
Distributed Control Synthesis∗

Doron Peled1 and Sven Schewe2

1 Department of Computer Science
Bar Ilan University, Ramat Gan 52900, Israel

doron.peled@gmail.com
2 Department of Computer Science

University of Liverpool, Liverpool, UK
sven.schewe@liverpool.ac.uk

Abstract

Synthesis of control for distributed systems is considered to be an undecidable prob-
lem, under the assumption that control is performed by supervisors synchronizing with
the original processes and selectively blocking or supporting the enabled transitions. We
described a decidable distributed control problem, where additional communications are
allowed between supervisors. In this way, we synthesize control for invariants, reachabil-
ity, repeated reachability and parity conditions. Special attention is given to reducing the
number of added communications.

1 Introduction

The use of formal methods such as testing, model checking and deductive verification, can
help to significantly diminish the number of coding and design errors in developed software.
An even more appealing idea is to automatically synthesize correct-by-construction systems
from their formal specifications. This goal is hard to achieve due to complexity issues: the
synthesis of distributed algorithms is shown to be undecidable [23]. Synthesis algorithms for
distributed systems would take as input a formal specification for the behavior of the system and
an architecture that reflects the communication allowed between the components of the system.
Limiting the architecture of the system [23, 14, 15, 5, 29, 30], one can achieve decidability for
synthesis for some architectures, like chains or rings.

A related problem, which we address in this paper, is to automatically design control to
distributed systems [25, 26, 34]. Synthesis is achieved in an incremental way: an already
existing distributed system is modified to satisfy an additional property. Controlling the system
is done by selectively blocking transitions. Ideally, local decisions can be taken by the processes
themselves, or, equivalently, by local supervisors—one per process—that control the processes
and synchronize with them. Unfortunately, undecidability results exists also for the synthesis
of distributed control [33, 32]. Undecidability occurs even for simple invariant properties such
as execution according to priorities [6].

Observing carefully the assumptions in the undecidability results of [23, 33, 32], one re-
quirement that can be relaxed is the ability of the processes to exchange messages. We still
require the basic algorithm to have a particular set of processes, variables shared between them
in a predefined way, including the prescribed communication network. However, we allow addi-
tional communication through messages or temporary process interactions to be used in order
to achieve controllability. The use of such additional messages should be minimized, leaving
the basic computation as prescribed.

∗The research was funded by the Israeli Science Foundation (ISF) grant 1252/09 and by the EPSRC grant
EP/H046623/1.

1

Distributed Control Synthesis Doron Peled and Sven Schewe

When allowing additional interaction, at the limit, all processes may interact to decide
globally on the execution of each transition. This reduces the problem to a sequential control
problem, which is simple for finite state systems. The efficiency of this method depends on the
amount of additional synchronization needed to enforce the desired property.

The method we use to distribute the control is based on knowledge [4, 18]. In a distributed
system, the knowledge of a process includes all properties that hold in all states consistent with
the local view of the process. It reflects the limited visibility of processes about the situation
in other processes. The definition of knowledge is quite subtle, as it involves some assumptions
about the view of a process. Indeed, in order to make a distributed control decision, a process
(or its supervisor process) must make a choice that is good for all possible global states that
are consistent with its local view. As process knowledge may not be sufficient, interaction
between processes may be used to acquire the joint knowledge of several processes. The process
knowledge can be model checked.

Knowledge based control synthesis [18, 1, 2, 6] restricts the executions of the system. The
information gathered during the model checking stage is used as a basis for a program trans-
formation that controls the execution of the system by adding constraints on the enabledness
of transitions. This does not produce new program executions or deadlocks and, consequently,
preserves all stuttering closed [21] linear temporal logic properties of the system [16] when no
fairness is assumed.

In previous works [11, 12, 20], we presented a method to enforce a global invariant property
on a distributed system. We extend this framework here to impose additional control objectives:
reachability, repeated reachability and parity conditions. In particular, the control objectives
that we are addressing share the property that, for sequential synthesis, the controller requires
no additional memory.

2 Preliminaries

We choose Petri Nets as our model because of the intuitive and concise representation offered
by them. But the method and algorithms developed extend to other models, such as transition
systems, communicating automata, etc.

Definition 2.1. A (1-safe) Petri Net N is a tuple (P, T,E, s0) where

• P is a finite set of places,

• the states are defined as S = 2P where s0 ∈ S is the initial state,

• T is a finite set of transitions, and

• E ⊆ (P × T) ∪ (T × P) is a bipartite relation between the places and the transitions.

For a transition t ∈ T , we define the set of input places •t as {p ∈ P | (p, t) ∈ E}, and output
places t• as {p ∈ P | (t, p) ∈ E}.

Definition 2.2. A transition t is enabled in a state s, denoted s[t〉, if •t ⊆ s and t•∩ s ⊆• t.
A state s is in deadlock if there is no enabled transition from it.

Definition 2.3. A transition t can be fired (or executed) from state s to state s′, denoted by
s[t〉s′, when t is enabled at s. Then, s′ = (s \• t) ∪ t•.

2

Distributed Control Synthesis Doron Peled and Sven Schewe

p7p3

p1 p2

p4

p6p5

a

c

b

d

Figure 1: A Petri Net

Definition 2.4. Two transitions t1 and t2 are dependent if (•t1 ∪ t1•) ∩ (•t2 ∪ t2•) 6= ∅. Let
D ⊆ T × T be the dependence relation. Two transitions are independent if they are not
dependent.

Transitions are visualized as lines, places as circles, and the relation E is represented using
arrows. In Figure 1, there are places p1, p2, . . . , p7 and transitions a, b, c, d. We depict a state
by putting full circles, called tokens, inside the places of that state. In the example in Figure 1,
the initial state s0 is {p1, p2, p7}. The transitions that are enabled from the initial state are a
and b. If we fire transition a from the initial state, the tokens from p1 and p7 will be removed,
and a token will be placed in p3. In this Petri Net, all transitions are dependent on each other,
since they all involve the place p7. Removing p7, as in Figure 2, makes both a and c become
independent from both b and d.

Definition 2.5. An execution of a Petri Net N is a maximal (i.e., it cannot be extended)
alternating sequence of states and transitions s0t1s1t2s2 . . ., where s0 is the initial state, such
that, for each states si in the sequence, si[ti+1〉si+1. We denote these executions by exec(N).

For convenience, we sometimes use as executions just the sequence of states, or just the
sequence of transitions, as will be clear from the context. A state is reachable in a Petri Net if
it appears on at least one of its executions. We denote the reachable states of a Petri Net N
by reach(N).

We use places also as state predicates. As usual, we write s |= pi iff pi ∈ s and extend this
in the standard way to Boolean combinations on state predicates. For a state s, we denote by
ϕs the formula that is a conjunction of the places in s and the negated places not in s. Thus,
ϕs is satisfied exactly by the state s. For the Petri Net in Figure 1, the initial state s0 satisfies
ϕs0 = p1 ∧ p2 ∧¬p3 ∧¬p4 ∧¬p5 ∧¬p6 ∧ p7. For a set of states Q ⊆ S, let ϕQ =

∨

s∈Q ϕs, or any
logically equivalent propositional formula, be a characterizing formula of Q. As usual in logic,
when ϕQ and ϕQ′ characterize sets of states Q and Q′, respectively, then Q ⊆ Q′ exactly when
ϕQ → ϕQ′ .

An invariant [3] of N is a subset of the states Q ⊆ 2S ; a net N satisfies the invariant Q
if reach(N) ⊆ Q. A generalized invariant of N is a set of pairs I ⊆ S × T ; a net N satisfies
I if, whenever s[t〉 for a reachable s, then (s, t) ∈ I. This covers the above simple case of an
invariant by pairing up every state that appears in Q with all transitions T .

Definition 2.6. An execution of a Petri Net N restricted with respect to a set I ⊆ S × T ,
denoted execI(N), is a maximal set of executions s0t1s1t2s2 . . . ∈ exec(N) such that, s0 is the
initial state, for each states si in the sequence, si[ti+1〉si+1, and furthermore (si, ti+1) ∈ I. The
set of states reachable in execI(N) is denoted reachI(N).

3

Distributed Control Synthesis Doron Peled and Sven Schewe

p3

p1 p2

p4

p6p5

a

c

b

d

Figure 2: A Petri Nets with priorities a≪ d and b≪ c

Definition 2.7. For a set of executions X, let pref (X) be the set of prefixes (including full
executions) of X.

Denote the last state of a finite prefix h of an execution by last(h).

Lemma 2.8. reachI(N) ⊆ reach(N) and execI(N) ⊆ pref (exec(N)).

As an example of a property we may want to enforce, consider prioritized executions.

Definition 2.9. A Petri Net with priorities is a pair (N,≪) with N a Petri Net and ≪ a
partial order relation among the transitions T of N .

Let I≪ = {(s, t) | s[t〉 and ∀t′ ∈ T s[t′〉 → t′ ≪ t}. The set of prioritized executions
execI≪(N) of (N,≪) is the set of executions restricted to I≪. The executions of the Petri
Net M in Figure 2 (when the priorities a ≪ d and b ≪ c are not taken into account) include
abcd, acbd, bacd, badc, etc. However, the prioritized executions of (M,≪) are the same as the
executions of the Net N in Figure 1.

Definition 2.10. A process π of a Petri Net N is a subset of the transitions T .

We will represent the separation of transitions of a Petri Net into processes using dotted lines.
We assume a given set of processes C that covers all transitions of the net, i.e.,

⋃

π∈C π = T .
A transition can belong to several processes, e.g., when it models a synchronization between
processes. Let proc(t) = {π | t ∈ π} be the set of processes to which t belongs. For the Petri
Net in Figure 1, there are two executions: acbd and bdac. There are two processes: the left
process πl = {a, c} and the right process πr = {b, d}.

The neighborhood of a set of processes Π includes all places that are either inputs or outputs
to transitions of Π.

Definition 2.11. The neighborhood ngb(π) of a process π is the set of places
⋃

t∈π(
•t ∪ t•).

For a set of processes Π ⊆ C, ngb(Π) =
⋃

π∈Π ngb(π).

A set of processes Π owns the places in their neighborhood that can gain or lose a token by
a transition t only if t is exclusively in Π.

Definition 2.12. The set of places owned by a set of processes (including a singleton process)
Π, denoted own(Π), is ngb(Π) \ ngb(C \Π).

When a notation refers to a set of processes Π, we will often replace writing the singleton
process set {π} by writing π, e.g., we write own(π). Note that ngb(Π1)∪ngb(Π2) = ngb(Π1∪Π2),
while own(Π1) ∪ own(Π2) ⊆ own(Π1 ∪ Π2). The neighborhood of process πl in the Petri Net

4

Distributed Control Synthesis Doron Peled and Sven Schewe

of Figure 1 is {p1, p3, p5, p7}. Place p7 is neither owned by πl, nor by πr, but it is owned by
{πl, πr}. It belongs to the neighborhood of both processes and acts as a semaphore. It can
be captured by the execution of a or of b, guaranteeing that ¬(p3 ∧ p4) is an invariant of the
system.

Our goal is to control the system to satisfy a generalized invariant by restricting some of its
transitions from some of the states. The setting of the control problem may impose that only
part of the transitions, ct(T) ⊆ T , called controllable transitions, can be selectively supported
by the processors that contain it. (It blocks if no processor supports it.) The other transitions,
uc(T) = T \ ct(T), are uncontrollable. Note that we may be at some state where either some
uncontrollable transitions, or all enabled transitions, violate the generalized invariant. Being in
such states is therefore “too late”; part of the controlling task is to avoid reaching such states.

In control theory, the transformation that takes a system and allows blocking some tran-
sitions adds a supervisor process [24], which is usually an automaton that runs synchronously
with the controlled system. This (finite state) automaton observes the controlled system, pro-
gresses according to the transitions it observes, and blocks some of the enabled transitions,
depending on its current state. In a similar way, in distributed control [34, 26, 25], for each
process we assign such a supervisor, which changes its states each time the process it supervises
makes a transition, or when a visible transition of another process (e.g., through the change of
shared variables) is executed. Based on its states, the supervisor allows (supports) transitions
of the controlled process. In a disjunctive control architecture [34], if no supervisor supports
an, otherwise enabled, transition, it cannot execute and is thus blocked. Such a supervisor can
be amalgamated, through a transformation, into the code of the controlled process. In order to
capture this for Petri Nets, without a complicated transition splitting transformation, we use
an extended model, as defined below. In particular, it allows adding enabling conditions and
variable transformation to capture the encoding of the local supervision of the processes. It
would also allow encoding additional asynchronous supervision in our solution.

Definition 2.13. An extended Petri Net [13] is a Petri Net with a finite set of variables Vπ
over a finite domain per each process π ∈ Π. In addition, a transition t can be augmented with
a predicate ent on the variables Vt = ∪π∈proc(t)Vπ and a transformation function ft(Vt). In
order for t to fire, ent must hold in addition to the basic Petri Net enabling condition on the
input and output places of t. When t fires, in addition to the usual changes to the tokens, the
variables Vt are updated according to the transformation ft.

We transform a Petri Net N and a generalized invariant I into an extended Petri Net N ′

that allows only the executions of N controlled to satisfy I.

Definition 2.14. A controlling transformation obeys the following conditions:

• New transitions and places can be added.

• The input and output places of the new transitions are disjoint from the existing places.

• Variables, conditions and transformations can be added to existing transitions.

• Existing transitions will remain with the same input and output places.

• It is not possible to fire from some point an infinite sequence consisting of only added
transitions.

Added transitions are grouped into new (supervisory) processes. Added variables will repre-
sent some knowledge-dependent finite memory for controlling the system, and some interprocess

5

Distributed Control Synthesis Doron Peled and Sven Schewe

communication media between the original processes and the added ones. Processes from the
original net will have disjoint sets of variables from one another. The independence between
the original transitions is preserved by the transformation, although some coordination may be
enforced indirectly through the interaction with the new supervisory processes.

Definition 2.15. Let s⌈C map a state s of the transformed version N ′ into the places of the
original version N by projecting out additional variables and places that N ′ may have on top
of the places of N . This definition is also extended to executions (as sequences of states).

This projection allows us to relate the sets of states of the original and transformed version.
Firing of a transitions added by the controlling transformation does not change s⌈C and is not
considered to violate I (the requirement that (si, ti+1) in Definition 2.6 is imposed only when
ti+1 is from the original net N). Note that our restrictions on the transformation implies that
the sets ngb(Π) and own(Π) for Π ⊆ C are not affected by the transformation. Furthermore,
albeit the rich structure of extended Petri Nets, our control transformation will allow a finite
state control for a finite state system.

Definition 2.16. Two executions σ and σ′, viewed as sequences of states, are equivalent up
to stuttering [21] when, by replacing any finite adjacent repetition of the same state by a single
occurrence in both σ or σ′, we obtain the same sequence. Let stutcl(Γ) be the stuttering closure
of a set Γ of sequences, i.e., all sequences that are stuttering equivalent to some sequences in Γ.

Lemma 2.17. A controlling transformation produces an extended Petri Net N ′ from N such
that exec(N ′)⌈C⊆ pref (stutcl(exec(N))).

The controlling transformation may introduce new deadlocks, hence the lemma above asserts
about the prefixes of the original executions. Of course, this is not a desirable outcome of the
control transformation, and the solutions that will be given to the distributed control problem
will circumvent it.

3 Process Knowledge and Joint Process Knowledge

The knowledge of a process at a given execution point consists of facts that hold in all global
states that are consistent with the current local view of this process. The current local view
represents the limited ability of a process to observe the global state of the system. A process
may be aware of its own local variables and shared variables in its neighborhood. Similarly, we
can define the joint knowledge of several processes, by considering their joint local view.

According to the limited observability of the processes Π, we can define an equivalence
relation ≡Π⊆ S × S (when the set of processes Π is a singleton, we can write ≡π) among the
states S of the system; if the current state is s ∈ S, then the processes Π cannot distinguish,
given their joint local view, between s and any state equivalent to it according to ≡Π. Such an
equivalence relation is the basis of the definition of knowledge [4].

Definition 3.1. The processes Π (jointly) know a property ψ in a state s, denoted s |= KΠψ,
if, for all s′ such that s ≡Π s′, we have that s′ |= ψ.

In the Petri Nets model, the equivalence relation ≡Π can be defined by restricting first each
state to a part of a state. Then, states that share the same part are considered equivalent.
There are several possibilities to restrict the part of a state that is associated with a subset
of the processes Π. We will give two possibilities for such a restriction. The first one is that
of local information, which takes the part of the state that includes the neighborhood of the

6

Distributed Control Synthesis Doron Peled and Sven Schewe

processes Π. This Petri Nets definition corresponds, in general systems, to the variables that
can be read or written by the processes Π. The second such restriction is that of local state
(different names were chosen only to make a distinction), based on restricting states to the
places that the processes Π own. This corresponds, in general systems, to the variables that
only the processes Π, and no other processes, can change (write).

Definition 3.2. The local information of a set of processes Π of a Petri Net N in a state s is
s⌈Π= s ∩ nbg(Π).

In the Petri Net in Figure 1, the local information of πl in any state s consists of the
restriction of s to the places {p1, p3, p5, p7}. In the depicted initial state, the local information
is {p1, p7}.

Definition 3.3. The local state of a set of processes Π of a Petri Net N in a state s is
s⌊Π= s ∩ own(Π).

It is always the case that s⌊Π⊆ s⌈Π. The local state of πl in the initial state of Figure 1 is
{p1}.

Lemma 3.4. If π 6∈ Π then s⌊Π∪{π} is the (disjoint) union of s⌊Π and s⌈π∩own(Π ∪ {π}).

In the following definitions, we can often use either the local information or the local state.
When this is the case, we will use s|Π instead of either s⌈Π or s⌊Π.

Definition 3.5. Let Π ⊆ C be a set of processes. Define an equivalence relation ≡Π⊆
reach(N)× reach(N) such that s ≡Π s′ when s|Π = s′|Π.

As s|Π can stand for either s⌈Π or s⌊Π, this gives two different equivalence relations. When
it is important to distinguish between them, we denote the one based on “⌈” as ≡w

Π (weak
equivalence) and the one based on “⌊” as ≡s

Π (strong equivalence).

Lemma 3.6. If t ∈ π and s ≡w
π s′ then s[t〉 if, and only if, s′[t〉.

That is, the enabledness of a transition depends only on the local information of a process
that contains it. This does not hold when we replace ≡w

π by ≡s
π. In the Prioritized Petri Net in

Figure 1, e.g., we have that {p1, p2, p7} ≡w
πl

{p1, p4, p7}, since πl has the same local information
{p1, p7} in both states. The state {p1, p4} is not equivalent to either of these states. On the
other hand, these three states are equivalent according to ≡s

πl
(p7 is not in own(πl)).

Corresponding with the two equivalence relations of Definition 3.5, we distinguish between
knowledge based on strong equivalence ≡s

Π (and hence on local states), denoted Ks
Πϕ and

knowledge based on weak equivalence ≡w
Π (and hence local information), denoted Kw

Πϕ. The
knowledge based on the local state (resp. local information) is called strong (resp. weak) knowl-
edge. Since the local information determines the local state (while multiple local states may
have the same local information), we have Ks

Πϕ → Kw
Πϕ. Consequently, we may know more

under weak knowledge.
The motivation for the different definitions of equivalence and, subsequently, the different

definitions of knowledge is as follows. In order to make choices (to support or block a transition)
that take into account knowledge based on local information, a process, or a set of processes,
needs to have some guarantee that the local information will not be changed by other processes
while it is collecting information from the processes or making the decision. For a single process,
this may be achieved by the underlying hardware. But it is unreasonable to require such a
guarantee for a set of processes that either temporary interact (interactions take time and other

7

Distributed Control Synthesis Doron Peled and Sven Schewe

processes may meanwhile progress) or send their current local view to some supervisor process
that collects views from several processes. Thus, for decisions involving a set of processes,
strong knowledge, based on the joint local state, is used instead.

The classical definition of knowledge is based on relations ≡Π over the reachable states
reachI(N). However, when using knowledge to control a system to satisfy a generalized in-
variant, one may calculate the equivalences and the knowledge based on the states reachI(N)
that appear in the executions of the original system that satisfy this generalized invariant I.
This (cyclic looking) claim is proved [2] by induction on the progress of the execution in the
controlled system: for a state already on such an execution (by the inductive assumption) the
controlled system allows firing only transitions that preserve the generalized invariant, hence is
also in reachI(N). We may need to restrict the generalized invariant I, in order not to introduce
new deadlocks. This means even fewer reachable states, which can consequently increase the
knowledge further.

One of the main challenges of using knowledge for controlling systems is that it is not always
possible to decide, based on the local (or joint) knowledge, whether or not allowing a transition
will guarantee the desired generalized invariant. One tool that can be used in this case is
to allow additional interactions between processes, or knowledge accumulation by additional
asynchronous supervisors. This will be explained later. However, before progressing to such
an expensive solution, we may also try to improve the knowledge by refining the equivalence
relation that is used in its definition.

The definitions of knowledge that we used assumes that the processes do not maintain a log
with their history. The use of knowledge with such a log, called knowledge with perfect recall [18],
is discussed in [1]. Consider an equivalence ≈π between histories that seem undistinguishable to
the process π. Two finite prefixes h, h′ of Petri Net executions will be considered equivalent for
≈π if the projection of h on transitions visible to π are the same in both h and h′. Specifically
for Petri Nets, we can define the transitions vis(π) = {t|(•t∪t•)∩ngb(π) 6= ∅} (t is dependent on
some transitions in π). In this case, the last states last(h) and last(h′) of h and h′, respectively,
are equivalent under ≡w (and hence also under ≡s). This can be shown by induction over the
length of the prefixes, based on the fact that only the transitions in vis(π) affect ngb(π) ⊇
own(π).

Definition 3.7. Let h |= ψ exactly when last(h) |= ψ. Then we define past knowledge, where
h |= Kp

πψ if, for all h′ ≈π h, h |= ψ.

In particular for properties ψ that depend only on the last state of h, the use of the history
refines the weak equivalence between states: h ≈π h′ implies last(h) ≡w

Π last(h′). To take
advantage of the refined definition of knowledge, we need somehow to distinguish local states
that have non equivalent histories. On the face of it, this seems to require unbounded memory.
However, looking deeper into the new definition of knowledge, one can observe that the following
finite construction will work [18, 1].

Definition 3.8. Let △π be the set of finite sequences of transitions that do not change the
neighborhood of π (i.e., independent with the transitions in π).

Definition 3.9. Let A = (S, s0, T) be a finite automaton representing the global states S of a
Petri Net N , including the initial state s0 ∈ S and the transitions T between them. For each
process π, we construct an automaton Aπ representing the set of states of A where the Petri
Net N can be after a given local history. The automaton Aπ has the following components:

• The set of states is 2S.

8

Distributed Control Synthesis Doron Peled and Sven Schewe

• The initial state is the set of states {s|∃µ ∈ △π s.t. s0[µ〉s}. That is, the initial state
of this automaton contains all states obtained from s0 by executing a finite number of
transitions independent of (i.e., invisible to) π.

• The transition relation is Γ
t

−→ Γ′ between two states Γ, Γ′ ∈ 2S and a transition t ∈ T
is as follows: Γ′ = {s′|∃s ∈ Γ ∃µ ∈ △π s.t., s[tµ〉s

′}. That is, a move from Γ to Γ′

corresponds to the execution of a transition t that changes the neighborhood of π followed
by transitions independent of π.

Then, one may use Kp
πψ instead of Kw

π for locally supporting transitions. (Note that
Kw

π → Kp
π.) However, the size of each such automaton (one per process π) can be exponen-

tial in the size of the global state space. Knowledge of perfect recall can be implemented by
adding a synchronized supervisor with memory (basically implementing the automaton Aπ).
It is natural to ask whether one can make an even finer distinction between states than with
knowledge of perfect recall. This is indeed possible, but at the cost of a more involved program
transformation. We may augment in our transformation the context of the interprocess commu-
nication between processes with additional transformation, that would implement the support
for additional knowledge. Such a transformation can, e.g., be based on Gossip Automata [19],
providing the most recent past local view of any other process.

We henceforth use knowledge formulas combined with Boolean operators and propositions.
For a detailed syntactic and semantic description of logics with knowledge one can refer, e.g.,
to [4]. Once s |= KΠψ is defined, ψ can also be a knowledge property, hence s |= KΠ′KΠψ
(knowledge about knowledge) is also defined, though the finite-state representation described
above only applies to past knowledge used in outermost knowledge operators.

Lemma 3.10. If s |= KΠϕ and s ≡Π s′, then s′ |= KΠϕ.

Lemma 3.11. Knowledge is monotonic with respect to the set of observing processes: if Π′ ⊆ Π
then KΠ′ϕ→ KΠϕ.

Lemma 3.12. Given that s |= KΠϕ in some basic Petri Net N , then s |= KΠϕ also in a
transformed version N ′.

Enforcing prioritized executions in a completely distributed way may be impossible. In
Figure 2, a and c belong to the left process πl, and b and d belong to the right process πr, with
no interaction between the processes. The left process πl, upon having a token in p1, cannot
locally decide whether to execute a; the priorities dictate that a can be executed if d is not
enabled, since a has a lower priority than d. But cannot distinguish between the cases where
πr has a token in p2, p4, or p6.

In the Prioritized Petri Net in Figure 2, e.g., we have that {p1, p2} ≡w
πl

{p1, p4}, since in
both states πl has the same local information {p1}. In the state {p1, p2}, a is a maximal priority
enabled transition (incomparable with b), while in {p1, p4}, a is not maximal anymore, as we
have that a ≪ d, and both a and d are now enabled. In the initial state the local information
(and also the local state) of πl is {p1}. Thus, πl does not have enough knowledge to support
any transition since {p1, p2} ≡w

πl
{p2, p3}). Similarly, the local information of πr is {p2}, which

also is not sufficient to support any transition. After they both hang on a supervisor, it has
enough information to support a or b.

9

Distributed Control Synthesis Doron Peled and Sven Schewe

4 Global Control for Invariant Properties

Before providing a solution to the distributed control problem we need to provide a solution
to the related global control problem. Some reachable states are not allowed according to the
generalized invariant. In order not to reach these states, resulting in an immediately deadlock,
we may need to avoid some transitions that lead to such states from previous states and so
forth. This is done using game theoretical search.

The game is played between a constructor, who wants to preserve the generalized invariant I
indefinitely (or reach a state that is already a deadlock in the original system N), and a spoiler,
who has the opposite goal. The game is played on the states S of a net. It starts from the
initial state s0 and ends if a deadlock state is reached (and may go on forever). In each round,
the constructor player chooses a nonempty subset of enabled transitions that must include all
enabled uncontrollable transitions. Subsequently, the spoiler chooses a transition from this set,
which is then executed. The spoiler wins as soon as she can choose a transition that violates
I, i.e., (s, t) /∈ I, while the constructor wins if this condition never holds (on an infinite run or
a finite run that ends in a deadlock).

We define an “attractor” attr(A) that contains all states in A, and all states that the spoiler
can either violate the invariant I immediately, or force to A in a single transition. A state s is
in attr(A) if one of the following conditions holds:

• s ∈ A,

• there exists an uncontrollable transition t ∈ uc(T) enabled in s with s[t〉s′ and either
s′ ∈ A, or (s, t) 6∈ I, or

• s is not a deadlock state in the Petri Net N and, for all transitions t enabled in s, such
that s[t〉s′ and (s, t) ∈ I, it holds that s′ ∈ A.

As usual, we define attrn+1(A) = attr(attrn(A)), where attr0(A) = A. Because of the
monotonicity of the attr(A) operator (with respect to set inclusion) and the finiteness of the
state space, there is a least fixpoint attr∗(A), which is attrn(A) = attrn+1(A) for some (smallest)
n.

Now, let IG = {(s, t) ∈ I | s[t〉s′ and s′ /∈ attr∗(∅)}. Let G = reachIG(N) if s0 /∈ attr∗(∅),
otherwise G = ∅. These are the “good” reachable states in the sense that they are allowed by
I and the system can be controlled to henceforth adhere to I.

Definition 4.1. Let R = {(s, t) ∈ I | ∃s′ s[t〉s′ ∧ s, s′ ∈ G} be the safe transition relation for
safety objectives.

If the initial state is good (s0 ∈ G), then the constructor can win by playing according to
R. If, on the other hand, s0 is in the attractor attr∗(∅) of the bad states, then s0 is in attrn(∅)
for some n ≤ |S|. By the definition of attrn(∅), the spoiler can force the game to attrn−1(∅) in
the next step, then to attrn−2(∅), and so forth, and thus make sure the bad states are reached
within at most n steps.

Lemma 4.2. The constructor can force a win if, and only if, s0 ∈ G.

This game can obviously be evaluated quickly on the explicit game graph, and hence in
time exponentially in the number of places. EXPTIME completeness can be demonstrated by
a simple reduction from the PEEK-G5 [31] game [11]. Deciding if the constructor can force a
win is PSPACE complete for Petri Nets with only controllable transitions [11].

10

Distributed Control Synthesis Doron Peled and Sven Schewe

Model Checking

We will use the following propositional formulas, with propositions that are the places of the
Petri Net:

• The good states G: ϕG.

• The states where a transition t is enabled: ϕen(t).

• At least one transition is enabled, i.e., there is no deadlock: ϕdf =
∨

t∈T ϕen(t).

• Transition t is allowed from the current state by the safe transition relation R: ϕgood(t)

• The local information (resp. local state) of processes Π at state s: ϕs⌈Π (resp. ϕs⌊Π).

The corresponding sets of states can easily be computed by model checking and stored in a
compact way, e.g., using BDDs. Given a Petri Net, one can perform model checking in order to
calculate whether s |= Kπψ. The processes Π know ψ at state s exactly when (ϕG ∧ϕs|Π) → ψ
is a propositional tautology. We can also check properties that include nested knowledge by
simply checking first the innermost knowledge properties and marking the states with additional
propositions for these innermost properties.

Model checking knowledge using BDDs is not the most space efficient way of checking
knowledge properties, since ϕG can be exponentially big in the size of the Petri Net. In a
(polynomial) space efficient check (which has a higher time complexity), we enumerate all
states s′ such that s ≡π s

′, check reachability of s′ using binary search, and, if reachable, check
whether s′ |= ψ. This can also be applied to nested knowledge formulas, where inner knowledge
properties are recursively reevaluated each time they are needed. The PSPACE complexity is
subsumed by the EXPTIME complexity in the general case algorithm for the safe transition
relation R.

5 Control Using Knowledge Accumulation

According to the knowledge based approach to distributed control [1, 6, 2, 25], model checking
of knowledge properties is used at a preliminary stage to determine when, depending the local
information, an enabled transition can safely be fired. In our case, this means checking s |=
Kw

π ϕgood(t) (by Lemma 3.10, the satisfaction only depends on s⌈π). At runtime, a process
supports a transition in every local information where this holds. The following support policy
uses this information at runtime:

A transition t can be fired (is enabled) in a state when, in addition to its original
enabledness condition, at least one of the processes in proc(t) supports it.

Enabled uncontrolled transitions can always be supported, as a consequence of the following
Lemma.

Lemma 5.1. If t ∈ π ∩ uc(T) and (s, t) ∈ R, then s |= Kw
π ϕgood(t).

This follows from the observation that the safe transition relation does not restrict the
uncontrolled transition.

It is possible that, in some (non deadlock) states of G, no process has enough local knowledge
to support an enabled transition and, furthermore, no uncontrollable transitions are enabled.
We may need to synchronize several processes or collect the joint knowledge of several processes

11

Distributed Control Synthesis Doron Peled and Sven Schewe

through the use of asynchronous supervisors. A process can decide, based on its current (lack
of) knowledge, whether it hangs on such supervisor by sending it its local state. A supervisor
T can make a decision, based on accumulated joined knowledge of several hung processes, that
one of them can support an enabled transition. A process hangs on a supervisor, when the
following property does not hold:

κπ =
∨

t∈π

Kp
πϕgood(t) ∨K

p
π

∨

π′ 6=π

∨

t∈π′

Kw
π′ϕgood(t)

That is, a process does neither hang on the supervisor when it has enough knowledge to support
a transition, nor if it knows that some other process has such knowledge. In the latter case, it
does not actually need to be able to determine which process has that knowledge.

To avoid the overhead of computing past knowledge, it is often cheaper (and more appro-
priate) to use weak knowledge instead. In case nested knowledge calculation is too expensive
as well, we may use the simplified knowledge formula

∨

t∈πK
w
π ϕgood(t) instead, at the expense

of making more processes hang.
The supervisor T keeps the updated joint local state of the hung processes Π. When a

process π hangs, it updates this view by transmitting to T its local information s⌈π, from which
T keeps (according to Lemma 3.4) s⌈π∩own(Π ∪ {π}). Since all processes in Π′ = Π ∪ {π} are
now hung, no other process can change these places. Then the joint knowledge Ks

Π′ϕgood(t) can
be used to support a transition t. Recall that knowledge based decisions of a single process use
weak knowledge (based on the local information), while multiple processes use strong knowledge
(i.e., based on the joint local state).

In the following cases,

1. after the decision of a process π to hang on T , other processes make changes to π’s local
information that allow it to support some transition t,

2. when a transition t with {π, π′} ⊆ proc(t) is supported by π′ while π is hung, or

3. when an uncontrollable transition executed (which is enabled even if it belongs to a hung
process),

we allow π to notify T that it has decided not to hang on it anymore. Moreover, T , which
acquired information about the hung processes Π, will have to forget the information about
the places own(Π) \ own(Π \ {π}). The ability of processes to hang on a supervisor but also
to progress independently before the supervisor has made any supporting choice requires some
protocol between the processes and the supervisor.

Instead of having a single supervisor T , we can use several supervisors T1, T2, . . . , Tk, where
each supervisor Ti takes care of a set of processes proc(Ti). These sets are pairwise disjoint and
do not necessarily cover all processes.

An effectively checkable criterion to determinte if at least one process or supervisor will be
able to provide a progress from any nondeadlock state in G is as follows:

(ϕG ∧ ϕdf) →
(

∨

t∈π∈C

Kw
π ϕgood(t) ∨

∨

i∈1...k

∨

t∈π∈proc(Ti)

Ks
proc(Ti)

ϕgood(t)

)

Lemma 5.2. Under our transformation from a Petri Net N to an extended Petri Net N ′,
exec(N ′)⌈C⊆ stutcl(execI(N)) holds.

This is proved by induction on prefixes of the execution and using Lemma 2.17.

Lemma 5.3. N ′ satisfies all stuttering invariant temporal properties of N .

12

Distributed Control Synthesis Doron Peled and Sven Schewe

Implementing the Supervisors

Processes hang on a supervisor in some arbitrary order. The supervisor needs to decide, based
on the part of the global state that it sees, whether or not there is enough information to
support some transition.

Definition 5.4. Let L = {s⌊Π×Π | s ∈ G,Π ⊆ C} denote the set of joint local states, each
paired up with the set of relevant processes (then G × C ⊆ L). We define ⊑⊆ L × L (and,
symmetrically, ⊒) as follows: q ⊑ q′ if q = (s⌊Π1

,Π1), q
′ = (s⌊Π2

,Π2) (i.e., both are part of the
same global state s) and Π1 ⊆ Π2. We say that q′ subsumes q.

Definition 5.5. The support function supp : L → 2T returns, for each q ∈ L, the transitions
that are allowed by R from all states that subsume q. Formally, supp(q) = ∩(s,C)⊒q{t | t ∈
T, (s, t) ∈ R}.

That is, for q = (s⌊Π,Π), t ∈ supp(q) iff s |= Ks
Πϕgood(t). If t ∈ supp(q) ∩ ct(T), then

the supervisor can select a process in proc(t) to support t. Obviously, when q ⊑ q′, supp(q) ⊆
supp(q′). There is no need for a supervisor to store in the domain of supp elements q = (s⌊Π,Π)
where |Π| < 2: when supp(q) 6= ∅, the process with this local state can locally support a
transition without the help of a supervisor.

Definition 5.6. Let ❀⊆ L×L be such that q ❀ q′ if q = (s⌊Π,Π) and q′ = (s⌊Π∪{π},Π∪{π}),
where π 6∈ Π (i.e., q′ extends q according to exactly one process).

The supervisor updates its view about the joint local state of the processes according to
the relation ❀: when moving from q to q′ by acquiring the relevant information about a
new processor π; consequently, its knowledge grows and it can decide to support one of the
transitions in supp(q′).

Definition 5.7. A joint local state q is minimal supporting if supp(q) 6= ∅ and, for each q′

such that q′ ❀ q, supp(q′) = ∅.

Definition 5.8. The upward closure ↑U of a subset of the joint local states U ⊆ L is {q ∈ L |
∃q′ ∈ U q′ ⊑ q}.

Lemma 5.9. A sufficient condition for restricting the domain U ⊆ L of supp for a supervisor,
without introducing new deadlocks, is that G× {C} ⊆↑U .

Thus, there is no need to calculate and store all the cases of the function supp. This suggests
the following algorithm for calculating the representation table for supp: perform DFS such that
if q ❀ q′, then q is searched before q′; backtrack when visiting q again, or when supp(q) 6= ∅.
This algorithm can be used also for multiple supervisors, when restricting the search to the
joint local states of Π ⊆ proc(Ti) for each Ti.

In order to reduce the set of local states that a supervisor needs to keep in the support table,
one may decide that a supervisor will not always support transitions as soon as the joint local
state of the hung processes allows that. This introduces further delays in decisions, where the
supervisor waits for more processes to hang even when it can already support some transitions.
On the other hand, the set of supported transitions may be larger in this case, allowing more
nondeterminism.

The size of the global state space of a Petri Net is in O(2|P |). Since we need to keep
also the joint local states, the size of the support table that we store in a supervisor, is in
O(2|P |+|C|) (which is the size of L). However, by Lemma 5.9, the representation may be much
more succinct. In theory, when there are no uncontrollable transitions, a (particularly slow)
supervisor can avoid storing the support table, and perform the PSPACE binary search each
time it needs to make a decision on a joint local state.

13

Distributed Control Synthesis Doron Peled and Sven Schewe

Control Through Temporary Interaction

The control solution suggested here makes use of (semi-)global supervisor(s) to accumulate the
joint local states of several processes, when these processes cannot locally support transitions
based on their weak (or past) knowledge. In [6], a solution based on temporary synchronization
between the processes was suggested. Preference is given to supporting transitions locally.
However, when the local knowledge is not enough to support a transition based on the local
information (including the case where it is known that some other process currently has the
knowledge), i.e., κπ does not hold, the process tries to synchronize with other processes in order
to achieve joint knowledge.

In order to put the solution in [6] in the context of the construction here, each process is,
upon reaching a state with local information where κπ does not hold, willing to be involved in
interactions according to U . In order to implement this, each process maintains, for each local
state (or, when using past knowledge, for each history), the set of joint local states that contain
its local state, and where supp supports at least one transition τ . Upon reaching that local
state, the process is willing to participate in interactions consisting of such joint local states. A
successful interaction will allow firing transitions according to supp.

The coordination is facilitated through a protocol such as the α-core. The α-core protocol,
as described in [22] contains a small error, which was automatically corrected using a genetic
programming tool in [10]. Each interaction consists of exchanging of some messages, to request
interaction, to allow it, to confirm the interaction or to cancel it, etc. Obviously, there is quite
a lot of overhead involved.

There are advantages and disadvantages to both approaches: using a (semi-)global super-
visor and using temporary synchronization. In particular, the latter is more flexible, as several
interactions may be performed in parallel, and there is no need to commit on the distribution of
processes to the semiglobal supervisors. On the other hand, it seems to require more overhead.

6 From Invariant to Reachability, Repeated Reachability,

and Parity

The restriction to invariants offers a most general strategy—the strategy to stay within the
set or good states—as a starting point. This provides us with the natural memoryless control
objective to select only transitions that lead into good states.

In this section we discuss the extension to other control goals, choosing reachability, repeated
reachability, and parity objectives as examples. Reachability is the co-problem of invariants,
where we want to reach a state from a set F of final states. For a repeated reachability (also
know as Büchi) objective, we want to reach the set F infinitely many times. Finally, for a parity
objective, we have a coloring function α : 2S 7→ N that maps the states to natural numbers. On
an infinite execution of a system, we want the maximal color that occurs infinitely many times
to be even. The representatives are chosen because they have the property to be memoryless
determined [17]: if we can control the system to accept these properties, then we can control
it using a control policy that uses no memory, i.e., that only uses the state of the system to
decide which action to support.

For the complexity, note that the representation of the winning condition—in particular of
the coloring function for parity objectives—is part of the input. Thus, we can use standard
algorithms for parity games with an upper bound on the running time that is exponential only
in the number of colors [17, 7, 27, 28].

14

Distributed Control Synthesis Doron Peled and Sven Schewe

t1p1 p2

t4
p3

t3

t5

t2

Figure 3: A Petri Net with various control goals

For controlling the system, we also need a control strategy that enforces the winning con-
dition. It is easy to see that a most general strategy is no longer guaranteed to exist when we
turn to reachability, repeated reachability, or parity control objectives.

While it suffices for safety properties to stay within the good states, this is not enough for
reachability, repeated reachability, or parity objectives. The simple example in Figure 3 shows
such a situation. In this example, only the states {p1}, {p2}, and {p3} are reachable.

Let us consider the control objectives where, for both, reachability and repeated reachability,
state {p3} is the only final state, and, for a parity game, states {p1} and {p2} are colored
by 1, while state {p3} is colored by 2. For these three control objectives, supporting only
the transitions to move the pebble to place p3 is a control strategy that satisfies the control
objective. And in neither case it is the most general, as we can allow one of the two remaining
transitions, too. We cannot, however, allow both of the remaining transitions, as this would
allow an execution of the Petri Net, where the pebble is moved back and forth between places
p1 and p2 for ever, which does not meet the control objective.

For a parity objective, it suffices to use a constructive algorithm to solve the explicit parity
game, e.g., [27]. We say that a transition t is good in a state s if, and only if, it is in accordance
with this strategy.

Definition 6.1. Let R = {(s, t) ∈ I | ∃s′ s[t〉s′ ∧ s, s′ ∈ G and t is chosen by the winning
strategy in the parity game} be the safe transition relation for parity objectives.

For reachability games, the goal for the constructor player is to reach a state in F , while the
spoiler is trying to prevent this. We define an “attractor” for this player such that any enabled
uncontrolled transition, and in particular at least one (controlled or uncontrolled) enabled
transition, brings us closer to F . Thus, a state s is in attr(A) if, for every t ∈ uc(T) and at
least one t ∈ T it holds that s[t〉 and if s[t〉s′ then s′ ∈ A. Then, attrn+1(A) = attr(attrn(A))∪A,
where attr0(A) = A, and attr∗(A) is the fixpoint.

Definition 6.2. Let G = attr∗(F)∩reach(N). We assign to every state s ⊆ P a distance d(s),
where d(s) = min{n ∈ N | s ∈ attrn(F)}. (As usual, min{∅} = ∞.) We say that a transition is
good if it leads to a reduction in this value. Let R = {(s, t) ∈ G× T | ∃s′ ∈ Gs[t〉s′ and d(s) >
d(s′)} be the safe transition relation for reachability objectives.

This can be extended slightly by introducing any order ≻ on the set 2P of states and
replacing d(s) > d(s′) by d(s) > d(s′) ∨

(

d(s) = d(s′)∧ s ≻ s′
)

, yielding a slightly more general
strategy.

We can extend these natural definitions based on the simple distance functions to re-
peated reachability. In order to guarantee that we reach F infinity often, define mattr(A) =

15

Distributed Control Synthesis Doron Peled and Sven Schewe

attr∗(attr(A)) ∩ F (note that we redefined in this section the attractor to requires at least one
step). Then mattr0(A) = A, and mattrn(A) = mattr(mattrn−1(A)), with fixpoint mattr∗(A).

Definition 6.3. Let G = attr∗(mattr∗(F)) ∩ reach(N). The distance function then becomes
d(s) = min{n ∈ N | s ∈ attrn(mattr∗(F))}. Let R = {(s, t) ∈ G× T | ∃s′ ∈ Gs[t〉s′ and d(s) >
d(s′), or s ∈ F and d(s′) 6= ∞} be the safe transition relation for repeated reachability objec-
tives.

As for reachability, this can be extended slightly by introducing any order ≻ on the set 2P

of states and replacing d(s) > d(s′) by d(s) > d(s′) ∨
(

d(s) = d(s′) ∧ s ≻ s′
)

, yielding a slightly
more general strategy.

Theorem 6.4. Checking if a transition is in R is EXPTIME complete for reachability, repeated
reachability, and parity objectives.

The inclusion follows from the complexity of solving parity games. For hardness, one can,
as in for the safety case [11], reduce from the halting problem of deterministic space bounded
Turing machines, using the Petri Net to encode the tape explicitly.

Note that, for reachability and repeated reachability, the distances can be guessed and
checked in polynomial space for Petri Nets without forced transitions. Similarly, a winning
strategy can be devised for Petri Nets without forced transitions in PSPACE: if we take a
deterministic strategy, it is a lasso—a finite path followed by a cycle. For the cycle, it is enough
to guess (and check) the maximal occurring color and the distance to the next state in the cycle
with this color. For the finite path, it is enough to guess (and check) the distance to the cycle.

Theorem 6.5. For Petri Nets without forced transitions, checking if a transition is in R is
PSPACE complete for reachability, repeated reachability, and parity objectives.

7 Reducing Process Hanging and Passing Responsibility

The introduction of a partial order ≻ on the set of processes leads to a situation, where a
smaller process w.r.t. ≻ can avoid hanging on its supervisor if the bigger processes together can
progress. Besides the advantage of reducing the number of calls to supervisors, it also allows
for providing a preference to important processes, giving them an advanced access to supervisor
support while reducing supervisor interaction for lesser processes significantly.

This makes use of nested knowledge, a generalization of the property κπ to a set of processes
κΠ

∨

t∈∪ΠK
s
Πϕgood(t).

The intuition is that a process can check whether it knows that the joint knowledge of the
other processes, besides itself, is sufficient to support a transition, i.e., Kw

π κ
C\{π}. In this case,

a process may decide not to hang, but to rather let the others provide the joint local state
needed for making the progress decision. However, this solution makes it possible that too
many processes will decide to delegate responsibility to others, without informing them. This
can lead to the introduction of a deadlock.

The use of the partial order ≻ circumvents this problem. For a supervisor Ti we use Πi =
proc(Ti) to denote the processes it supervises. For a process π, we denote with Π≻π

i = {π′ ∈
Πi | π′ ≻ π} the processes of Πi that are strictly greater than π with respect to the partial
order ≻. Naturally, a supervisor Ti would support some transition based on the knowledge of
the processes in Π≻π

i if κΠ
≻π

i holds. A process π can thus idle if it knows Kw
π

∨

Πi∈S κ
Π≻π

i . This
is used to reduce the states in which a process hangs on its supervisor.

The control strategy of the supervisors is not affected. The ordered control strategy is as
follows:

16

Distributed Control Synthesis Doron Peled and Sven Schewe

1. If a process π knows that a transition is good, then it supports it.

2. Otherwise, if a process π knows that, for some transition t ∈ π, a different process knows
that t is good, then π idles.

3. Otherwise, if a process π knows that, for some supervisor Ti, the joint knowledge of Π≻π
i

is that some t ∈ Π≻π
i is good, then π idles.

4. Otherwise, π hangs on its supervisor.

Ordered control does not introduce new deadlocks.

References

[1] A. Basu, S. Bensalem, D. Peled, J. Sifakis, Priority Scheduling of distributed Systems Based
on Model Checking, CAV 2009, Grenoble, France, Lecture Notes in Computer Science 5643,
Springer, 79-93.

[2] S. Bensalem, M. Bozga, S. Graf, D. Peled, S. Quinton, ATVA 2010, Lecture Notes in Computer
Science 6252, Springer, Singapore, 52-66.

[3] E.M. Clarke, Synthesis of Resource Invariants for Concurrent Programs, ACM Transactions on
Programming Languages and Systems 2(3), 338-358 (1980).

[4] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning About Knowledge, MIT Press, Cam-
bridge MA, 1995.

[5] B. Finkbeiner, S. Schewe, Uniform distributed synthesis, LICS 2005, Chicago, IL, 321–330.

[6] S. Graf, D. Peled, S. Quinton, Achieving Distributed Control Through Model Checking, CAV
2010, Lecture Notes in Computer Science 6174, Springer, Edinburgh, Scotland, 396-409.

[7] M. Jurdziński, Small progress measures for solving parity games. STACS 2000, Lecture Notes in
Computer Science 1770, Springer, 290–301.

[8] G. Katz, D. Peled, Genetic Programming and Model Checking: Synthesizing New Mutual Exclu-
sion Algorithms. Lecture Notes in Computer Science 5311, Springer, ATVA 2008, Seoul, Korea,
33-47.

[9] G. Katz, D. Peled, Synthesizing Solutions to the Leader Election Problem Using Model Checking
and Genetic Programming, Lecture Notes in Computer Science 6405, Springer, Haifa Verification
Conference 2009, Haifa, Israel, 117-132.

[10] G. Katz, D. Peled, Code Mutation in Verification and Automatic Code Correction, TACAS 2010,
Lecture Notes in Computer Science 6015, Springer, Paphos, Cyprus, 435-450.

[11] G. Katz, D. Peled, S. Schewe, Synthesis of Distributed Control through Knowledge Accumulation.
CAV 2011, Lecture Notes in Computer Science 6806, Springer, Snow Bird, Utah, 510-525.

[12] G. Katz, D. Peled, S. Schewe, The Buck Stops Here: Order, Chance, and Coordination in
Distributed Control, ATVA 2011, Taipei, Taiwan, 422–431.

[13] R.M. Keller, Formal Verification of Parallel Programs, Communications of the ACM, 19, 1976,
371-384.

[14] O. Kupferman, M.Y. Vardi, Synthesizing Distributed Systems, LICS 2001, Boston, MA, 389–398.

[15] P. Madhusudan, P.S. Thaigarajan, Distributed Controller Synthesis for Local Specifications,
ICALP 2001, Lecture Notes in Computer Science 2076, Springer, Crete, Greece, 396-407.

[16] Z. Manna, A. Pnueli, How to Cook a Temporal Proof System for Your Pet Language, POPL
1983, Austin, TX, 141–154.

[17] R. McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149–184,
1993.

17

Distributed Control Synthesis Doron Peled and Sven Schewe

[18] R. van der Meyden, Common Knowledge and Update in Finite Environment, Information and
Computation, 140, 1980, 115-157.

[19] M. Mukund, M.A. Sohoni, Keeping Track of the Latest Gossip in a Distributed System. Dis-
tributed Computing 10(3): 137-148 (1997).

[20] D. Peled, S. Schewe, Practical Distributed Control Synthesis, INFINITY 2011, Electronic Pro-
ceedings in Theoretical Computer Science, Taipei, Taiwan (to appear).

[21] D. Peled, T. Wilke, Stutter-Invariant Temporal Properties are Expressible without the Text Time
Operator, Information Processing Letters 63, 1997, 243–246.

[22] J.A. Pérez, R. Corchuelo, M. Toro, An Order-based Algorithm for Implementing Multiparty
Synchronization, Concurrency - Practice and Experience 16(12), 2004, 1173-1206.

[23] A. Pnueli, R. Rosner, Distributed Reactive Systems are Hard to Synthesize, FOCS 1990, St.
Louis, Missouri, 746-757.

[24] P.J. Ramadge, W.M. Wonham, Supervisory Control of a Class of Discrete Event Processes, SIAM
journal on control and optimization, 25(1), 1987, 206–230.

[25] K. Rudie, S.L. Ricker, Know Means No: Incorporating Knowledge into Discrete-Event control
systems, IEEE Transactions on Automatic Control, 45(9):1656–1668, 2000.

[26] K. Rudie, W.M. Wonham, Think Globally, Act Locally: Descentralized Supervisory Control,
IEEE Transactions on Automatic Control, 37(11):1692–1708, 1992.

[27] S. Schewe, Solving parity games in big steps. FSTTCS 2007, Lecture Notes in Computer Science
4805, Springer, New Delhi, India, 449–460.

[28] S. Schewe, An optimal strategy improvement algorithm for solving parity and payoff games, CSL
2008, Lecture Notes in Computer Science 5213, Springer, Bertinoro, Italy, 368–383.

[29] S. Schewe, B. Finkbeiner, Synthesis of Asynchronous Systems, LOPSTR 2006, Lecture Notes in
Computer Science 4407, Springer, Venice, Italy, 127–142.

[30] S. Schewe, B. Finkbeiner, Distributed Synthesis for Alternating-Time Logics, ATVA 2007, Lecture
Notes in Computer Science 4762, Springer, Tokyo, Japan, 268–283.

[31] L.J. Stockmeyer, A.K. Chandra, Provably Difficult Combinatorial Games, SIAM Journal of Com-
puting, 8, 1979, 151-174.

[32] J.G. Thistle, Undecidability in Descentralized Supervision, Systems and control letters 54, 503-
509, 2005.

[33] S. Tripakis, Undecidable Problems of Decentralized Observation and Control on Regular Lan-
guages. Information Processing Letters, 90(1):21–28, 2004.

[34] T.S. Yoo, S. Lafortune, A General Architecture for Decentralized Supervisory Control of Discrete-
Event Systems, Discrete event dynamic systems, theory & applications, 12(3) 2002, 335-377.

18

	Introduction
	Preliminaries
	Process Knowledge and Joint Process Knowledge
	Global Control for Invariant Properties
	Control Using Knowledge Accumulation
	From Invariant to Reachability, Repeated Reachability, and Parity
	Reducing Process Hanging and Passing Responsibility

