
EPiC Series in Computing

Volume 39, 2016, Pages 95–106

SCSS 2016. 7th International Symposium on
Symbolic Computation in Software Science

A Rewrite-based Computational Model for Functional

Logic Programming

Mircea Marin1, Temur Kutsia2, and Besik Dundua3

1 Department of Computer Science
West University of Timişoara, Timişoara, Romania

mircea.marin@e-uvt.ro
2 Research Institute for Symbolic Computation,

Johannes Kepler University, Linz, Austria
kutsia@risc.jku.at

3 Institute of Applied Mathematics
Tbilisi State University
bdundua@gmail.com

Abstract

Functional logic programming is an extension of the functional programming style with
two important capabilities: to define nondeterministic operations with overlapping rules,
and to use logic variables in both defining rules and expressions to evaluate. A suitable
model for functional logic programs are conditional constructor-based term rewrite systems
(CB-CTRSs), which can be transformed into an equivalent program in a simpler class of
rewrite systems (the core language) where computations can be performed more efficiently.

Recently, Antoy and Hanus proposed a translation of CB-CTRSs into an equivalent
class of programs where computation can be performed efficiently by mere rewriting. Their
computational model has the limitation of computing only ground answer substitutions
for equations with strict semantics interpreted as joinability to a value. We propose two
adjustments of their computational models, which are capable to compute non-ground
answers.

1 Introduction

Functional logic programming (FLP for short) is a declarative programming style resulted from
the successful amalgamation of the best features of functional programming with logic program-
ming (see [7] for a recent survey). In comparison with pure functional languages, functional
logic languages have more expressive power due to the possibility to define nondeterministic
operations with overlapping rules (i.e., more than one rule can be applied to evaluate a function
call), and the possibility to use logic variables in both defining rules and expressions to evaluate.

The presence of logic variables makes the evaluation of an expression t in the presence of a
program R more challenging: We are not only interested to compute a value to which t reduces
(that is, a ground constructor term v such that t →∗R v), but rather to compute a set of pairs
〈σ, v〉 made of a ground constructor substitution σ for the variables of t and a value v, such that

J.H.Davenport and F.Ghourabi (eds.), SCSS 2016 (EPiC Series in Computing, vol. 39), pp. 95–106

Rewrite-based FLP Marin, Kutsia, and Dundua

tσ →∗R v. We may denote the set of all such pairs by SolR(t) and call its elements solutions
of t. A convenient representation of SolR(t) is by a set A of so called computed answers, with
the following two properties: (1) A ⊆ SolR(t) (soundness), and (2) for every solution 〈ϕ, v〉 of
t there exist 〈σ, v〉 ∈ A and a constructor substitution η such that ϕ(x) = η(σ(x)) for every
variable x in t (completeness).

The computational models of FLP languages are designed to compute sound and complete
sets of computed answers. When the interest is in solving systems of equations, we can model
them by terms of the form

e1 && . . . && en (1)

where every ei is an equational term with a certain semantics, and &&/2 is a predefined right-
associative infix operation. In general, equational terms are of the form s ≈ t, and defined
to hold if s and t are reducible to the same (ground) constructor term. The nice thing when
interpreting ≈ as joinability to a value is that we can extend R with rewrite rules for ≈/2
and &&/2, and obtain a TRS Req with the following property: σ is a solution of an equational
goal G = s1 ≈ t1 && . . . && sn ≈ tn iff σ is a constructor substitution and Gσ →∗Req

success.

(See, e.g., [3].) This observation leads to the possibility to solve such systems of equations by
narrowing, a mechanism that extends the concept of reduction from functional programming
with unification and nondeterministic search from logic programming. Narrowing was designed
initially as a sound and complete method for solving unification problems in equational theories
presented by confluent term rewrite systems [10]:

If R is such a TRS and R′ = R∪{x ≈ x→ success}, then narrowing w.r.t. R′ computes
a complete set of R-unifiers of s and t.

However, this way of computing answers is largely useless and hopelessly inefficient for FLP,
because:

1. Unrestricted narrowing computes many R-unifiers which are not solutions from the point
of view of FLP.

2. R′ ensures the interpretation of equality as joinability to any term. Nowadays, most FLP
languages interpret equality as joinability to a common (ground) constructor term.

3. The search space of narrowing explores the possibility to unify each rule with each non-
variable subterm of the input system. The resulting search space would be huge even for
small TRSs.

Therefore, many narrowing strategies and narrowing calculi have been proposed, to reduce the
search space for solutions without losing the completeness of the set of computed answers.

• Narrowing strategies are partial mappings from terms to narrowing steps, and their rôle
is to tell us which subterms to select for narrowing, in order to compute a sound and
complete set of answer substitutions.

• Narrowing calculi emerged as an alternative to narrowing strategies: Usually, they consist
of a small set of elementary inference or transformation rules for equational goals, which can
be used to simulate narrowing steps. Typical examples of narrowing calculi are LNC [15],
LNCd [14], LCNC [8], LCNC [16], and LCNCd [13]. Higher-order versions of narrowing
calculi are also known, e,g., LN [17], HOLN [11], and LNff [12].

The success of finding an adequate strategy or calculus for narrowing depends mainly on the
class of TRSs chosen to represent programs, and on the way we define equality and the admis-
sibility of solutions. Several interesting sound and complete narrowing strategies are already
known for various classes of first-order left linear constructor-based TRS (CB-TRSs for short).

96

Rewrite-based FLP Marin, Kutsia, and Dundua

To this category belong the following strategies: needed narrowing [4], for strongly sequential
TRSs [9], parallel narrowing [5], for weakly orthogonal TRSs, and the INS narrowing strategy [2]
for overlapping inductively sequential TRSs.

Programs presented by conditional CB-TRSs (CB-CTRSs for short) are desirable because
they increase the conciseness and expressive power of rule-based definitions of operations of
interest. In [6], Antoy and Hanus report a rewrite-based computational model for FLP with
CB-CTRSs. Their main results can be summarised as follows:

1. They identify a transformation of CB-CTRSs into equivalent overlapping inductively se-
quential TRSs with extra variables (OISs for short). OISs are a simpler class of TRSs, for
which we already know a sound and complete narrowing strategy [2].

2. They identify a sound and complete computational model for FLP for programs presented
by OIS, based on a translation of OIS with extra variables into OIS without extra variables,
and on rewriting of term/substitution pairs.

These results open the possibility to produce an efficient implementation of a sound and com-
plete narrowing strategy for FLP with CB-CTRSs, by reducing all computations to rewrites of
term/substitution pairs with respect to OISs. There are, however, some important limitations:

1. Equality is interpreted as reducibility to a common value.

2. The computed answers are ground constructor substitutions. As a result, the completeness
property of the calculus implies that the set of computed answers is often infinite, and thus
the solving process of a system of equations runs forever.

In this paper we overcome these limitations and propose a rewrite-based strategy for functional
logic programming with programs presented by OISs. We argue that this strategy is sound
and complete in the general sense, where we do not restrict ourself to ground solutions, and
interpret equality as reducibility to a common, not necessarily ground, constructor term.

The paper is structured as follows. Section 2 reviews concepts and notations used in this
paper, and previous results with relevance for our investigation. Sections 3 and 4 describe the
strategies proposed by us for solving systems of equations when programs are presented by
OISs and equality is interpreted in the more general sense, mentioned above. The first one is
a narrowing strategy obtained by an adjustment of the INS strategy, and the second one is a
rewrite-based strategy. Both of them are sound and complete. Section 5 concludes.

2 Preliminaries

We consider a finite many-sorted signature Σ partitioned into a set C of (data) constructors,
and a set F of (defined) function symbols or operations. We write f/n to indicate the fact that
f ∈ Σ is an n-ary constructor or operation. We also consider X to be a countably infinite set of
sorted variables. The sets T (Σ,X), T (C,X) and T (C) of well-sorted terms, constructor terms,
and ground constructor terms are defined as usual. The terms of T (C) are also called values.

We write var(t) for the set of variables which occur in a term t. A term t is ground if
var(t) = ∅, and linear if it does not contain multiple occurrences of a variable. A pattern is a
term f(t1, . . . , tn) where f/n ∈ F and t1, . . . , tn ∈ T (C,X).

Next, we introduce equations and systems of equations: Their syntax is defined in the
extended signature Σeq := Σ ∪ {≈, &&, .=} where ≈ /2,

.
=/2 and && /2 are new operations to

which we will give a special interpretation. An equation is a term of the form ≈(s, t) or
.
=(s, t),

where s, t ∈ T (Σ,X) are terms of same sort. A system of equations is either an equation or a

97

Rewrite-based FLP Marin, Kutsia, and Dundua

term &&(e, c) where e is an equation and c is a system of equations. To improve readability, we
will use the following notations and assumptions:

• We write equations and systems of equations in infix notation, that is, we write s ≈ t
instead of ≈(s, t), s

.
= t instead of

.
=(s, t), and e && c instead of &&(e, c).

• We assume that && /2 is right-associative, and write e1 && e2 && . . . && en−1 && en instead of
&&(e1, &&(e2, . . . , &&(en−1, en) . . .)).

A rewrite rule is an expression of the form l → r where l is a pattern and r is a term of the
same sort as l. A conditional rewrite rule is of the form l → r ⇐ c where l, r satisfy the same
conditions as before, and c is a system of equations, called the conditional part of the rule.
The set of extra variables of l → r (resp. l → r ⇐ c) is evar(l → r) := var(r) \ var(l) (resp.
evar(l→ r ⇐ c) := (var(r) ∪ var(c)) \ var(l)).

In functional logic programming, programs are modelled by finite sets of rewrite rules,
which may be conditional. In theory, a set of such rewrite rules is called constructor-based
term rewrite system (CB-TRS). Finite sets which may also contain conditional rewrite rules
are called conditional constructor-based TRSs (CB-CTRSs).

To formally define computations with respect to a given program (that is, CB-CTRS), we
shall introduce a few more notions. Positions in a term are denoted by sequences of natural
numbers. We write t|p for the subterm of t at position p, and t[s]p for the result of replacing t|p
with s at position p in t. A substitution is a mapping σ : X → T (Σ,X) such that its domain
dom(σ) := {x ∈ X | σ(x) 6= x} is finite, and x and σ(x) are of the same sort for every x ∈ X .
It is common practice to denote a substitution σ by the finite set {x → σ(x) | x ∈ dom(σ)}.
The restriction of a substitution σ to a set of variables V ⊆ X is the substitution σ|V with
dom(σ|V) = dom(σ) ∩ V and σ|V (x) = σ(x) for all x ∈ dom(σ|V). A (ground) constructor
substitution is a substitution σ such that σ(x) is a (ground) constructor term for every x ∈
dom(σ). Substitutions are extended to morphisms on terms in the obvious way, and we write tσ
for the image of t under the morphism induced by a substitution σ. Subsumption is the ordering
on terms defined by s ≤ t if sσ = t for some substitution σ. Also, we write s < t if s ≤ t
and t � s. The subsumption relation is defined on substitutions too: σ ≤ σ′ if there exists a
substitution η such that σ′ = (η ◦σ)|vars(σ′). A variant of t is t′ such that t ≤ t′ and t′ ≤ t. It is
well known that t is a variant of t′ if and only if there exists a bijective substitution σ : X → X
such that t′ = tσ. t′ is a fresh variant of t if it is a variant of t and var(t′) consists of variables
which did not occur in the expressions encountered so far. A unifier of two terms s and t is a
substitution σ such that sσ = tσ. A unifier σ is a most general unifier (mgu for short) if σ ≤ σ′
for any other unifier σ′ of s and t.

A rewrite step of a term s with respect to a CB-TRS R is a relation s →p,l→r,σ s
′, which

is defined if there exist a position p in s, a rewrite rule l → r ∈ R with a fresh variant l′ → r′,
and a substitution σ such that t|p = l′σ and s′ = s[r′σ]p. We may write s →R s′ instead of
s→p,l′→r′,σ s

′. In general, if→ is a binary relation on terms, we may also refer to the following
relations induced by →:

• the reflexive-transitive closure of →: s→∗ t if s→n t for some n ∈ N, where

s→0 t if s = t, and

s→n+1 t if s→ u and u→n t for some term u.

• strict joinability: s ↓ t if s→∗ u and t→∗ u for some u ∈ T (C,X).

• strict joinability to a value: s

�

t if s→∗ v and t→∗ v for some v ∈ T (C).
The joinability relations ↓R and

�

R are used to interpret the equality operations ≈/2 and
.
=/2

with respect to a CB-TRS R: We say that s ≈ t (resp. s
.
= t) holds with respect to R if s ↓R t

98

Rewrite-based FLP Marin, Kutsia, and Dundua

holds (resp. s

�

R t holds). More generally, a system of equations c is said to hold with respect
to R if every component equation of c holds with respect to R.

The interpretations of ≈/2 and
.
=/2 remain the same when R is a CB-CTRS, whereas the

rewrite relation →R is generalized as follows: s→R s if there exist a non-variable position p in
t, a rule l→ r ⇐ c from R with fresh variant l′ → r′ ⇐ c′, and a substitution σ such that

• s|p = l′σ, s′ = s[r′σ]p, and

• c′σ holds w.r.t. R, that is: tσ ↓R t′σ for all t ≈ t′ in c, and tσ

�

R t
′σ for all t

.
= t′ in c.

In this case, we may write s→p,l→r⇐c,σ s
′ instead of s→R s′.

Let G be a system of equations. A substitution σ is a solution of G w.r.t. R if σ is a
constructor substitution and Gσ holds w.r.t. R. A complete set of answers for G is a set A of
solutions for G such that, for every solution σ′ of G there exists σ ∈ A such that σ ≤ σ′.

A narrowing step of a term s with respect to a CB-CTRS R is a relation s R,σ s′ which
is defined to hold if there exist a non-variable position p of s and a rule l→ r ⇐ c from R with
fresh variant l′ → r′ ⇐ c′, such that sσ →p,l′→r′⇐c′,σ s

′ (i.e., s|pσ = l′σ, s′ = s[r′σ]p, and c′σ
holds w.r.t. R). A sequence s R,σ1 s1 R,σ2 . . . R,σn sn of narrowing steps is abbreviated
s n

R,σ sn, or simply s ∗R,σ sn, where σ = σn ◦ . . . ◦ σ2 ◦ σ1.
The evaluation of s in an FP language presented by a CB-CTRS R yields a value v ∈ T (C)

such that s →∗R v, whereas the evaluation of s in FLP is concerned with computing a set
AnsR(s) of pairs 〈v, σ〉 with v ∈ T (C) and σ a constructor substitution, such that sσ →∗R v
(soundness). In addition, we also wish the set AnsR(s) to be complete in the following sense:

For any constructor substitution σ′ such that sσ′ →∗R v, there exists 〈v, σ〉 ∈ AnsR(t)
such that σ ≤ σ′.

Narrowing-based computational models compute the elements 〈v, σ〉 of AnsR(s) by producing
a set of narrowing derivations s ∗R,σ v with constructor substitution σ and value v. Soundness
follows from the observation that s ∗R,σ v implies sσ →∗R v. Computational efficiency can be
often achieved by using a narrowing strategy, which prescribes, for every term, what narrowing
step(s) to perform next, without losing completeness. Formally, a narrowing strategy is a partial
function S on terms such that, for amy term t, S(t) is either undefined or a set of triples 〈p, ρ, σ〉
with constructor substitution σ such that we can perform the narrowing step t p,ρ,σ t

′. The
evaluation of a term s with S yields the set of computed answers

AnsSR(s) = {〈v, σ〉 | s ∗R,σ v where v ∈ T (C) and (p, ρ, σ) ∈ S(t)

for every narrowing step t p,ρ,σ t
′ of s ∗R,σ v}.

Overlapping inductively sequential rewrite systems

We define here the class of CB-TRSs that concerns us most: overlapping inductively sequential
TRSs with extra variables. They are defined via an auxiliary hierarchical data structure, called
definitional tree. The following definitions are adapted from [1, 2].

A partial definitional tree (pdt) of a linear pattern t is a tree-like structure T with nodes of
one of the following three forms:

1. branch(t, p, T1, . . . , Tk) where t|p is a variable of a sort s with constructors c1/n1, . . . , ck/nk
in standard ordering, and every Ti (1 ≤ i ≤ k) is a pdt of the pattern t[ci(x1, . . . , xni

)]p and
x1, . . . , xni

are distinct fresh variables of appropriate sorts. The patterns t[ci(x1, . . . , xni
)]p

are called the children of t in the pdt, and t their parent. Also, the variable t|p is referred
to as inductive variable of t.

99

Rewrite-based FLP Marin, Kutsia, and Dundua

2. rule(t, t→ r1? . . . ?rk) where t→ r1, . . . , t→ rk are distinct variants of rewrite rules from
R. We say about this node that it contains the rule variants t→ r1, . . . , t→ rk.

Note that the expression t→ r1? . . . ?rk is not a rule, but a compact abbreviation of the set
of rules {t→ r1, . . . , t→ rk}, where the symbol ‘?’ is a separator between the alternative
right-hand sides of the existing rules.

3. exempt(t).

The first argument of every node is called the pattern of that node, and the set of patterns
of a pdt consists of the patterns of its nodes. A definitional tree of an operation f/n is a
pdt of a pattern f(x1, . . . , xn) where x1, . . . , xn are distinct variables. An operation f of R
is overlapping inductively sequential if there exists a definitional tree T of f whose rule-nodes
contain a variant for every rule which defines f in R. A CB-TRS is overlapping inductively
sequential (OIS for short) if every operation f is overlapping inductively sequential.

For example, the CB-TRS

R = { ins(x, null)→ cons(x, null),
ins(x, cons(y, z))→ cons(x, cons(y, z)),
ins(x, cons(y, z))→ cons(y, ins(x, z))}

is OIS because its function symbol ins has the definitional tree

Tins = branch(ins(x, y), 2,
rule(ins(x, null)→ cons(x, null)),
rule(ins(x, cons(y1, z1))→ cons(x, cons(y1, z1))?cons(y1, ins(x, z1))))

It is obvious that every OIS is a left-linear CB-TRS, and every operation-rooted term
f(t1, . . . , tn) is unifiable with some patterns from a definitional tree of f .

A sound and complete narrowing strategy for OIS is inductively sequential narrowing (INS):
for every term t, it computes a (possibly empty) set INSR(t) of triples 〈p, l → r, σ〉 which
indicate the need to perform the narrowing step t p,l→r,σ t

′, which has the same effect as the
rewrite step tσ →p,l→r t

′. This strategy assumes fixed a set {Tf | f ∈ F} of definitional trees
for all operations in F , and is defined as follows:

1. If t = f(t1, . . . , tn) is an operation-rooted term, then INSR(t) = ϕR(t, Tf) where ϕR(t, T)
is defined by case distinction on the type of T :

(a) If T = branch(π, p, T1, . . . , Tk), let s be the sort of t|p and c1/n1, . . . , ck/nk be the
data constructors of sort s in canonical order. We distinguish 3 subcases:

i. If t|p = x ∈ X , let σi = {x → ci(x1, . . . , xni
)} be substitutions with x1, . . . , xni

fresh variables of appropriate sorts, for all 1 ≤ i ≤ n.
Then ϕR(t, T) =

⋃k
i=1{〈q, l→ r, σi ◦ ηi〉 | 〈q, l→ r, ηi〉 ∈ ϕR(tσi, Ti)}.

ii. If t|p = ci(t1, . . . , tni
) then ϕR(t, T) = ϕR(t, Ti).

iii. Otherwise, the root of t|p is an operation. In this case

ϕR(t, T) = {〈p · q, l→ r, η〉 | 〈q, l→ r, η〉 ∈ INSR(t|p)}.

(b) If T = rule(π, π → r1? . . . ?rk) then ϕR(t, T) = {〈λ, π → ri, ∅〉 | 1 ≤ i ≤ k}.
(c) If T = exempt(π) then ϕR(t, T) = ∅.

2. If t ∈ X then ϕR(t, T) = ∅,

100

Rewrite-based FLP Marin, Kutsia, and Dundua

3. Otherwise, t = c(t1, . . . , tn) with c/n a constructor symbol. In this case

INSR(t) =

{
∅ if t ∈ T (C,X),
{〈i · q, l→ r, σ〉 | 〈q, l→ r, σ〉 ∈ INSR(ti)} if i = min{j | INSR(tj) 6= ∅}.

INS can also be used to solve systems of strict equations G = s1
.
= t1 && . . . && sn

.
= tn w.r.t. an

OIS R. To achieve this, we can extend the signature Σ with the operations && /2,
.
=/2 and the

constructor success/0, and extend R to the OIS Req = R∪{ρc | c ∈ C}∪{success &&x→ x},
where every rewrite rule ρc is of the form

c(x1, . . . , xn)
.
= c(y1, . . . , yn)→ success &&x1

.
= y1 && . . . &&xn

.
= yn (2)

Then Gσ holds w.r.t. R iff Gσ →∗Req
success, therefore {σ | 〈success, σ〉 ∈ AnsINSReq

Req
(G)} is

a complete set of answers for G.

Well-known results

Finally, we recall the theoretical results already mentioned in the Introduction, which repre-
sented the starting point of our further investigation:

1. Every CB-CTRS R where the conditional parts of rules are equational systems of the form

s1
.
= t1 && . . . && sn

.
= tn (3)

can be transformed into an equivalent OIS [3], in two stages:

• Linearization: Every rule l→ r ⇐ c where l is a nonlinear pattern is transformed into
l′ → r ⇐ c && c′ where l′ is obtained from l by replacing all its variable occurrences
with distinct fresh variables, and c′ is a conjunction of equations of the form x

.
= y

which express the fact that y is the fresh variable that replaced an occurrence of
variable x in l. For example, the linearization of

f(c(x, c(x, y)))→ z ⇐ f(c(x, y))
.
= z

is

f(c(x1, c(x2, x3)))→ z ⇐ f(c(x, y))
.
= z &&x1

.
= x &&x2

.
= y &&x3

.
= z.

• Deconditionalization: Every left-linear conditional rewrite rule l → r ⇐ c is trans-
formed into the unconditional rule l → if(c, r) over the signature extended with the
operation if/2. To properly interpret the if/2, we add the rule if(success, x)→ x.

This means that, if R is a CB-CTRS whose rules satisfy syntactic restriction (3), and R
is the OIS with extra variables produced by the transformation mentioned above, then

ANS
INSR
R (s) is a sound and complete set of computed answers of the term s w.r.t. R.

Strategy INS can be used to compute complete sets of computed answers for systems of
strict equations too: If R is a CB-CTRS and G = s1

.
= t1 && . . . && sn

.
= tn is such a system

of equations, then {
σ | 〈σ, success〉 ∈ ANS

INSReq

Req
(G)

}
is a complete set of computed answers of G with respect to R.

101

Rewrite-based FLP Marin, Kutsia, and Dundua

2. The authors of [6] propose a mapping XEP that transforms an OIS with extra variables R
into a set XEP(R) of rules l→ 〈r, ψ〉 from terms to term/substitution pairs, and a term t
into a term/substitution pair 〈t, χ〉. Also, they identify a rewrite relation →R′ induced by
R′ = XEP(R) between term/substitution pairs, such that {〈v, σ〉 | XEP(t)→∗R′ 〈v, σ〉} is
a sound and complete set of answers for t.

A somewhat unexpected consequence of this result is that the power of narrowing compu-
tations specific to functional logic programming can be obtained by mere rewriting.

3 Dropping the restriction to groundness

The results mentioned so far have been proved for the case when equality is interpreted as
joinability to a value. This means, all equational terms in goals and the conditional parts
of rewrite rules, are of the form s

.
= t. In this section we analyse what happens if drop the

restriction to groundness, that is, if we interpret equality as joinability to a constructor term.
Suppose R is a CB-CTRS where all equations in the conditional parts are of the form s

.
= t,

and tr(R) is the CB-CTRS produced by replacing all occurrences of
.
=/2 with ≈/2. Since

every value is a constructor term, the following statements hold trivially:

If s→R s′ then s→tr(R) s
′. If s ↓R s′ then s

�

tr(R)
s′.

For the converse, we have the following lemma.

Lemma 1. Let s, s′ be terms, and θ be a value substitution with var(s) ∪ var(s′) ⊆ dom(θ).
The following statements hold:

1. If s→tr(R) s
′ then sθ →R s′θ.

2. If s

�

tr(R)
s′ then sθ ↓R s′θ.

Proof. We prove these statements simultaneously, by induction on the minimum number of
rewrite steps that witness the fact that the relation s→tr(R) s

′, respectively s

�

tr(R)
s′, holds.

1. Let (l → r ⇐ c) ∈ tr(R) with fresh variant l′ → r′ ⇐ c′, such that s →p,l′→r′⇐c′,σ s
′.

This means, s|p = l′σ, s′ = s[r′σ]p, and tσ

�

tr(R)
t′σ for every equation t ≈ t′ in c′.

Let θ′ be a value substitution such that θ′(x) = θ(x) for all x ∈ var(s) ∪ var(s′), and
evar(l′ → r′ ⇐ c′) ⊆ dom(θ′). Then sθ|p = l′σθ′, s′θ = sθ[r′σθ′]p, and tσθ′

�

tr(R)
t′σθ′ for

all t ≈ t′ in c′. Then var(t) ∪ var(t′) ⊆ dom(σθ′) for all equations t ≈ t′ in c′. By the
induction hypothesis, tσθ′ ↓R t′σθ′ for all t ≈ t′ in c′. Therefore, sθ →p,l′→r′⇐c′,σθ′ s

′θ, or
simply sθ →R s′θ.

2. If s

�

tr(R)
s′ then there exists u ∈ T (C,X) such that s →∗tr(R) u and s′ →∗tr(R) u. This

implies sθ →∗tr(R) uθ and s′θ →∗tr(R) uθ. Note that all rewrite steps in a rewrite derivation
remain valid if we instantiate the extra variables of rules with values. Therefore, we
can assume without loss of generality that the rewrite derivations sθ →∗tr(R) uθ and

s′θ →∗tr(R) uθ consist of rewrite steps between values. By the induction hypothesis, every

such rewrite step with respect to tr(R) is also a valid rewrite step with respect to R.
Thus, sθ →∗R uθ and s′θ →∗R uθ. Hence, sθ ↓R s′θ.

Let tr(G) = s1 ≈ t1 && . . . && sn ≈ tn be the system of equations produced from the system
of equations G = s1

.
= t1 && . . . && sn

.
= tn by replacing all occurrences of

.
=/2 with ≈/2.

102

Rewrite-based FLP Marin, Kutsia, and Dundua

Lemma 1 implies that every complete set of answers of G is also a set of answers of tr(G),
but possibly incomplete. For example the set A = {{x 7→ t} | t ∈ T (C)} is a complete set of
answers for G = x

.
= x with respect to R = ∅, but it is incomplete for tr(G) = x ≈ x. The set

A can be computed with strategy INS for the OIS Req which, in this trivial example, coincides
with {ρc | c ∈ C}.

A more desirable method would compute a complete set of answers for tr(G). For example,
the set A = {ε} where ε is the empty substitution, is a complete set of computed answers for
tr(G) = x ≈ x with respect to R = ∅. Besides being finite, this set gives a complete charac-
terization of the set of solutions of G = x

.
= x: Every solution of G is a ground instantiation of

σ ∈ A, that is, a value substitution of the form σθ with σ ∈ A.
Thus, strategy INS can not be used to compute a complete set of answers for tr(G) w.r.t.

tr(R). A first attempt to revise it is to transform tr(R) into the TRS

R̃ := tr(R)eq ∪ {x ≈ x→ success} where

tr(R) is the OIS produced from the CB-CTRS tr(R) as indicated on page 101,

tr(R)eq := tr(R) ∪ {ρc | c ∈ C} ∪ {success &&x→ x}

and to impose the following restriction on the rewrite relation induced by R̃:

• A rewrite step t→p,x≈x→success,σ t
′ is allowed iff σ is a constructor substitution.

The following result is obvious: θ is a solution of tr(G) iff θ|var(tr(G)) is a constructor substi-
tution and tr(G)θ →∗R̃ success.

Unfortunately, strategy INS R̃ does not work well for R̃ because R̃ is not OIS. To fix this
problem, we will make the following general assumptions:

I For every given sort s, we assume predefined an enumeration of all its constructors, and
call it canonical order.

I T s≈ = branch(x ≈ y, 1, T1, . . . , Tm) is the definitional tree for the operation ≈ between
terms of sort s, with the following structure:

– c1/n1, . . . , cm/nm is the enumeration of all constructors of sort s in canonical order,

– Every Ti = branch(πi, 2, Ti,1, . . . , Ti,m) is the partial definitional tree of the linear
pattern πi = ci(x1, . . . , xni) ≈ y where

Ti,j =

{
exempt(ci(x1, . . . , xni

) ≈ cj(y1, . . . , ynj
)) if i 6= j,

rule(ρc) if i = j.

Next, we specialize INS to work for R̃ in the following way:

1. INS R̃(t1 ≈ t2) is either

(a) 〈λ, x ≈ x→ success, {t1 → t2}〉 if t1, t2 ∈ X and t1 6= t2.

(b) 〈λ, x ≈ x→ success, {}〉 if t1 = t2 ∈ X .

(c) ϕR̃(t1 ≈ t2, T s≈) otherwise, where s is the sort of t1.

2. INS R̃(t) is defined like INSR(t) in all other cases.

We are ready now to prove that the narrowing strategy INS R̃ is sound and complete. Let’s
assume G is of the form s1 ≈ t1 && . . . && sn ≈ tn, or success && s1 ≈ t1 && . . . && sn ≈ tn.

Lemma 2 (Soundness). If 〈success, θ〉 ∈ AnsINSR̃
R̃ (G) then θ is a solution of G.

103

Rewrite-based FLP Marin, Kutsia, and Dundua

Proof. By the definition of Ans
INSR̃
R̃ (G), for every 〈success, θ〉 ∈ AnsINSR̃

R̃ (G) there exists a
narrowing derivation

G = G0 q1,ρ1,θ1 G1 q2,ρ2,θ2 . . . qn,ρn,θn Gn = success

where ρi are fresh variants of rewrite rules from R̃ and θi|var(Gi−1) are constructor substitutions,
for all 1 ≤ i ≤ n, such that θ = θ1θ2 . . . θn. It follows that Gθ →∗R success, thus θ is solution
of G.

Lemma 3 (Completeness). If θ is a solution of G then there exists 〈success, θ′〉 ∈ AnsINS
R̃ (G)

such that θ′ ≤ θ.

4 A rewrite-based strategy

In this section we introduce our second contribution: a rewrite-based strategy capable to sim-
ulate INS R̃-narrowing derivations. The insight behind the design of this strategy is based on
following observation: Every successful search of a narrowing step 〈p, l → r, σ〉 with strategy
INS R̃ can be decomposed into a sequence of elementary steps of three kinds:

T1. Binding steps, which bind a variable to a constructor term. To this category belong case
1.(a).i from the unspecialized definition of INS R̃, and case 1.(a) from the definition of the
specialized version.

T2. Lookup steps, which simply traverse the term in depth to detect a suitable narrowing
position. To this category belong cases 1.(a).ii, 1.(a).iii, and 3 from the unspecialized
definition of INS R̃.

T3. Final search steps, which detect the possibility to rewrite an instance of the traversed
term with a rewrite rule at a certain position. To this category belong cases 1.(b) from
the unspecialized definition of INS R̃, and case 1.(b) in the definition of the specialized
version.

Starting from this observation, we can “sequentialize” strategy INS to stop as soon as it performs
the first step of type T1 or type T3, and return the corresponding variable binding (if the step
type is T1) or position/rule (if the step type is T3). We call IRS the “sequentialized” version
of INS, because it is intended to stand for Inductively sequential Rewriting Strategy:

I When it returns a binding of the form x → t, it indicates the need to perform maximum
parallel rewriting with the rewrite rule x → t as if x were a constant. Note that such a
parallel rewrite step has the same effect as applying the substitution {x→ t}.

I When it returns a pair 〈p, l → r〉, it indicates the need to perform the rewrite step with
rule l→ r at position p.

To ensure the fact that IRS simulates INS, we must guarantee that every call of the IRS strategy
proceeds from the place where the previous call of IRS stopped the computation of an INS-step.
Based on these considerations, we came up with the following definition of IRS R̃:

• IRS R̃(x ≈ y) = x→ y if x, y ∈ X and x 6= y.

IRS R̃(y ≈ y) = {〈λ, x ≈ x→ success〉} if y ∈ X .

IRS R̃(t1 ≈ t2) = DT R̃(t1 ≈ t2, T s≈) if {t1, t2} 6⊂ X and s is the sort of t1. (The auxiliary
method DT R̃(t) is defined below.)

104

Rewrite-based FLP Marin, Kutsia, and Dundua

• Otherwise, there exists a leftmost outermost position p 6= λ of t such that t|p = f(t1, . . . , tn)
with f ∈ F . Let A = IRS R̃(t|p). Then

IRS R̃(t) =

{
{〈p · q, ρ〉 | 〈q, ρ〉 ∈ A if A 6= ∅ is set of pairs,
A otherwise.

The auxiliary method DTR(t, T) is defined as follows:

1. If T = branch(π, p, T1, . . . , Tk), let s be the sort of t|p and c1/n1, . . . , ck/nk be the data
constructors of sort s in canonical order. We distinguish three subcases:

(a) If t|p = x ∈ X , let σi = {x → ci(x1, . . . , xni)} be substitutions with x1, . . . , xni fresh
variables of appropriate sorts, for all 1 ≤ i ≤ n. Then
DT R̃(t, T) = {x→ ci(x1, . . . , xni

) | 1 ≤ i ≤ k}.
(b) If t|p = ci(s1, . . . , sni) then DT R̃(t, T) = DT R̃(t, Ti).
(c) If t|p = g(s1, . . . , sm) with g ∈ F , let A = DT R̃(t|p, Tg). Then

DT R̃(t, T) =

{
{〈p · q, ρ〉 | 〈q, ρ〉 ∈ A} if A 6= ∅ is set of pairs,
A otherwise.

2. If T = rule(π, π → r1? . . . ?rk) then DT R̃(t, T) = {〈λ, π → ri〉 | 1 ≤ i ≤ k}.

3. Otherwise, T = exempt(π) and DT R̃(t, T) = ∅.

An IRS-compliant rewrite step of a term t w.r.t. R̃ is a relation t ⇒σ t
′ which holds if either

(1) 〈p, ρ〉 ∈ IRS R̃(t). In this case σ = {} and t′ is the result of the rewrite step t →p,ρ t
′,

or (2) x → t is a substitution rule from IRS R̃(t). In this case σ = {x → t} and t′ is the
result of maximal parallel rewriting with the rewrite rule x → t, as if x were a constant. An
IRS-compliant rewrite derivation of a term t w.r.t. R̃ is a sequence t ⇒σ1

t1 ⇒σ2
. . . ⇒σn

tn,
abbreviated t ⇒∗σ tn where σ = (σn ◦ . . . ◦ σ2 ◦ σ1)|var(t). For a given system of equations G,
the set of answers computed by our rewrite-based strategy is defined to be

Ans
IRSR̃
R̃ (G) = {〈success, σ〉 | G⇒∗σ success}.

Theorem 1. Let R be an OIS. Then Ans
IRSR̃
R̃ (G) = Ans

INSR̃
R̃ (G).

Since strategy INS R̃ is sound and complete, we conclude that strategy IRS R̃ is sound and
complete too.

5 Concluding remarks

Overlapping inductively sequential TRSs with extra variables have emerged as a convenient core
language for FLP computations. Unfortunately, the INS strategy can not be applied directly to
solve systems of equations where equality is interpreted as reducibility to a common constructor
term. The reason for this is that there is no way to define this kind of equality with rewrite
rules of this kind. We have identified a simple way to overcome this limitation: to extend the
underlying OIS with the nonlinear rewrite rule x ≈ x → success, and to impose restrictions
on the way it is used in rewrite and narrowing derivations. By exploring this idea, we have
identified a simple adjustment of strategy INS, which is sound and complete for our generalized
interpretation of equality (Section 3). Moreover, we found a way to simulate the narrowing
computations of interest to us with a strategy for rewrite derivations (Section 4). The efficiency
of both strategies stems from the fact that both of them are controlled by definitional trees.

105

Rewrite-based FLP Marin, Kutsia, and Dundua

6 Acknowledgments

Temur Kutsia has been partially supported by the Austrian Science Fund (FWF) under the
projects P 24087-N18 and P 28789-N32. Besik Dundua has been partially supported by the
Shota Rustaveli National Science Foundation under the grants FR/325/4-120/14, YS/10/11-
811/15, YS15 2.1.2 70.

References

[1] Sergio Antoy. Definitional trees. In Proceedings of the 3rd International Conference on Algebraic
and Logic Programming, pages 143–157. Springer LNCS, 1992.

[2] Sergio Antoy. Optimal non-deterministic functional logic computations. In Michael Hanus, Jan
Heering, and Karl Meinke, editors, Algebraic and Logic Programming, volume 1298 of Lecture
Notes in Computer Science, pages 16–30. Springer Berlin Heidelberg, 1997.

[3] Sergio Antoy. Constructor-based conditional narrowing. In Proceedings of PPDP 2001, pages
199–206. ACM Press, 2001.

[4] Sergio Antoy, Rachid Echahed, and Michael Hanus. A needed narrowing strategy. In Journal of
the ACM, pages 268–279. ACM Press, 1994.

[5] Sergio Antoy, Rachid Echahed, and Michael Hanus. Parallel Evaluation Strategies for Functional
Logic Languages. In Proceedings of the 14th International Conference on Logic Programming
(ICLP’97), pages 138–152. MIT Press, 1997.

[6] Sergio Antoy and Michael Hanus. Overlapping rules and logic variables in functional logic pro-
grams. In 22nd International Conference on Logic Programming, pages 87–101. Springer LNCS,
2006.

[7] Sergio Antoy and Michael Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010.

[8] J.C. Gonzalez-Moreno, M.T. Hortala-Gonzalez, F.J. Lopez-Fraguas, and M. Rodriguez-Artalejo.
An approach to declarative programming based on a rewriting logic. The Journal of Logic Pro-
gramming, 40(1):47–87, 1999.

[9] Michael Hanus, Salvador Lucas, and Aart Middeldorp. Strongly sequential and inductively se-
quential term rewriting systems. Information Processing Letters, 67(1):1–8, 1998.

[10] Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert Kowalski,
editors, 5th Conference on Automated Deduction Les Arcs, France, July 8-11, 1980, volume 87 of
Lecture Notes in Computer Science, pages 318–334. Springer Berlin Heidelberg, 1980.

[11] Tetsuo Ida, Mircea Marin, and Taro Suzuki. Higher-Order Lazy Narrowing Calculus: A Solver for
Higher-Order Equations. In Computer Aided Systems Theory - EUROCAST 2001-Revised Papers,
pages 479–493, London, UK, 2001. Springer-Verlag.

[12] Mircea Marin. Functional Logic Programming with Distributed Constraint Solving. PhD thesis,
RISC-Linz Institute, Schloss Hagenberg, Austria, 2000.

[13] Mircea Marin and Aart Middeldorp. New completeness results for lazy conditional narrowing.
In Proceedings of the 6th ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 120–131, Verona, 2004. ACM Press.

[14] Aart Middeldorp and Satoshi Okui. A deterministic lazy narrowing calculus. Journal of Symbolic
Computation, 25(6):733–757, 1998.

[15] Aart Middeldorp, Satoshi Okui, and Tetsuo Ida. Lazy narrowing: Strong completeness and eager
variable elimination. Theoretical Computer Science, 167(1,2):95–130, 1996.

[16] Aart Middeldorp, Taro Suzuki, and Mohamed Hamada. Complete selection functions for a lazy
conditional narrowing calculus. J. Functional and Logic Programming, 2002(3), March 2002.

[17] Christian Prehofer. Solving higher-order equations: from logic to programming. Birkhauser, 1998.

106

	Introduction
	Preliminaries
	Dropping the restriction to groundness
	A rewrite-based strategy
	Concluding remarks
	Acknowledgments

