
A Framework for Word Segmentation in
Images using Density-based Clustering

Hui Guo 1 and Qin Ding 2
1 North Carolina State University, USA

2 East Carolina University, USA
hguo5@ncsu.edu, dingq@ecu.edu

Abstract
Word recognition is to identify words in images of printed or handwritten documents. It is especially

challenging to recognize words from cursive handwriting documents. In this paper, we present a
framework of using density-based clustering for word segmentation in printed or handwritten
documents, including cursive handwriting. First, we performed various strategies for data
preprocessing, including converting images to B/W images, adjusting the tilted images, and removing
the background noises. K-means clustering and/or neighborhood density are used in finding parameters
for the preprocessing steps. The preprocessing has shown to be very effective. For the word
segmentation, we proposed density-based clustering to segment the words using multiple steps,
including blurring, plotting, and clustering. We also developed a system for the framework, including
preprocessing and clustering functionalities. Our approach works very well for printed documents. It
works reasonably well for handwriting documents if words are relatively far from each other. The
performance on handwriting documents can be further improved by using line segmentation.

1 Introduction
Word recognition is to identify words in images of printed or handwritten documents. There are

abundant handwritten documents available, which carry a lot of potentially useful information.
Handwriting recognition, also called handwritten text recognition, is a challenging task, especially
cursive handwriting recognition [1, 2]. Extensive research has been conducted on handwriting
recognition [3, 4], leveraging deep learning and neural network methods [5, 6, 7], but most of them are
based on character recognition. In this paper, we propose to perform word recognition instead of
character recognition, because for cursive handwritings, the latter is too difficult and unreliable. The
first step of this process will be image segmentation in which an entire document is segmented into
words.

A sample image of cursive handwritten document is given in Figure 1. As can be seen from this
sample, the data present the following characteristics:

EPiC Series in Computing

Volume 69, 2020, Pages 187–196

Proceedings of 35th International Confer-
ence on Computers and Their Applications

G. Lee and Y. Jin (eds.), CATA 2020 (EPiC Series in Computing, vol. 69), pp. 187–196

• The useful information is in black and white, but the image has a gray scale and there are
noise colors on the background.

• The handwriting is tilted, but the lines are relatively straight.
• There are noise pixels on this image, which could be ink, dust, or dirt.
• Words overlap, especially the ones from different lines. Sometimes the distances between

lines are smaller than the distances between words on the same line.
• Words are in arbitrary sizes and shapes.

Figure 1. A sample cursive handwriting image

The images of handwritten documents are usually scanned from paper documents. To be in good
quality, the resulting image must comprise a large number of pixels. All the characteristics make it
challenging to segment cursively handwritten documents into separated images of words. Previous
work has addressed this kind of segmentation using neural networks [8]. In this paper, we will tackle
this problem using a data mining approach, in particular, the density-based clustering approach.

This image segmentation problem differs from others in that, for handwriting documents, words are
in lines and not in random locations. Words on different lines should be separated, even though they
may be connected physically. Therefore, the first step should be to find the lines. Also, line information
can help adjust tilted images, when it is assumed that all lines are horizontal.

From a data mining point of view, word segmentation resembles clustering of the dark pixels. In
addition, since the clusters are in arbitrary shapes, density-based clustering seems promising for an
acceptable result. In this paper, we propose a framework to perform word segmentation on printed or
handwriting documents through various strategies of data preprocessing and density-based clustering.

2 Data Preprocessing
To prepare the document images for word segmentation, we perform multiple steps to preprocess the
images, including converting them to black/white images, adjusting the tilted images, and removing the
background noises.

2.1 Converting to B/W images

In handwritten documents, information lies in the words themselves, instead of the sizes of the
words or the colors and darkness of the pixels. Therefore, our first step is to change the images into
black and white ones, or other kinds of two-color pictures.

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

188

A simple way to do this is thresholding. Choose a “darkness” threshold, and if the pixel is dark
enough, it will be considered as a valid pixel, which can be replaced by a black pixel. If it is bright
enough, it is regarded as a background pixel, which can be replaced by a white pixel.

Since the original pictures have simple colors, as long as we choose a reasonable threshold, the
result will be acceptable for subsequent steps. We performed a 2-means clustering on the brightness of
all the pixels in a given image. The cutoff point of the two result clusters is used as a threshold. The
result of this method is acceptable, as shown in Figure 2, but it also relies on the quality of the raw
documents. In this image, the brightness of the word pixels is quite different from the background
pixels.

Figure 2. Converting to B/W image

2.2 Angle Adjustment

Because the original images are often tilted, we need to find the optimal angle to rotate the image.
To perform the rotation, line information can be helpful. If we count the number of black pixels in each
line of the image, the lines with words will have very different numbers from the lines in the gap. When
the image is rotated in the best angle, this difference will be the biggest.

Again, for this step, we performed 2-means clustering of these numbers of pixels, and used the
distance between the two resulting centers as the difference between lines and gaps. We rotated the
image to find the best angle, in which this distance is the largest.

The result of this process is promising. The adjustment works fine when the original images are not
tilted much (by just a couple of degrees). Figure 3 shows the performance of this process. The left one
is the result from the previous step, and the right one is the result after angle adjustment.

Figure 3. Result of angle adjustment

2.3 Noise Removing

There can be ink, dust, or dirt on the original documents. They left random black dots in the image.
Auto contrast cannot remove them, because they can be as dark as the valid pixels. They must be
removed in data preprocessing, because they can affect the results of clustering later.

We did not distinguish noise from outliers. For example, in handwriting, the dot in letter “i” can be
considered an outlier in clustering, but it should not be removed, and it is not a noise. In this step, we

Original Picture Black and white image

Black and white image Image after angle adjustment

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

189

simply counted the number of black pixels in the neighborhood of each black pixel. Pixels without
enough neighbors would be considered as noise and removed.

For this process to work, we have to specify the size of the neighborhood and minimal number of
points for each image. The result varies with the parameters. If the parameters are carefully chosen, the
result is acceptable. Figure 4 shows the performance of this process.

Figure 4. Result of noise removal

3 Density-based Clustering for Word Segmentation
Intuitively, we can just perform clustering on black pixels to get words. Since the words are in

arbitrary shape, a density-based clustering algorithm such as DBScan [9] will do the job, with
specifically chosen parameters. Basically, the clustering algorithm will find “connected” pixels and
group them into one cluster. However, a straightforward clustering will not work well for this problem,
the reasons for which are listed below.

First, it is hard to choose the parameters. The strokes of the handwriting have different thickness
everywhere. It is hard to find the perfect minimal number of points. Second, there are too many pixels.
If we use an EPS distance of 1, the result will not be good, because pixels in one word do not necessarily
connect to each other. If we use any larger EPS distance, the neighborhood will have too many pixels.
The algorithm will never stop or will take too much time to be practical.

Because of the above reasons, we developed our own method. The intuition behind this is that we
do not have to care about every single pixel. We can draw dots to denote the area of each word and
apply clustering on these dots, which have a much smaller count. The step-by-step process is given
below.

3.1 Blurring

Blurring marks the area of a word. With a good parameter, blurring will fill the gaps within one
word, and leave the blanks among words out. With blurring, we can easily see the area of each word.

In this step, we used a weighted sum method. For each pixel in the image, we obtain its
neighborhood and the black pixels in it. For every black pixel in this neighborhood, we calculate its
distance to the center. We add the reciprocals of all the distances together. This way we get the
importance of every pixel in this image. This importance factor will be used to re-draw this image. This
step is necessary. Without this step, the parameters in the following steps will be very hard to specify.

The result varies from the size of the neighborhood that we define. The larger this size is, the blurrier
the image gets. If we use size of 0, the resulting image is the same as the original image. Figure 5 shows
the performance of this process.

Image after angle adjustment Image after noise removal

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

190

Figure 5. Result of blurring

3.2 Plotting

We then plotted the blurred image with uniformly distributed dots. We used a threshold at this step
to avoid the entire image being dotted, since the blurred words may cover the whole canvas. We can
also specify the distance between dots. Figure 6 shows the results.

Figure 6. Result of plotting

3.3 Clustering

With the dots left on the image, the clustering process is very straightforward. The algorithm will
find the clusters with the given parameters. Using this clustering information, we can cluster the pixels
in the preprocessed data, because we can simply put each pixel to the cluster which its closest clustered
neighbor is in. Figure 7 shows the clustering result.

Figure 7. Result of clustering

To this point, we have the result, which is the preprocessed image with cluster information. Words
are separated. For printed images, this process works perfectly. An example is shown in Figure 8.

Image after preprocessing Blurred image. Neighborhood Radius = 10

Plotted image with distance 5 Plotted image with distance 2

Image after preprocessing Result

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

191

Figure 8. Clustering result for printed words

3.4 Line Segmentation

In the steps above, line information is not used. If words in different lines are connected physically,
it will be difficult to separate them using the process above. This is because if we do not define lines,
connected letters or strokes are supposed to be in the same word, which is not always true. An example
is given in Figure 9.

Figure 9. An example with connected letters or strokes

We already have the number of pixels in each line of the image. This number has to be large enough
to be an actual line. Each actual line can result in multiple image lines with high pixel counts. Therefore,
we tried to find where this number becomes larger than a threshold and where this number drops below
the threshold. This way we can find the duration of large numbers, which indicates existence of an
actual line.

This method worked for the first image we tested. However, when the image gets larger, it is hard
to find a good universal threshold. We have to find a way to detect local maximums and keep in mind
that they do not necessarily in turn indicate actual lines.

One threshold does not work well. Therefore, we took a closer look at the numbers (as shown in
Figure 10). X-axis is line number from the top of the image to the bottom while Y-axis is number of
black pixels in that line. We can see that one high threshold, say 300, will work for most part of this
image. But it will also miss the first two lines. A smaller threshold, say 100, will find these two lines,
but other peaks, which are not actual lines, will also be marked.

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

192

Figure 10. Pixel distribution of lines (X-axis is line number from the top of the image to the
bottom while Y-axis is number of black pixels in that line)

Currently we use two parameters to find the lines. However, this method is not perfect. To determine
a line, the number has to go higher than the threshold and drop back below it. And in between, the
number has to be higher than a much higher threshold in order to be a peak. The result is shown in
Figure 11. Blue lines show positions of lines. We can use their middle lines as gaps (red).

Figure 11. Determining the position of lines

We can see that with this information guiding, the original cluster can be further separated into three
clusters, i.e. three words.

4 Implementation
We implemented a system to perform preprocessing and clustering process discussed above. Figure

12 is a screenshot of the interface as well as the output.
For the preprocessing functionalities, Auto Contrast can make the picture black and white using 2-

means algorithm. Angle Adjustment will find the best angle according to details about number of black
pixels in each line. Show Lines will show lines of words according to the parameters. The lower

0

100

200

300

400

500

600

700

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

13
41

14
08

14
75

15
42

16
09

16
76

17
43

18
10

18
77

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

193

threshold is specified in the Text Box. The higher threshold is the lower threshold multiplied by the
number in the drop-down list. Pressing this button will also generate a BMP file named “lined.bmp”.
Outlier Removal will delete the pixels that have less than MinPts points in its neighborhood with radius
of EPS. The image in the memory will be updated accordingly.

For the clustering functionalities, Blur button blurs the image according to the size of the
neighborhood. Dots button plots the blurred image according to the distance between dots and a
coverage threshold. Blurring has to be done before this step. DBScan clusters the remaining dots.
Plotting must precede this step. In this step, the image won’t be updated. A user has to click “Combine”
to get the result and a BMP file named “result.bmp” will be saved on disk. If a user wants to do the
clustering again, he/she can start from Blur, without the need to reload the picture or preprocess it again.
After any step above, clicking the DUMP button will get a copy of the showing picture. The saved file
will be named “dump.bmp”.

Figure 12. Screenshot of the interface and the output

5 Discussions
With good parameters, our approach can segment printed images perfectly. For handwriting images,

our approach can find the words correctly if the words are relatively far from each other.
For preprocessing, to convert to B/W images, we used 2-means clustering on brightness of all the

pixels to get a threshold. This works for the documents at hand. However, if the images were in different
colors, this may not work well, because it will only divide the pixels into two clusters. For example, if
an image contains words in both black ink and red ink, red ink could get discarded, because it is possible
that the red color is not dark enough according to the 2-means result. Similarly, angle adjustment will
also have different results on different documents, since it is also based on the 2-means clustering
algorithm. This method works well on average. In our testing, it rotates only one testing image by 0.5
degrees when it should not have. Outlier removal yields satisfying results. However, it is sensitive to
parameters. We have to find the appropriate EPS and MinPts values to make the result optimal. Also,

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

194

it uses two universal parameters, instead of local ones. As we can see from the sample, one image may
have different parts that require different parameters.

For clustering, blurring and plotting make clustering more efficient. However, blurring may cause
the plotting to put dots where there were not any black pixels originally. Blurring spreads the ink. The
original intent is to fill the gaps within each word. But blurring not only fills the gaps within a word,
but also spreads ink outside the word. This leads to inter-word connection, which makes the clustering
less reliable. To choose a good blurring parameter, we have to find the radius large enough to fill the
blanks within a word, but not large enough to connect two words. Plotting, on the other hand, can break
a word. Usually a smaller distance works better.

Density-based clustering approach has some limitations [10], as discussed below.
• Sensitive to parameters
Even for printed images, parameters have to be chosen carefully to get a perfect segmentation. Each

image is different. However, with a batch of similar documents, the parameters do not have to change
much.

• Universal parameters
When choosing a good pair of parameters, we cannot separate certain words without breaking other

words. Also, we cannot connect letters/stokes in one word without connecting words that are not
supposed to. This is because density-based clustering uses universal parameters, while the image has
different characteristics on different parts. One possible solution is to use different local parameters.
The simplest variation will be to separate vertical and horizontal parameters, e.g. to use a vertical EPS
distance and a horizontal EPS distance. This way we can separate words on different lines without
breaking a horizontally long word.

• Connectedness
Density-based clustering only considers pixels that are connected to each other as being in the same

cluster. This is not exactly the case for cursive handwriting segmentation. Words can be connected to
each other, or separated within themselves, which goes against the nature of clustering. Number of
black pixels in each line gives sufficient information on the line segmentation. However, the method
we used for line segmentation is very sensitive to parameters.
 Here are some possible solutions. To detect the lines, an algorithm should be able to detect peaks.
Local maximum is not enough. The peak point has to be much higher than the neighboring point. One
actual line may have multiple peaks, and we should use the dominating one. Also, universal thresholds
may not work well. Note that there may be different numbers of words in different lines. For example,
in the beginning of a letter, the name of the recipient takes one line, but there is only one word in it. The
number of pixels is relatively small, but is still much higher than the neighboring gaps. Wavelet analysis
could be a reliable method for this task. Our current system did not combine line information with word
clustering, but it is considered for our future work. Here are some ideas about applications of line
information in word clustering. One possible method is to apply line information before the clustering.
We can put in white pixels in the line gaps, which will separate words in different lines. Or we can
simply perform clustering for each line. Putting white pixels in gaps may erase valid pixels. This could
potentially delete useful information, especially if the line segmentation is not perfect. Performing
clustering for each line may seem plausible, and it gives us a chance to use different parameters for
each line. However, we should keep in mind that lines are not strict. In handwriting, it is hard to keep
all words in a straight line. There will be overlaps. Each line may contain small parts of words from
other lines. They will end up with separate clusters.

We may also want to pay attention to the clusters that cross the lines after clustering. After the word
clustering, line information is only useful to those clusters that cross the line. We can use line
information to break them. However, there is no way to know how many clusters to break one into.
This problem can be as hard as adding line information before clustering.

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

195

6 Conclusions
In this paper, we present a framework of using density-based clustering for word segmentation in

printed or handwritten documents. The framework also includes multiple steps of preprocessing using
2-means clustering or neighborhood density. Preprocessing converts an image into black/white image,
adjusts its angle, and then removes the noise. The preprocessing of the images has provided very good
results. After preprocessing, the images will go through multiple steps, including blurring, plotting, and
density-based clustering. We also developed a system for the framework, including preprocessing and
clustering functionalities. Word segmentation using density-based clustering has achieved very good
results on printed images. The results on handwritten documents vary depending on whether the words
are relatively far from each other. For our future work, we plan to use line segmentation to further
improve the result.

References

[1] H. Lee and B. Verma, "Binary segmentation algorithm for English cursive handwriting
recognition", Patten Recognition, Vol. 45, Issue 4, 2012, pp. 1306-1317.

[2] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, "A Novel
Connectionist System for Unconstrained Handwriting Recognition", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 31, Issue, 5, 2009.

[3] A. Senior and A. Robinson, "An off-line cursive handwriting recognition system", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, Issue 3, 1998, pp. 309-321.

[4] R. Plamondon and S. Srihari, "Online and off-line handwriting recognition: a comprehensive
survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 1, 2000,
pp. 63-84.

[5] R. Vaidya, D. Trivedi, S. Satra, and M. Pimpale, "Handwritten character recogniztion using deep-
learning", International Conference on Inventive Communication and Computational
Technologies, 2018.

[6] N. Shun, G. O. Hiroshi, T. Ogata, and J. Tani, "Handwriting Prediction Based Character
Recognition using Recurrent Neural Network", IEEE International Conference on Systems Man
and Cybernetics, 2011.

[7] A. Graves and J. Schmidhuber, "Offline Handwriting Recognition with Multidimensional
Recurrent Neural Networks", Conference on Neural Information Processing Systems, 2009.

[8] M. Liwicki, A. Graves, and H. Bunke, "Neural Networks for Handwriting Recognition", Studies
in Computer Intelligence, 2012, pp. 5-24.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters a
density-based algorithm for discovering clusters in large spatial databases with noise", Proceedings
of International Conference on Knowledge Discovery and Data Mining (KDD), 1996, pp. 226-231.

[10] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd edition, Morgan
Kaufmann, 2011.

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

196

