Utilization and Validation of hydraulic formula to optimize pipeline diameter in waterworks

\sim Downsizing of water facilities to prepare for decrease in water demand due to population decline~
Yoshinori Shishido ${ }^{1 *}$, Koichi Sato ${ }^{1}$, Haruka Utada ${ }^{1}$ and Kazunori Nakai ${ }^{1 * \dagger}$
${ }^{1}$ Yokohama Waterworks Bureau
155 Mamedo-cho, Kohoku-ku, Yokohama-shi, Kanagawa, 222-0032, Japan .
Nakai.Kazunori@jica.go.jp

Abstract

In order to optimize and downsize pipeline diameter to prepare for water demand decrease in the future, we conducted validation to apply the Hazen-Williams formula to existing pipeline. We focused on the flow velocity coefficient (hereafter referred to as, "C") and validated it through a pipeline network simulation and field experiments. As a result, the present value for C that is uniformly adopted in Japan should be modified for existing pipeline. Furthermore, variance in C due to the differences between the inner linings of pipeline was verified. We evaluated the effectiveness of downsizing of pipeline diameter with the result of this study, and we confirmed that this study contributes to optimizing and downsizing pipeline diameter.

1 Introduction

Yokohama Waterworks Bureau (hereafter referred to as, "YWB") has expanded its waterworks facilities to meet the increasing water demand due to population growth, but it is predicted that population growth will shift towards decline in the near future. A downward tendency of water demand has continued since the peak of $1,600,000 \mathrm{~m} 3$ in 1992, and water demand in 2015 was $1,220,000 \mathrm{~m} 3$, almost the same as 44 years ago in 1971. Whereas, pipeline length has been extended more than doubled from $4,063 \mathrm{~km}$ in 1971 to $9,252 \mathrm{~km}$ in 2015 due to expanding residential areas. Regarding pipeline diameter, flow velocity of most pipelines in Yokohama is under $0.4 \mathrm{~m} / \mathrm{s}$, which is considered the minimum velocity to prevent formation of sediments.

[^0]If the present pipeline length and diameters are retained in the future in spite of a decrease in water demand, stagnant water and turbid water will form due to the decreased flow velocity, and necessity to regularly discharge them will increase the cost of maintenance. Furthermore, YWB continually replaces old pipes with earthquake-resistant pipes that have an assumed lifespan of 80 years. Therefore, future decrease in water demand needs to be taken into consideration when selecting pipeline diameters, otherwise, the discrepancy between actual pipeline diameter and optimal pipeline diameter for water demand will become larger. At the same time, YWB is also required to keep necessary pipeline diameter to meet present water demand. We conducted validation to apply the Hazen-Williams formula to existing pipeline as one of the solutions for this difficult issue.

Figure 1 Transition of population served, pipeline length and maximum daily water supply

2 Problem with practical application of the Hazen-Williams formula to actual pipeline

YWB's pipeline network simulation uses the Hazen-Williams formula to select the size of the pipeline. The Hazen-Williams formula is an equation describing the relationship between flow rate (Q) and friction head loss (hf), and is calculated based on the conditions of internal pipeline diameter (D), length (L) and flow velocity coefficient (C).

$$
\begin{equation*}
\mathrm{Q}=0.27853 \cdot \mathrm{C} \cdot \mathrm{D}^{2.63} \cdot\left(\frac{h}{L}\right)^{0.54} \tag{1}
\end{equation*}
$$

Only friction head loss is considered in the Hazen-Williams formula, but there are pipes with bends and valves in the water pipeline, so other cause of head loss should be taken into consideration.

Still, if we consider all possible sources of head loss individually, the calculation becomes complicated. For this reason, we use C that includes total head loss. In Japan, $\mathrm{C}=110$ is uniformly recommended without consideration of differences between new and existing pipes and other conditions, and YWB has also adopted $\mathrm{C}=110$ to calculate pipeline diameter. However, the actual value for C should be different based on pipe's age and inner linings. We believe that we must adopt the value for C that is closer to the actual value to optimize pipe diameter. We assume that the actual value for C of existing mortar lining (hereafter referred to as "mortar") is more than 120 and actual value for C of existing fusion-bonded epoxy coating (hereafter referred to as "epoxy") is more than 140, judged from the reference material for evaluating C of new pipeline [1] .

3 Validation of flow velocity coefficient

Experiments and evaluations have been conducted on C of new pipeline, but there are few data available on C of existing pipes. However, for practical use, it is necessary to consider the value of C in regard to the aging of water pipes. Therefore, we conducted field experiments and pipeline network simulation with the existing pipes to validate C .

We adopt mortar lining for pipes over diameter 100 mm in Yokohama at present, so we firstly verified C of existing mortar-lined pipes. Next, we verified C of fusion-bonded epoxy coating that is considered to have higher C than that of the mortar lining.

Figure 2 Field experiments to calculate C

3.1 Existing mortar lining

3.1.1 Field experiments with existing pipe

Field experiments was conducted to verify C of existing mortar lining. Experimenting method involved measuring head loss at point A and point B , and calculating flow velocity coefficient of each flow rate with Hazen-Williams formula under the condition of constant flow rate in pipeline of internal diameter (d) including vent pipes. Pipeline data: DIP material, diameter 150 mm , aged 29 years and 33 years, length 241 m and 242 m , flow rate $20 \sim 60 \mathrm{~m} 3 / \mathrm{h}$ and $50 \sim 80 \mathrm{~m} 3 / \mathrm{h}$. We measured water pressure at point A and point B while discharging water from fire hydrant at flow rate $20 \sim 60 \mathrm{~m} 3 / \mathrm{h}$ and $50 \sim 80 \mathrm{~m} 3 / \mathrm{h}$, and calculated C . The results are shown in Tables 1 and 2.

Utilization and Validation of Hydraulic Formula to Optimize Pipeline Diameter．．．Y．Shishido et al．

Table 1 Results of first experiment

flow rate $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	flow velocity $(\mathrm{m} / \mathrm{s})$	head loss (m) 【average】	C 【average】
20	0.332	0.287	141.5
40	0.664	0.859	136.3
60	0.996	2.118	123.7

Table 2 Results of second experiment

flow rate $\left(\mathrm{m}^{3} / \mathrm{h}\right)$			
flow velocity $(\mathrm{m} / \mathrm{s})$	head $\operatorname{loss}(\mathrm{m})$	【average】 C 【average】	
50	0.83	1.2	136.7
60	0.996	2.0	124.6
70	1.161	2.5	131.0
80	1.327	3.1	133.5

3．1．2 A comparison between simulation value of network analysis and actual value

Firstly，we installed water pressure gauges at five points（i－v）in four gravity flow areas．
i ．Trunk pipelines directly connected from a water reservoir
ii ．Pipeline of diameter 200 mm or 300 mm that has enough flow rate
iii．Two pipelines of diameter 100 mm or 150 mm that have enough flow rate
iv．Pipeline in low water pressure area
Next，we calculated the simulation value under the situation of $\mathrm{C}=110$ and 120 at water pressure measurement point．We adopted hourly average（ $\mathrm{m} 3 /$ hour）of daily average（ $\mathrm{m} 3 /$ day ）of water demand for past year as water demand for the condition of simulation．

Finally，we compared water pressure between simulation value and actual value．The results are shown below in Figures 3 and 4.

Figure 3 Diameter 200mm or 300 mm in Kanazawa gravity area

Figure 4 Diameter 200 mm or 300 mm in Ushikubo gravity area

3.1.3 Summary of the results

The results of field experiments show that C is more than 125 under the condition of flow rate from $0.3 \mathrm{~m} / \mathrm{sec}$ to $1.3 \mathrm{~m} / \mathrm{sec}$ in mortar-lined pipe with an age of approximately 30 years. The result of the comparison between simulation value and actual value shows that they are almost same. Therefore, we can adopt $\mathrm{C}=120$ instead of $\mathrm{C}=110$ for C of existing mortar-lined pipes.

3.2 Existing fusion-bonded epoxy coating

Existing fusion-bonded epoxy coating is not used for pipelines with diameters over 100 mm in Yokohama at present. However, C of existing fusion-bonded epoxy coating is expected to be higher than that of mortar lining, so we verified the C to promote downsizing.

3.2.1 Field experiments with existing pipes

We conducted the field experiments to verify C of existing fusion-bonded epoxy coating. Experimenting method involved measuring head loss at point A and point B , and calculating flow velocity coefficient of each flow rate with Hazen-Williams formula under the condition of constant flow rate in a pipeline of internal diameter (d) including vent pipes. Pipeline data: DIP material, diameter 150 mm , aged 23 years, length 230 m , flow rate $20-60 \mathrm{~m} 3 / \mathrm{h}$ and $60-100 \mathrm{~m} 3 / \mathrm{h}$. We measured water pressure at point A and point B while discharging water from fire hydrant at flow rate of 20$60 \mathrm{~m} 3 / \mathrm{h}$ and $60-100 \mathrm{~m} 3 / \mathrm{h}$, and calculated C. The results are shown in Tables 3 and 4.

Table 3 Results of first experiment

flow rate $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	flow velocity $(\mathrm{m} / \mathrm{s})$	head $\operatorname{loss}(\mathrm{m})$ 【average】	C 【average】
20	0.302	0.177	146.1
40	0.604	0.659	135.1
60	0.907	1.467	128.4

Table 4 Results of second experiment

flow rate $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	flow velocity $(\mathrm{m} / \mathrm{s})$ head $\operatorname{loss}(\mathrm{m})$ 【average】 C 【average】		
60	0.907	1.2	143.8
70	1.058	1.7	138.9
80	1.209	2.1	141.0
90	1.360	2.5	144.3
100	1.511	3.2	140.6

3．2．2 A comparison between calculated head loss and actual head loss

We calculated head loss with the reference material＂Water distribution pipes＂published by Osaka city water works technology association and compared it with actual values．The results are shown in Table 5

Table 5 Comparison between calculated value and actual value

3.2.3 Summary of results

The results of field experiments show that C is more than 140 under the condition of flow rate from $0.3 \mathrm{~m} / \mathrm{sec}$ to $1.5 \mathrm{~m} / \mathrm{sec}$ in fusion-bonded epoxy coating pipe with an age of approximately 23 years. Furthermore, we compared actual head loss with calculated head loss under the situation of $\mathrm{C}=110$ and $\mathrm{C}=140$ with flow rate from $60 \mathrm{~m} 3 / \mathrm{h}$ to $100 \mathrm{~m} 3 / \mathrm{h}$. The results show that total head loss is overestimated with $C=110$, and total head loss with $C=140$ is closer to the actual value. Influence of vent pipes on total head loss was clarified to be small.

These results tell us that we should use $\mathrm{C}=140$ instead of the present 110 , as doing so will help optimize pipeline scales as well as drive forward downsizing. We also confirmed that C of fusionbonded epoxy coating is superior to that of mortar lining.

In addition to C, epoxy is superior in terms of effective cross-sectional area because of its thinner coating compared to mortar. Therefore, if C is assumed to be 140 , it is estimated that $1,000 \mathrm{~m}$ of mortar pipeline with diameter of $\varphi 150 \mathrm{~mm}$ could be reduced to $\varphi 100 \mathrm{~mm}$ with epoxy for 160 m out of the $1,000 \mathrm{~m}$. Furthermore, we calculated the head loss, assuming the replacement from mortar of diameter $\varphi 150 \mathrm{~mm}$ with flow velocity $0.2 \mathrm{~m} / \mathrm{s}$ to epoxy of diameter $\varphi 100 \mathrm{~mm}$ as an example. The rise of head loss was small. Thus, we would be able to downsize the pipelines that already have excessive water pressure. The rise of head loss is shown in Table 6.

Table 6 Rise of head loss

in case of the flow rate is fixed	before downsizing	Afer downsizing
diameter, inner lining	$\varphi 150 \mathrm{~mm}$ mortar	$\varphi 100 \mathrm{~mm}$ epoxy
flow velocity	$0.2 \mathrm{~m} / \mathrm{s}$	$0.47 \mathrm{~m} / \mathrm{s}$
head loss (per 1 km)	$0.55 \mathrm{~m}(0.0055 \mathrm{Mpa})$	$1.99 \mathrm{~m}(0.02 \mathrm{Mpa})$

4 Conclusion

We conducted validation of C using the Hazen-Williams formula to select the optimal sizes of pipe diameter. As a result, we found that the current generally accepted $\mathrm{C}=110$ tends to overestimate total head loss, while validity of $\mathrm{C}=120$ for mortar and $\mathrm{C}=140$ for epoxy were verified. The variance in C due to the difference of inner lining was also verified. Thus, when existing old mortar pipe is replaced with new earthquake-resistant pipe, fusion-bonded epoxy coating should be selected due to its superiority in C and effective cross-sectional area for downsizing. However, the cost of material is more expensive than that of mortar lining. We will verify the effectiveness of downsizing and construction cost to decide which inner lining we should select. In the case of Yokohama where there is already an excess of water pressure, so most pipelines can be downsized from the present diameter to a smaller one.

References

[1]Japan Ductile Iron Pipe Association, The coating and lining,2007,pp. 17
[2]Osaka city waterworks technology association, Water distribution pipe,3.4head loss

[^0]: * Masterminded EasyChair and created the first stable version of this document
 ${ }^{\dagger}$ Created the first draft of this document

