linearizing

narrowing step employing a step coming from Ts. In this case t plays the role of context
and the inner step is done accordingly to the one chosen from Ts. Note that is it possible
to do the step only if exists q such that s∣p = tµ∣q. Namely the defined symbol, over which
the step is done, needs to be “visible” in tµ.

• The rule 3.5c considers the case when we want to do an outermost step. First, the step
has to be compatible with the way we instantiated t so far, namely exists mgu(tµ, tθ).
Then, we choose from σ only the delinearizers that depend on the variable from which
we started the embedding. Each of these delinearizer comes from the linearization of a
multiple occurrence of a same variable z. Thus, for each rename z′ of z we sequentially
embed into z′ a (possibly different) sub-derivation coming from a renamed apart variant of

40

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Ts. Note that if we would not have multiple occurrences of z (i.e., proj (var(πθ), σ) = ∅),
the rule would simply be

dt0 ;π0;Ts0 ⊢ dt1
(t θ,pÔ⇒

σ
dt0);π;Ts0 ⊢ tµ

θ′,pÔ⇒
σ
dt1

µ =←ÐÐmgu(s0, π) ,
θ′ =←ÐÐmgu(tµ, tθ)↾var(tµ) ,
π0 = πθ

Note that in Rules 3.5 we use a selected form of mgu (i.e., ←ÐÐmgu which does not rename variables
in the left argument) in order to avoid to change variable names along the way.

Example 3.19
Consider OJRK of Example 3.17. Let Tcoin ∶= OJRK(coin) and d0 ∶= diff (x) εÔÔ⇒

{x1/x}
d1 ∈

OJRK(diff (x)), where d1 = x ≠ x1

{x/Head,x1/Tail}ÔÔÔÔÔÔÔ⇒
ε

True.

Let us build a proof tree to find a derivation d such that d0;x;Tcoin ⊢ d. We have to start
with an application of rule (3.5c) which (in this case) has two premises since the delinearizator
{x1/x} in the first step of d0 has one binding. The first subtree which embeds the Head branch
of Tcoin into x is

(3.5a)
True; Head ; Head ⊢ True

(3.5c)
d1;x; Head ⊢ Head ≠ x1

{x1/Tail}ÔÔÔ⇒
ε

True
(3.5b)

d1;x;Tcoin ⊢ coin ≠ x1
εÔ⇒
ε

Head ≠ x1

{x1/Tail}ÔÔÔ⇒
ε

True

´¹¹¸¹¹¶
d3

(PT)

Now we can build the full proof tree (by building the second subtree which, starting from d3,
can finish to embed the Tail branch of Tcoin into x1).

(PT)

(3.5a)
True; Tail ; Tail ⊢ True

(3.5c)
d2 ;x1; Tail ⊢ Head ≠ Tail

εÔ⇒
ε

True
(3.5b)

d2 ;x1;Tcoin ⊢ Head ≠ coin
εÔ⇒
ε

Head ≠ Tail
εÔ⇒
ε

True
(3.5c)

d3 ;x1;Tcoin ⊢ coin ≠ coin
εÔ⇒
ε

Head ≠ coin
εÔ⇒
ε

Head ≠ Tail
εÔ⇒
ε

True
(3.5c)

d ;x;Tcoin ⊢ diff (coin) εÔ⇒
ε

coin ≠ coin
εÔ⇒
ε

Head ≠ coin
εÔ⇒
ε

Head ≠ Tail
εÔ⇒
ε

True

We have analogous proof tree for d ;x;Tcoin ⊢ diff (coin) εÔ⇒
ε

coin ≠ coin
εÔ⇒
ε

Tail ≠ coin
εÔ⇒
ε

Tail ≠
Head

εÔ⇒
ε

True. In total we have ten possible proof trees, four of whom that have derivations

which reach True.

Tree-embedding is simply defined by collecting all contributes of d;x;T ⊢ d′.

Definition 3.20 (Tree-embedding) Let Tg ∈ LNTg and Tb ∈ LNTg such that

1. Tg and Tb do not share any local variable;
2. x is a variable which does not occur in Tb.

Then the tree-embedding operation Tg[x/Tb] is defined as Tg[x/Tb] ∶= {d ∣dg ∈ Tg, dg;x;Tb ⊢ d}.

41

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

The evaluation function is obtained by repeated application of tree-embedding.

Definition 3.21 (Evaluation Function) Let t ∈ LT (Σ,V) and I ∈ I. The evaluation of t
w.r.t. I , denoted E JtKI , is defined by induction on the structure of t as follows:

E JxKI ∶= x (3.6a)

E Jϕ(Ð→tn)KI ∶= I(ϕ(Ð→xn))[x1/E Jt1KI] . . . [xn/E JtnKI] Ð→xn renamed apart distinct (3.6b)

Example 3.22
Consider OJRK of Example 3.17. The evaluation of E Jdiff (coin)KOJRK is

E Jdiff (coin)KOJRK = [by Equation (3.6b) with n = 1]

OJRK(diff (x))[x/E JcoinKOJRK] = [by Equation (3.6b) with n = 0]

OJRK(diff (x))[x/OJRK(coin)]

Then, by completing what shown in Example 3.19, we have that E Jdiff (coin)KOJRK is

diff (coin)

diff (Head)

Head ≠ Head

εε
ε

ε

coin ≠ coin

Head ≠ coin

Head ≠ Head

ε
ε

Head ≠ Tail True
ε
εε

ε

ε
ε

Tail ≠ coin

Tail ≠ Head True
ε
ε

ε
ε

Tail ≠ Tailε
ε

ε
ε

coin ≠ Head

Head ≠ Head

ε
ε

Tail ≠ Head True
ε
εε

ε

ε
ε

coin ≠ Tail

Head ≠ Tail True
ε
ε

ε
ε

Tail ≠ Tailε
ε

ε
ε

ε
ε

diff (Tail)

Tail ≠ Tail

εε

ε
ε

3.2.2 Properties of the TRS operational denotation

The following result states formally that from OJRK the evaluation function E can reconstruct
the linearizing narrowing tree of any linear term.

Theorem 3.23 For all R ∈ RΣ and t ∈ LT (Σ,V), E JtKOJRK = NJt in RK.

A straightforward consequence of Theorems 3.23 and 3.12 is

Corollary 3.24 For all R1 , R2 ∈ RΣ, OJR1 K = OJR2 K if and only if R1 ≈ss R2 .

Thus semantics O is fully abstract w.r.t. ≈ss .

3.3 Fixpoint denotations of TRSs

We will now define a bottom-up goal-independent denotation which is equivalent to O and thus
(by Corollary 3.24) adequate to characterize the small-step behavior for TRSs. It is defined
as the fixpoint of an abstract immediate operator over interpretations P JRK. This operator
is essentially given in terms of evaluation E of right hand sides of rules. Namely, given an
interpretation I , it essentially consists in:

42

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

• building an initial linearizing narrowing step for a most general term according to rules’
left hand side;

• applying the evaluation operator E to the right hand side of the rule over I .

Definition 3.25 Let R ∈ RΣ. P JRK∶ I → I is defined, for all f ∈ D (of arity n), as

P JRKI (f(Ð→xn)) ∶=⊔{f(Ð→xn)
θÔ⇒
σ
E Jr′KI ∣

f(Ð→xn)θ → r ≪R,
(r′, σ) = lin(r)

} (3.7)

Moreover we define our fixpoint semantics as F JRK ∶= lfp P JRK.

F JRK is well defined since P JRK is continuous.

Proposition 3.26 Let R ∈ RΣ. Then P JRK is continuous.

Example 3.27
Let us consider the (artificial) TRS R ∶= {g → f(h(a)), h(a) → h(b), f (h(b)) → a} taken from
[1], which is neither constructor-based nor confluent. The evaluation of the right hand sides
of all rules is E Jf(h(a))K�I = �I(f(x))[x/E Jh(a)K�I] = f(x)[x/h(a)] = f(h(a)); E Jh(b)K�I =
h(x)[x/b] = h(b) and E JaK�I = a. Hence

I1 ∶= P JRK↑1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g ↦ g f(h(a))ε
ε

h(x)↦ h(x) h(b){x/a}

ε

f(x)↦ f(x) a
{x/h(b)}

ε

In the next iteration we have to evaluate E Jf(h(a))KI1
= I1(f(x))[x/E Jh(a)KI1

]. Since

E Jh(a)KI1
= I1(h(x))[x/E JaKI1

] = h(a) εÔ⇒
ε
h(b) we have

P JRK↑2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g ↦ g f(h(a)) f(h(b)) aε
ε

ε
ε

ε
ε

h(x)↦ h(x) h(b){x/a}

ε

f(x)↦ f(x) a
{x/h(b)}

ε

Now, since P JRK↑3 = P JRK↑2, this is also the fixpoint F JRK.

Example 3.28
Consider TRS R of Example 1.1. The iterates of P JRK are

P JRK↑1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coin ↦ coin

Tail

Head

ε
εε
ε

x ≠ y ↦ x ≠ y

True

True

{x/Tail , y/Head}

ε
{x/Head , y/Tail}ε

diff (x)↦ diff (x) x ≠ x1
ε

{x1/x}

43

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

P JRK↑2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

coin ↦ coin

Tail

Head

ε
εε
ε

x ≠ y ↦ x ≠ y

True

True

{x/Tail , y/Head}

ε
{x/Head , y/Tail}ε

diff (x)↦ diff (x) x ≠ x1

True

True

ε
{x1/x}

{x/Head , x1/Tail}

ε
{x/Tail , x1/Head}ε

Now, since P JRK↑3 = P JRK↑2, this is also the fixpoint F JRK.

Example 3.29
Let us consider the TRS R ∶= {zeros → ∶(0, zeros), take(0 , x) → nil , take(s(n), ∶(y , z))) →
∶(y, take(n, z)), f (n)→ take(n, zeros)}. The first two iterates of P JRK are

P JRK↑1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zeros ↦ zeros ∶(0, zeros)ε
ε

take(x1, y1)↦ take(x1 , y1)

nil

{
x

1
/0
}

ε

∶(y0, take(x0, z))

{x1/s(x0),y1/ ∶(y0 , z)}
ε

f(x0)↦ f(x0) take(x0, zeros)ε
ε

P JRK↑2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zeros ↦ zeros ∶(0, zeros) ∶(0, ∶(0, zeros))ε
ε

ε
ε

take(x2, y2)↦ take(x2 , y2)

nil

{
x

2
/0
}

ε

∶(y1, take(x1, z1))

∶(y1,nil)
ε
ε

∶(y1, ∶(y0, take(x0, z0)))

{x1/s(x0),z1/ ∶(y0 , z0)}
ε

{x2/s(x1),y2/ ∶(y1 , z1)}ε

f(x1)↦ f(x1)

take(x1, zeros)

nil

{x
1
/0
}

ε

take(x1, ∶(0, zeros))

nil

{x
1
/0
}

ε

∶(0, take(x0, zeros))

{x1/s(x0)}
ε

ε
ε

εε

Note that, to highlight the construction order of the various subtrees, we used indices in variables
names that respect the order of introduction and boxed the subtrees which correspond to the

44

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

previous iterate. By continuing the computation of the iterates, we obtain

F JRK =

⎧⎪⎪⎨⎪⎪⎩

zeros ↦ zeros ∶(0, zeros) ∶(0, ∶(0, zeros))ε
ε

ε
ε

take(x, y)↦ take(x , y)

nil

{
x
/0
}

ε

∶(y′, take(x′, z))

∶(y′,nil)
ε
ε

∶(y′, ∶(y′′, take(x′′, z′)))

{x ′/s(x ′′),z/ ∶(y ′′, z ′)}
ε

{x/s(x ′),y/ ∶(y ′, z)}
ε

f(x)↦ f(x)

take(x, zeros)

nil

{x
/0
}

ε

take(x, ∶(0, zeros))

nil

{x/
0}

ε

take(x, ∶(0, ∶(0, zeros)))
εε

∶(0, take(x′, zeros))

∶(0,nil)

{x
′ /0
}

ε

∶(0, take(x′′, ∶(0, zeros)))

{x ′
/s(x ′′
)}

ε

{x/s(x ′)}
ε

ε
ε

εε

We can observe that, since terms in R are linear, the linearizing narrowing trees have just
ε as delinearizers and actually they are isomorphic to full narrowing trees.

3.3.1 Properties of the TRS fixpoint denotation

The top-down goal-dependent denotation O and the bottom-up goal-independent denotation
F are actually equivalent.

Theorem 3.30 (Equivalence of denotations) Let R ∈ RΣ. Then OJRK = F JRK.

A straightforward consequence of Theorem 3.30 and Corollary 3.24 is

Corollary 3.31 (Correctness and full abstraction of F) Let R1 ,R2 ∈ RΣ. Then
F JR1 K = F JR2 K if and only if R1 ≈ss R2 .

4 Conclusions

We have presented a condensed compositional bottom-up semantics for the full class of term
rewriting systems which is fully abstract w.r.t. the small-step behavior of rewriting.

We are going to use this semantics to define, by abstraction, a condensed bottom-up se-
mantics for the full class of term rewriting systems which is fully abstract w.r.t. the big-step
behavior of rewriting and thus suitable for semantic-based program manipulation tools. Actu-
ally we have developed a first proposal of such a semantics (by following this approach) but

45

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

restricted to the class of left-linear TRSs. We already used it to develop a semantics-based
automatic specification synthesis prototype [6] which is giving promising results.

However, we believe that our notion of linearized narrowing which, differently from nar-
rowing, represents faithfully the small-step behavior of rewriting (in a compact way), could be
interesting for other applications as well.

References

[1] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and J. Iborra. A Compact Fixpoint Semantics
for Term Rewriting Systems. Theoretical Computer Science, 411(37):3348–3371, 2010. 1, 3.27

[2] M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract Diagnosis of Functional
Programs. In M. Leuschel, editor, Logic Based Program Synthesis and Transformation – 12th
International Workshop, LOPSTR 2002, Revised Selected Papers, volume 2664 of Lecture Notes
in Computer Science, pages 1–16, Berlin, 2003. Springer-Verlag. 1

[3] G. Bacci. An Abstract Interpretation Framework for Semantics and Diagnosis of Lazy Functional-
Logic Languages. PhD thesis, Dipartimento di matematica e Informatica, Università di Udine,
2011. 1

[4] G. Bacci and M. Comini. A Fully-Abstract Condensed Goal-Independent Bottom-Up Fixpoint
Modeling of the Behaviour of First Order Curry. Submitted for Publication., 2012. 1

[5] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract Diagnosis. Journal of Logic Program-
ming, 39(1-3):43–93, 1999. 1

[6] M. Comini and L. Torella. TRSynth: a Tool for Automatic Inference of Term Equivalence in
Left-linear Term Rewriting Systems. In E. Albert and S.-C. Mu, editors, PEPM ’13, Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages 67–70.
Acm, 2013. 4

[7] J.-M. Hullot. Canonical Forms and Unification. In Proceedings of the 5th International Conference
on Automated Deduction, volume 87 of Lecture Notes in Computer Science, pages 318–334, Berlin,
1980. Springer-Verlag. 1, 2, 3.1, 3.1.1

[8] A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable Algebra in
Engineering, Communication and Computing, 5:213–253, 1994. 10.1007/BF01190830. 3.1.1, A.1,
A.2

[9] H. R. Nielson and F. Nielson. Infinitary Control Flow Analysis: a Collecting Semantics for Closure
Analysis. In Symposium on Principles of Programming Languages, pages 332–345, 1997. 1

[10] TeReSe, editor. Term Rewriting Systems. Cambridge University Press, Cambridge, UK, 2003. 2

A Technical Proofs

Proof of Proposition 3.2.

Point 1 Implication ⇐Ô is straightforward. We prove Ô⇒ by reduction to absurd. Suppose
that R1 ≈ss R2 and R1 is not a variant of R2 . Then there is at least one rule which is
different in R1 w.r.t. R2 (or vice versa). Thus, by Equation (3.1), we can have rewriting
steps which employ that rule in BssJR1 K which cannot be in BssJR2 K which is absurd.

Point 2 Similarly to previous point, but restricting to initial linear terms.

In the sequel we use the following results.

46

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

Proposition A.1 ([8]) Suppose we have substitutions θ, ρ, ρ′ and sets A, B of variables such
that (B − dom(θ)) ∪ range(θ) ⊆ A. If ρ↾A = ρ′↾A then (θρ)↾A = (θρ′)↾A.

Proposition A.2 ([8]) Let R be a TRS and suppose we have substitutions θ, ρ, ρ′ and sets
A, B of variables such that the following conditions are satisfied:

ρ↾A R-normalized θρ′↾A = ρ↾A B ⊆ (A − dom(θ)) ∪ range(θ↾A)

Then ρ′↾B is also R-normalized.

Proof of Theorem 3.5. We prove the thesis by induction on the length of the rewriting derivation
from t0 to tn. The case of length zero is straightforward.

Suppose t0 Ð→ t1 Ð→ . . . Ð→ tn is a rewriting derivation of length n > 0. We may assume,
without loss of generality, that var(l) ∩ V = ∅. We have (s0η0)∣p = s0∣pη0 = τ l for some
substitution τ with dom(τ) ⊆ var(l). Let µ ∶= τ ∪ η0. We have s0∣pµ = s0∣pη0 = lτ = lµ, so s0∣p
and l are unifiable. Let θ′1 ∶= mgu(s0∣p, l) and θ1 ∶= θ′1↾var(s0∣p). Clearly dom(θ1) ∪ range(θ1) ⊆
var(s0∣p) ∪ var(l). Moreover there exists a substitution ψ such that

θ1ψ = µ (1)

Now let (s1, σ1) ∶= lin(s0[rθ′1]p). By Definition 3.4

s0

θ1,pÔÔ⇒
σ1, l→r

s1 (2)

Let V1 ∶= (V − dom(θ1)) ∪ range(θ1) ∪ dom(σ1) and

η1 ∶= (σ1ψ)↾V1
(3)

Clearly dom(η1) ⊆ V1. We have var(s1) = dom(σ1)∪ var(s0[rθ1]p) ⊆ dom(σ1)∪ var(s0[lθ1]p) =
dom(σ1) ∪ var(s0θ1) ⊆ V1. Therefore var(s1) ∪ dom(θ1) ⊆ V1. By (1) and (3) we have s1σ1η1 =
s1σ1ψ = s0[rθ1]pψ = s0[r]pθ1ψ = s0[r]pµ = s0µ[rµ]p. Since V ∩ dom(τ) = ∅, we have

µ↾V = η0↾V . (4)

Likewise µ↾var(r) = η0↾var(r). Hence s0µ[rµ]p = s0η0[rτ]p = t0[rτ]p = t1. Thus

t1 = s1σ1η1. (5)

Next we have to verify that (θ1η1)↾V = η0↾V . By (3) and by Proposition A.1 we have that
(θ1η1)↾V = (θ1σ1ψ)↾V . By (1) and (4), (θ1η1)↾V = (θ1σ1ψ)↾V . Since dom(σ1) ∉ V , we have
that (θ1σ1ψ)↾V = (θ1ψ)↾V = µ↾V = η0↾V . Thus

(θ1η1)↾V = η0↾V . (6)

Now we show that η1 is R-normalized. Since dom(η1) ⊆ V1, it suffices to show that η1↾V1
is

R-normalized. Let B ∶= (V −dom(θ1))∪range(θ1↾V). Proposition A.2 yields the normalization
of η1↾B . Recall that range(θ1) ⊆ var(s0∣p) ∪ var(l). Let x ∈ range(θ1); since θ1 is idempotent,
clearly x ∉ dom(θ1). If x ∈ var(s0∣p) ⊆ V then x ∈ V − dom(θ1) ⊆ B. If x ∈ var(l) then
x ∈ var(lθ1) = var(s0∣pθ1) thus x ∈ range(θ1↾V) ⊆ B. Thus range(θ1) ⊆ B and then V1 =
B ∪ dom(σ1). By this and (3), since η1↾B is R-normalized, η1↾V1

is R-normalized as well.

47

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

By inductive hypothesis we have a term sn and substitutions θ′, σ′ and ηn such that

s1
θ′Ô⇒
σ′

∗ sn, (7)

tn = snσ′ηn, (8)

(θ′ηn)↾V1
= η1↾V1

, (9)

ηn is R-normalized. (10)

Moreover, s1
θ′ÔÔ⇒

σ′,R

∗ sn and t1 Ð→
R

∗ tn apply the same rewrite rules at the same positions.

Let θ ∶= θ1θ
′ and σ = σ1σ

′. By (2) and (7) we obtain s0
θÔ⇒
σ

∗ sn. By construction this

narrowing derivation makes use of the same rewriting rules at the same positions as the rewriting
derivation t0 Ð→

R

∗ tn. It remains to show that (θηn)↾V = η0↾V . By (9) and Proposition A.1,

(θ1θ
′ηn)↾V = (θ1η1)↾V . Therefore, by (6), (θηn)↾V = (θ1η1)↾V = η0↾V .

Proof of Theorem 3.12. We prove Ô⇒ by reduction to absurd. Suppose that R1 ≈ss R2 and
∃t ∈ LT (Σ,V). NJt in R1 K ≠ NJt in R2 K. This means that there is at least one derivation which
belongs to NJt in R1 K and not to NJt in R2 K (or vice versa). Hence, there is at least a rule
which is not in common to the two programs. Thus R1 /≈ss R2 which is absurd.

We prove ⇐Ô by reduction to absurd. Suppose that ∀t ∈ LT (Σ,V). NJt inR1 K = NJt inR2 K
and R1 /≈ss R2 . Then there is at least one rule which is different in R1 w.r.t. R2 . Thus, by
Equation (3.1) and Theorem 3.5, NJt in R1 K ≠ NJt in R2 K which is absurd.

Proof of Theorem 3.14. We prove the two inclusions separately. Inclusion ⊇ is immediate by
Definition 3.13.

Inclusion ⊆ is proved by reduction to absurd. Assume that there exists a derivation t0 Ð→
R

∗ tn

such that it does not belong to ⌊NJt0 inRK⌋. Then, by Theorem 3.5, taken η0 = ε, there exists a

relaxed narrowing derivation of the form s0

θ1Ô⇒
σ1

. . .
θnÔ⇒
σn

sn. Note that, for each i ∈ {1..n}, θi and

σi are just renaming, ηi = ε and ti = siσi . . . σ0. Let η ∶= η0 = ε. It is easy to see that there exists
η′ such that η′ = θ1 ↑ σ1 ↑ . . . ↑ θn ↑ σn. By Definition 3.13, there exists a rewriting derivation
t′0 Ð→
R

∗ t′n where t′i = siη′ for each i ∈ {1..n}. Moreover, dom(σk) /∈ var(si) for each k ∈ {i+ 1..n}
and θi = (σj)↾dom(θi) or θi = (σj)↾dom(θi) for some j. Hence siη

′ = siσi . . . σ0. Thus t′i = ti for
each i ∈ {1..n} which is absurd.

Lemma A.3 Let R a TRS, x ∈ V, and t, s ∈ T (Σ,V) such that they do not share variables and
x ∈ t, x /∈ s. Then, NJt in RK[x/NJs in RK] = NJt{x/s} in RK

Proof . It is sufficient to prove that, given dt ∈ NJt in RK and Ts = NJs in RK, if dt;x;Ts ⊢ d
then d ∈ NJt{x/s} in RK. To this aim we will prove a stronger result: let π ∈ T (C,V), let
Ts = NJs in RK, and for any dt ∈ NJt in RK such that dt;π;Ts ⊢ d then d ∈ NJtη in RK where
η =←ÐÐmgu(s, π). We proceed by structural induction on the proof tree.

rule 3.5a) straightforward.

rule 3.5b) By inductive hypothesis dt;π;Ts′ ⊢ dtµ ⇐⇒ dtµ ∈ NJtµ inRK. If it exists dtµ, then

tµ∣p = s∣p. Moreover, ∃µ′ such that µ′ = ←ÐÐmgu(s′, π) and tµ′∣p = s′∣p. Thus, tµ
θ,pÔ⇒
σ
dtµ ∈

NJtµ in RK.

48

A Semantics Modeling the Small-Step Behavior of Rewriting Comini and Torella

rule 3.5c) By inductive hypothesis we have that dt0 ;π0;Ts0 ⊢ dt1 ⇐⇒ dt1 ∈ NJtµ0 in

RK, . . . , dtn ;πn;Tsn ⊢ dtn+1 ⇐⇒ dtn+1 ∈ NJtµn in RK, where µ0 = ←ÐÐmgu(s0, π0), . . . , µn =
←ÐÐmgu(sn, πn). We know that exists a linearizing narrowing step t

θ,pÔ⇒
σ

t0 where θ2 =
mgu(t∣p, l), θ = θ2↾var(t), (s, σ) = lin(rθ2), tµ = t[s]p. We need to prove that it exists the

linearizing narrowing step tµ
θ′,pÔ⇒
σ′′

tn+1. Since it exists mgu(t∣p, l) and mgu(tµ, tθ), then

it exists θ3 such that θ3 = mgu((tµ)∣p, l). Now let θ′ ∶= θ3↾var(tµ) and (s′, σ′) = lin(rθ3),
then tµ[s′]p = t̄. Let us observe that t1 = t0µ0, t2 = t0µ0µ1, . . . , tn+1 = t0µ0 . . . µn where
µ0 =←ÐÐmgu(s0, π0), . . . , µn =←ÐÐmgu(sn, πn). Let µ∗ = µ0 . . . µn, then tn+1 = t0µ∗ = tµ∗[sµ∗]p =
tµ[sµ∗]p = t̄.

Proof of Theorem 3.23. We proceed by structural induction on term t

t = x Immediate by Equation (3.6a).

t = ϕ(
Ð→
tn)

E Jϕ(Ð→tn)KOJRK =
[by Equation (3.6b)]

= OJRK(ϕ(Ð→xn))[x1/E Jt1KOJRK] . . . [xn/E JtnKOJRK] =
[by inductive hypothesis]

= NJϕ(Ð→xn) in RK[x1/NJt1 in RK] . . . [xn/NJtn in RK] =
[by Lemma A.3]

= NJϕ(Ð→tn) in RK

Proof of Proposition 3.26. It is straightforward to prove that P JP K is monotone and finitary,
thus it is continuous.

Proof of Theorem 3.30. We prove the two inclusions separately.

⊑) Let indicate with Ok all derivations of OJRK with length ≤ k. by induction we prove that
∀k Ok ⊑ P JRK↑k.

k = 0) immediate.

k > 0) ∀d ∈ Ok, we have that d = f(x) θ,ΛÔ⇒
σ
d′ such that (by Theorem 3.23) d′t ∈ E JtKOk−1

.

Thus, by monotonicity of E , we have that d′t ∈ E JtKP JRK↑k−1. By the definition of P ,
d ∈ P JP KP JRK↑k−1 = P JRK↑k

Thus, by Proposition 3.26, OJRK = ⊔k≥0Ok ⊑ ⊔k≥0P JRK↑k = F JRK.

⊒) We need to prove that f(Ð→xn)
θ,ΛÔ⇒
σ
E Jr′KOJRK ⊑ NJf(Ð→xn) inRK. By Theorem 3.23, E Jr′KOJRK

is a linearizing narrowing tree. Since θ = mgu(f(Ð→xn, l))↾Ð→xn and (σ, r′) = lin(r), we can

conclude that f(Ð→xn)
θ,ΛÔ⇒
σ
E Jr′KOJRK ⊑ NJf(Ð→xn) in RK.

49

	Introduction
	Preliminaries
	Modeling the small-step rewriting behavior
	The semantic domain
	Linearizing Narrowing

	Operational denotations of TRSs
	Evaluation Function
	Properties of the TRS operational denotation

	Fixpoint denotations of TRSs
	Properties of the TRS fixpoint denotation

	Conclusions
	Technical Proofs

