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Abstract

We present in expository style the main ideas in SGGS, which stands for Semantically-Guided Goal-

Sensitive theorem proving. SGGS uses sequences of constrained clauses to represent models, instance

generation to go from a candidate model to the next, and resolution as well as other inferences to repair

the model. SGGS is refutationally complete for first-order logic, DPLL-style model based, semantically

guided, goal sensitive, and proof confluent, which appears to be a rare combination of features. In

this paper we describe the core of SGGS in a narrative style, emphasizing ideas and trying to keep

technicalities to a minimum, in order to advertise it to builders and users of theorem provers.

Introduction

The problem of first-order refutational clausal theorem proving could be considered solved,
because many refutationally complete methods are known. Motivations for seeking new meth-
ods come from the practice. For the work presented in this paper, the motivation resides in
recognizing the importance of having a first-order method that is simultaneously DPLL-style
model-based, semantically guided, goal sensitive, and proof confluent. We describe a method,
called SGGS, which has all these properties. The presentation aims at being simple and infor-
mal, leaving to other papers the technical details.

The recognition of the importance of each of these characteristics is of course not new.
Semantic guidance by a given interpretation is desirable, because the search space of a first-
order problem is infinite. Goal sensitivity, which means generating clauses connected, in some
sense, with the goal to be refuted, is similarly desirable, especially if there are many axioms or
a large knowledge base. Proof confluence, which means that no step prevents the system from
finding a proof, so that backtracking is not needed, is desirable, because first-order problems
may cause a lot of backtracking. A method is DPLL-style model based, if the state of the
derivation includes the description of a candidate (partial) model, inference and search for a
model help each other, and inference is seen (also) as model transformation. In SGGS, semantic
guidance and model-based style are connected, because the given interpretation is also the initial
candidate model. The DPLL renaissance, conflict-driven clause learning (CDCL), understood
as inference and search guiding each other, the practical success of model-based SAT and SMT
solvers, and the observation that models are relevant to applications and intuitive for users,
have all contributed to make such a model-based style appealing (e.g., [32, 18] for introductory
articles). However, model-based first-order reasoning is challenging. One way to go about it
is to generalize features such as CDCL from propositional reasoning to reasoning in first-order
theories (e.g., [19, 24]). Another way is to approach the problem in generic first-order theorem
proving.

Among the paradigms for first-order refutational clausal theorem proving, resolution is na-
tively proof confluent. The idea of semantic guidance produces, for instance, hyperresolution
and semantic resolution; and that of goal sensitivity yields, for example, resolution with set of
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support; linear resolution is even more goal sensitive, but at the expense of proof confluence.
However, resolution is not model-based: the models remain implicit, and play a rôle only in
the proof of refutational completeness, where semantic trees are used to survey models and
show that the inference system excludes them all. These remarks apply also to the methods
based on resolution and paramodulation/superposition for first-order logic with equality, using
transfinite semantic trees [22], or the rewrite model [1]. The extension of SGGS to first-order
logic with equality is future work.

Model elimination and tableaux-based methods can be considered model based, because they
represent models by chains of literals or branches in tableaux, and weakly goal-sensitive, because
one can start the tableaux with a clause coming from the negation of the conjecture, as in linear
resolution. However, they are not proof confluent. This dichotomy between resolution (proof
confluent but not model based) and model elimination tableaux (model based but not proof
confluent) led to investigate hybrid strategies that combine instance generation, as suggested
by the Herbrand theorem, with tableaux, as in the disconnection calculus [10, 29, 30, 31], or
hypertableaux [2, 9] (cf. Section 7.3 of [11] for a discussion of these strategies). These methods
are model based in the way tableaux-based methods are, and proof confluent, because they
generate instances rather than instantiate the variables in tableaux. In this way they avoid
backtracking, which is needed in tableaux to undo the instantiation of rigid variables. However,
these methods are not semantically guided, and not goal sensitive, since they link clauses to
the tableau irrespective of the goal.

The quest continued with methods that combine instance generation with a DPLL-style
model-based approach: the procedure maintains a candidate model, generates ground instances
false in the candidate model, updates it to satisfy them, and continues until either it finds a
model or proves unsatisfiability. The aim is to let model search guide instance generation. While
the origins of this perspective may be traced back to hyperlinking-based methods [16, 17, 34],
and the already mentioned disconnection calculus and hypertableaux, the notion of generalizing
features of DPLL to instance-based methods gave rise to FDPLL [3], for First-order DPLL, its
successor the model-evolution calculus [4, 5, 7, 8, 6], and the Inst-Gen method [20, 21, 27, 26].

The problem is how to realize this DPLL-style model-based scheme in a way that is first
order, semantically guided, goal sensitive, and proof confluent. For instance, ordered seman-

tic hyperlinking [34] is semantically guided and model based, but not first order; the model-
evolution calculus is first order and model based, but not goal sensitive and not proof confluent.
In this paper we describe the core of SGGS in a narrative style, emphasizing ideas and trying
to keep technicalities to a minimum, in order to advertise it to builders and users of automated
reasoners. The representation of models by SGGS clause sequences is studied in [14]. The
constraint solving part is covered in [13]. A manuscript including all aspects of the method,
with the technical details, the proofs of refutational completeness and goal-sensitivity, and more
references and comparison with related work is available as [15].

Clause Sequences, Models, and Derivations

While in propositional logic a (partial) model may be represented by a sequence of literals, for
first-order logic SGGS uses a sequences of constrained clauses A ✄ C, where A is a constraint
and C is a clause. A constraint is either an atomic constraint, or the negation, conjunction, or
disjunction of constraints. An atomic constraint may be empty, denoted by true, so that plain
clauses are included as a special case, or an expression of the form x ≡ y or top(t) = f , where
x and y are variables, ≡ is syntactic identity, f is a function symbol, t is a term, and top(t) is
the top symbol of term t. A variable that appears in A but not in C is implicitly existentially
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quantified. A constraint is in standard form, if it is a conjunction of distinct atomic constraints
of the form x 6≡ y and top(x) 6= f , where x and y are variables. A constraint top(x) 6= f says
that x cannot be replaced by a term whose top function symbol is f , while a constraint x 6≡ y

specifies that x and y may not be replaced by identical terms. In this paper all constraints are
in standard form: standardization is covered in [13, 15].

A key feature of both model representation and inference in SGGS is literal selection: we
write A✄ C[L] to say that literal L is selected in C; we call A✄ L a constrained literal; and if
L is selected in C, and C′ is an instance of C, the literal of C′ that is instance of L is selected
in C′. Just like a clause represents its ground instances, a constrained clause A✄C represents
its constrained ground instances (cgi’s), that are the ground instances of C that satisfy the
constraint A. Thus, the set of cgi’s of A ✄ C is Gr(A ✄ C) = {Cϑ : |= Aϑ, Cϑ ground},
and Gr(A ✄ L) is defined in the same way. For example, P (a, b) ∈ Gr(x 6≡ y ✄ P (x, y)), but
P (b, b) 6∈ Gr(x 6≡ y ✄ P (x, y)).

SGGS Clause Sequences

SGGS is semantically guided by a fixed interpretation I. A constrained literal A ✄ L is I-true
if all its cgi’s are true in I, that is, I |= Gr(A ✄ L). Since variables are implicitly universally
quantified, in order to falsify a constrained literal, it is sufficient to falsify one of its cgi’s. SGGS
uses a stronger notion of falsification: a constrained literal A ✄ L is I-false, if all its cgi’s are
false in I, that is, the complementary literals of all its cgi’s are true in I. A constrained literal
may be neither I-true nor I-false, because it can be that some of its cgi’s are true in I and
some are false. Note that for ground literals, to be I-true and true in I is the same thing, and
to be I-false and false in I is the same thing, because a ground literal has only one cgi, which
is the literal itself.

For clauses, we say that a constrained clause is I-all-true, if all its literals are I-true, and
I-all-false if all its literals are I-false. Being I-all-true is stronger than being true in I: a clause
is true in I if all its ground instances are; that is, for all ground instances, there is at least one
literal which is true in I. On the other hand, a clause is I-all-true if all ground instances of all
its literals are true in I. Similarly, being I-all-false is stronger than being false in I: a clause is
false in I if it has a ground instance that is false in I; that is, all literals in this ground instance
are false in I. On the other hand, a clause is I-all-false if all ground instances of all its literals
are false in I.

The basic structure that SGGS works with is the clause sequence: it is either empty, denoted
by ε, or a finite sequence of constrained clauses Γ = A1 ✄ C1[L1], . . . , An ✄ Cn[Ln] such that
for all i, 1 ≤ i ≤ n:

1. Every literal in Ci is either I-true or I-false;

2. A literal Li in Ci is selected; and

3. If a clause has I-false literals, then one is selected.

Models

How does a clause sequence represent a partial interpretation? The partial interpretation Ip(Γ)
induced by a clause sequence Γ is defined inductively over the length of the clause sequence,
in such a way that each constrained clause in the sequence may contribute. Thus, we need
the notion of prefix: given Γ as above, its prefix of length j, denoted Γ|j , for 1 ≤ j ≤ n, is
A1 ✄ C1[L1], . . . , Aj ✄ Cj [Lj ]. Note that Γ|n is Γ itself.
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If Γ is empty, its induced partial interpretation is also empty: Ip(ε) = ∅. Otherwise, we
define Ip(Γ|i), for all i, 0 < i ≤ n, and Ip(Γ) is Ip(Γ|n). Ip(Γ|i) is Ip(Γ|i−1) plus the proper

constrained ground instances (pcgi’s) of the selected literal Li in clause Ai ✄Ci[Li]. The pcgi’s
of Li are simply its instances in the pcgi’s of Ai✄Ci[Li]. The pcgi’s of Ai✄Ci[Li] are those cgi’s
that have no intersection with Ip(Γ|i−1), and whose selected literal does not appear negated
in Ip(Γ|i−1). The first requirement means that these cgi’s are not satisfied by Ip(Γ|i−1). The
second requirement means that the selected literals of these cgi’s can be safely added to Ip(Γ|i−1)
to form Ip(Γ|i), because their complements do not appear in Ip(Γ|i−1).

Ip(Γ) can be completed in an interpretation, denoted I[Γ], by consulting I, whenever Ip(Γ)
does not determine the truth of a ground literal: the interpretation I[Γ] induced by Γ is I

modified to satisfy the proper constrained ground instances of the selected literals in Γ.
For example, let I be the interpretation that makes all negative literals true. If Γ is the

sequence of unit clauses P (a, x), P (b, y),¬P (z, z), P (u, v), then I[Γ] |= P (a, t) and I[Γ] |= P (b, t)
for all ground terms t, but I[Γ] 6|= P (t, t) for t other than a and b, and I[Γ] |= P (u, v) for all
distinct ground terms u and v. Note how I[Γ] is built by consulting Γ left to right, so that the
order of clauses in a sequence is meaningful. This is a consequence of having defined Ip(Γ) by
induction on the length of the sequence by using prefixes.

For another example, again with I all negative, let Γ = C1, C2, C3 be [P (x)], ¬P (f(y)) ∨
[Q(y)], ¬P (f(z)) ∨ ¬Q(g(z)) ∨ [R(f(z), g(z))], where selected literals are in brackets. I[Γ|1]
interprets all positive literals as false, except for the ground instances of P (x); I[Γ|2] interprets
all positive literals as false, except for the ground instances of P (x) and Q(y); and I[Γ|3] =
I[Γ], interprets all positive literals as false, except for the ground instances of P (x), Q(y) and
R(f(z), g(z)).

SGGS Derivations

Although a clause sequence is the main component of the state of a derivation in SGGS, there is
also some other information that SGGS needs to maintain, and that is an assignment of I-true
literals to I-false literals. Intuitively, since we are looking for a refutation, I-true literals need
to be neutralized, by showing that they are covered, in some sense, by I-false literals. However,
this needs to apply to I-true literals that are not selected: if Ai ✄Ci[Li] has an I-true literal L
other than Li, the focus on Li is spoiled, in a sense, because the clause is satisfied already by I

with another literal, namely L. Thus, such an I-true literal L must be assigned to a preceding
clause, that is an Aj ✄Cj [Lj ] with j < i, such that Lj is I-false, and all cgi’s of Ai ✄L appear
with opposite sign among the pcgi’s of Aj ✄ Lj . It follows that L is false in Ip(Γ|j), I[Γ|j ]
and I[Γ], and false because all its cgi’s are, and not just one. We say that Ai ✄ Ci[Li] depends
on Aj ✄ Cj [Lj ]. It is plausible that an assignment thus defined is a feature of SGGS geared
towards refutation, and as such, it may be one of the feature to be re-assessed if one wanted to
orient the method towards model finding. From now on, an SGGS clause sequence is a clause
sequence equipped with such an assignment for every one of its clauses.

Given a set S of clauses and an initial interpretation I, an SGGS derivation is a series
Γ0 ⊢ Γ1 ⊢ . . .Γj ⊢ . . . of SGGS clause sequences, where Γ0 is empty, and Γj with j > 0 is
generated from Γj−1, S, and I, by an SGGS inference rule. A derivation is a refutation if there
is a k > 0 such that Γk contains the empty clause, written ⊥.

A propositional example

We consider an example to get an intuition of how SGGS behaves at the propositional level.
We compare SGGS with a version of DPLL applied to S = {P ∨Q,P ∨¬Q,¬P ∨Q,¬P ∨¬Q}

28



SGGS: an Exposition M. P. Bonacina and D. A. Plaisted

with P < Q in an ordering on atoms and initial interpretation I = {¬P,¬Q}. Clause P ∨ Q

contradicts I. Then I is modified to I1 = {¬P,Q} to satisfy P ∨Q. Clause P ∨¬Q contradicts
I1. Now these two clauses are resolved to produce P . Next I1 is modified to I2 = {P,Q} to
satisfy P . Clause ¬P ∨ ¬Q contradicts I2. Thus I2 is modified to I3 = {P,¬Q} to satisfy P

and ¬P ∨ ¬Q. Clause ¬P ∨ Q contradicts I3. This clause is resolved with ¬P ∨ ¬Q to yield
¬P . Finally, ¬P resolves with P to give ⊥.

The behavior of SGGS is both similar and different. Also in SGGS the search is guided by the
semantics, and unsatisfiability is shown by finding clauses that contradict each interpretation.
In the above DPLL example, resolution is applied to already chosen clauses that contradict two
interpretations differing in maximal literals, which are resolved upon; and I is modified each
time to satisfy a maximal literal of a clause. In SGGS the rôle of maximal literals is played
by selected literals: at each stage I[Γ] is I modified to satisfy selected literals; only selected
literals are resolved upon; since every literal in an SGGS sequence is either I-true or I-false,
resolution resolves an I-true with an I-false literal; one of the parents must be I-all-true, and
precede the other in the sequence. Thus, clauses may be reordered prior to resolution. After
a resolution step, the parent that is not I-all-true is removed, together with all the clauses
depending on it. Figure 1 shows an SGGS refutation of S with I as in the DPLL example,
labelling C1, . . . , Ci, . . . the clauses in the current sequence.

Γ0. ε I[Γ0] = I = {¬P,¬Q}
Γ1. Q ∨ [P ] (SGGS-extension) I[Γ1] = {P,¬Q}

P and Q are both I-false;
C1 contradicts I[Γ0] but I[Γ1] satisfies it.

Γ2. Q ∨ [P ], ¬P ∨ [Q] (SGGS-extension) I[Γ2] = {P,Q}
In C2, ¬P is I-true, assigned to C1; Q is I-false;
C2 contradicts I[Γ1]; I[Γ2] satisfies C1 and C2.

Γ3. Q ∨ [P ], ¬P ∨ [Q], ¬P ∨ [¬Q] (SGGS-extension) I[Γ3] = {P,Q}
In C3, ¬P and ¬Q are I-true and assigned to C1

and C2, respectively.
Γ4. Q ∨ [P ], ¬P ∨ [¬Q], ¬P ∨ [Q] (Reordering before resolution) I[Γ4] = {P,¬Q}

In C2, ¬Q is not assigned.
Γ5. Q ∨ [P ], ¬P ∨ [¬Q], [¬P ] (Resolving C2 and C3 in Γ4) I[Γ5] = {P,¬Q}
Γ6. [¬P ], Q ∨ [P ], ¬P ∨ [¬Q] (Reordering before resolution) I[Γ6] = {¬P,¬Q}

In C1, ¬P is not assigned.
Γ7. [¬P ], [Q], ¬P ∨ [¬Q] (Resolving C1 and C2 in Γ6) I[Γ7] = {¬P,Q}

C3 has nowhere to assign ¬P .
Γ8. [¬P ], [Q] (Deletion of ¬P ∨ ¬Q that depended on Q ∨ P )

I[Γ8] = {¬P,Q}
Γ9. [¬P ], [Q], ¬Q ∨ [P ] (SGGS-extension) I[Γ9] = {¬P,Q}

In C3, ¬Q is I-true and assigned to C2.
Γ10. [¬P ], [Q], [¬Q] (Resolving C1 and C3 in Γ9) I[Γ10] = {¬P,Q}
Γ11. [¬P ], [¬Q], [Q] (Reordering before resolution) I[Γ11] = {¬P,¬Q}
Γ12. [¬P ], [¬Q], ⊥ (Resolving C2 and C3 in Γ11)

Figure 1: Example of a refutation by SGGS in propositional logic.
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The Main Inference Rules

The three main inference mechanisms in SGGS are instance generation by extension, a restricted
form of resolution, and a few splitting rules to partition clauses. SGGS-extension adds to the
current clause sequence an instance of a clause in S: the objective is to find a model of all
instances of all clauses in S, and if some are not covered, they must be added. It may happen
that selected literals have ground instances in common. If the literals have opposite sign,
this would make the model inconsistent: SGGS features a restricted form of resolution, called
SGGS-resolution, to remove such contradictions. SGGS-resolution represents an implicit sort
of backtracking over the set of possible models of S. The resolvent is a lemma, that constrains
the model, because the model must satisfy it, and intuitively captures a portion of the search
space of models that has been explored. If resolution generates the empty clause, no model
can be found. As usual, SGGS-resolution is accompanied by a form of factoring, called SGGS-

factoring. If selected literals have ground instances in common, and have the same sign, there
is duplication. SGGS features splitting rules that partition a clause with respect to another
clause. The clause that gets partitioned, or split, is replaced by other clauses, that have its
same set of ground instances, in such a way that the duplicated literals are isolated and can be
removed.

SGGS-extension

The idea of SGGS-extension is that if there is a ground instance D ≡ Cµ (as usual, lower case
Greek letters denote substitutions) of a clause C in S that is not satisfied by the interpretation
I[Γ] induced by the current Γ, then Γ should be amended to satisfy D. SGGS works at the
first-order level, not at the ground level. Therefore, it captures D by generating a constrained
clause E, such that E ≡ Cϑ is an instance of C, and D ≡ Cϑτ ≡ Eτ is an instance of E.
Adding E to Γ modifies I[Γ] to satisfy D. The conflict between D, hence E, and I[Γ] resembles
a conflict in DPLL, and therefore an SGGS-extension step represents a fresh start, with an
effect similar to that of backtracking in DPLL.

To understand the mechanics of SGGS-extension we reason as follows. Let D ≡ Cµ be a
ground instance of a clause C in S such that I[Γ] 6|= D. This means that all literals of D are
false in I[Γ]. Assume that they are also all false in I. Then, it is sufficient to extend Γ with an
instance Cβ of C, such that D is an instance of Cβ, and β is a most general substitution such
that all and only the cgi’s of Cβ are false in I (which implies Cβ is I-false). We call such a
substitution β a most general I-falsifier. Note that β may also be empty, and in such a case we
simply extend the sequence with C. This typically happens at the beginning of the derivation,
when we simply extend Γ with I-false input clauses (e.g., the first two steps in Figure 2).

Assume instead that some literals in D are true in I. Let L1, . . . , Ln, n > 0, be the literals
of C such that L1µ, . . . , Lnµ are the literals of D that are true in I. Thus, these literals
L1µ, . . . , Lnµ are true in I and false in I[Γ]. Since I[Γ] differs from I for the pcgi’s of selected
literals, this means that there must be clauses B1 ✄D1[M1], . . . , Bn ✄Dn[Mn] in Γ, such that
M1, . . . ,Mn have pcgi’s, I[Γ] |= Mi, and Liµ is an instance of ¬Mi, for i = 1, . . . , n (possibly up
to some permutation of the indices). It follows that the Li’s and Mi’s unify and have opposite
sign: Liα ≡ ¬Miα, for i = 1, . . . , n, where α is their simultaneous most general unifier (mgu).

When we perform inferences at the first-order level, we do not know the ground instance
D of C that is falsified by I[Γ]. Thus, SGGS-extension looks for a clause C in S and clauses
B1 ✄ D1[M1], . . . , Bn ✄ Dn[Mn] (n > 0) in Γ, such that the literals M1, . . . ,Mn are I-false,
and simultaneously unifiable with n distinct literals {L1, . . . , Ln} in C having opposite sign:
Liα ≡ ¬Miα, for 1 ≤ i ≤ n. As before, α is the simultaneous mgu of these literals. Note how

30



SGGS: an Exposition M. P. Bonacina and D. A. Plaisted

the fact that M1, . . . ,Mn are I-false means that their pcgi’s are true in I[Γ], which means that
L1α, . . . , Lnα are false in I[Γ] and “cover” the L1µ, . . . , Lnµ false in I[Γ] of the above reasoning
at the ground level. Thus, the clause E that is an instance of C and such that D is an instance
of E, will be an instance of Cα.

Applying to C the mgu α is not enough, though, in general, because L1, . . . , Ln are not the
only literals in C (and in its ground instance D falsified by I[Γ] that we want to capture). In
other words, we are not interested in adding to Γ an instance of C that is true in I[Γ] thanks
to some literal other than L1, . . . Ln, because such an instance would not capture the ground
instance(s) D false in I[Γ]. Also, the inference rule needs to cover also the case mentioned at
the beginning, where D has no I-true literals. Thus, SGGS-extension applies a most general

I-falsifier β of all the literals in Cα other than L1α, . . . , Lnα.
Since constraints are inherited, SGGS-extension adds the clause E ≡ (

∧n

j=1
Bjϑ) ✄ C[L]ϑ,

where ϑ = αβγ. We omit for simplicity the technical explanation of the third substitution
γ, named extension substitution. In practice, it is an mgu of I-false literals in Cαβ with the
complements of selected I-true literals in Γ. Its purpose is to make the added instance as
precise as possible in capturing ground instances falsified by I[Γ]. Note that every literal in
Cαβ is either I-true or I-false by construction: the Liαβ’s are I-true (because Liα ≡ ¬Miα,
for 1 ≤ i ≤ n, and the Mi’s are required to be I-false), and all other literals in Cαβ are
I-false (because β is a most general I-falsifier for them). Thus, every literal in E is either
I-true or I-false, as required by the definition of clause sequence. This also means that an
assignment for clause E simply assigns its I-true literals L1ϑ, . . . , Lnϑ to the side premises
B1 ✄D1[M1], . . . , Bn ✄Dn[Mn] of the SGGS-extension step.

Other technical aspects of SGGS-extension include the choice of selected literal in the added
clause E, and the placement of E in Γ. For simplicity, we can think of the added clause E as
being placed always at the rightmost end of Γ, so that an SGGS-extension step transforms Γ into
ΓE. There is an exception to this, which is connected to the proof of refutational completeness.
The proof employs a well-founded total ordering on ground literals, applied to compare pcgi’s of
selected literals. For convergence under this ordering, there is a situation where SGGS-extension
places E to the left of other clauses with larger selected literals. However, these technicalities
are beyond an expository paper, and we refer the interested reader to [15].

In terms of implementation, finding literals that unify and have opposite signs, computing
mgu’s, and using a well-founded total ordering on ground literals are routine operations for
theorem provers. In addition, SGGS-extension requires evaluation with respect to the given
interpretation I to find I-false literals, and computation of a most general I-falsifier for a bunch
of literals. However, I is fixed; when I is determined by sign as in hyperresolution (e.g., all-
positive, or all-negative, as in the manual examples in this paper), the sign of literals determines
whether they are I-false or I-true.

SGGS-splitting

Then SGGS features a few inference rules that split a clause occurring in the current SGGS
clause sequence Γ with respect to another clause in Γ. The point is that the selected literals of
clauses in Γ may have cgi’s in common, meaning that they have the same atoms. We use at(L)
for the atom of literal L, and at(T ) = {at(L) : L ∈ T } for the atoms of a set T of literals. Then
we say that constrained literals A✄L and B✄M intersect if at(Gr(A✄L))∩at(Gr(B✄M)) 6= ∅,
and are disjoint, otherwise. If A ✄ L and B ✄ M do not share variables, they intersect if
and only if at(L) and at(M) unify and the constraint (A ∧ B)σ is satisfiable, where σ is the
mgu of at(L) and at(M). The intersection is given by at(Gr(A ✄ L)) ∩ at(Gr(B ✄ M)) =
at(Gr((A ∧B)σ ✄Mσ)) = Gr((A ∧B)σ ✄ at(M)σ).
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Having a notion of intersection, and therefore one of disjointness, we can capture the idea
of a partition of a clause: a partition of a constrained clause A ✄ C[L] is a set of constrained
clauses {Ai ✄ Ci[Li]}ni=1

such that:

1. They have the same cgi’s (in symbols, Gr(A ✄ C) =
⋃n

i=1
{Gr(Ai ✄ Ci[Li])});

2. The Ai ✄ Li’s are pairwise disjoint; and

3. The Li’s are chosen consistently with L.

For example, {true✄ P (f(z), y), top(x) 6= f ✄ P (x, y)} is a partition of true ✄ P (x, y) (which
can of course be written simply P (x, y)).

If clauses A✄C[L] and B ✄D[M ] in an SGGS clause sequence have selected literals L and
M that intersect, SGGS features inference rules that replace A✄C[L] by split(C,D), that is a
partition of C[L], where all cgi’s of L that are also cgi’s of M are isolated in one of the clauses
of the partition. To be precise, a splitting of A✄ C[L] by B ✄D[M ], denoted split(C,D), is a
partition {Ai ✄ Ci〈Li〉}ni=1

of A✄ C[L] such that:

1. There is a j, 1 ≤ j ≤ n, such that at(Gr(Aj ✄ Lj)) ⊆ at(Gr(B ✄M)), and

2. For all i, 1 ≤ i 6= j ≤ n, at(Gr(Ai ✄ Li)) and at(Gr(B ✄M)) are disjoint.

Clause Cj is the representative of D in split(C,D): at(Gr(Aj ✄Lj)) is the intersection of A✄L

and B ✄M .
Computing split(C,D) introduces constraints, including non-standard ones, even when C

and D have empty constraints to begin with, and this is precisely why SGGS works with
constrained clauses. For example, a splitting of true ✄ P (x, y) by true ✄ P (f(w), g(z)) is
{true✄P (f(w), g(z)), top(x) 6= f✄P (x, y), top(y) 6= g✄P (f(x), y)}. Constraint manipulation
to compute splittings is covered in [13, 15].

SGGS-resolution

The third main rule in the SGGS inference system is SGGS-resolution: resolution in SGGS
applies to two clauses in the current clause sequence Γ. Since the sequence represents a model,
resolution is conceived as a way to reason in the current model, which corroborates the model-

based character of the method. We already saw several characteristics of SGGS-resolution in
the description of the propositional example of Figure 1: it resolves an I-true selected literal in
an I-all-true clause with an I-false selected literal of a following clause in the sequence, and the
resolvent replaces the parent that is not I-all-true. It is an essential character of the resolution
principle to resolve two literals that cannot be simultaneously true in any interpretation. Since
SGGS is guided by the given interpretation I, and all literals in a clause sequence are either
I-true or I-false, SGGS-resolution resolves an I-true and an I-false literal. Since SGGS selects
an I-false literal as soon as a clause has any, an I-true literal can be selected only in an I-all-true
clause, and therefore one of the two parents of an SGGS-resolution must be I-all-true.

We are left to see the first-order features of SGGS-resolution, and to explain why the I-
all-true parent precedes the other parent in the sequence and why the resolvent replaces the
other parent. Intuitively, the reason is that the purpose of resolution in SGGS is not to infer a
new clause and add it to a set of clauses, as in typical resolution-based methods, but to amend

the current model, to improve its representation as offered by the clause sequence. Specifically,
assume that B✄D[M ] precedes A✄C[L] in the SGGS clause sequence, B✄D[M ] is I-all-true, L
is I-false, L ≡ ¬Mϑ for some substitution ϑ, and A logically implies Bϑ. Then the constrained

resolvent A ✄R, where R is (C \ {L}) ∪ (D \ {M})ϑ replaces A ✄ C[L] in the sequence. Note
that SGGS-resolution uses matching, not unification: the I-false literal L is an instance of the
complement of the I-true literal M . This condition ensures (cf. Lemma 5.1 in [15]) that A✄L
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has no pcgi’s, because the atoms of the cgi’s of A✄L that A✄C[L] would capture in its position
in the sequence are already covered by B ✄D[M ]. Therefore, A ✄ C[L] is replaced by A ✄ R,
which captures the cgi’s of C \ {L}. Since the pcgi’s of selected literals are what make I[Γ],
on top of the initial interpretation I, this shows in which sense SGGS-resolution amends the
representation of the current model.

Deletion of Disposable Clauses

SGGS-extension adds one clause, splitting rules replace a clause by several, and SGGS-
resolution replaces a clause by another one. Does the method ever remove clauses from the
sequence? Yes, all constrained clauses that are disposable can be removed. This is the task
of an inference rule called deletion. A non-empty clause is disposable if it has neither proper
constrained ground instances nor complementary constrained ground instances (ccgi’s).

Complementary constrained ground instances are the dual of proper constrained ground
instances: the ccgi’s of Ai ✄Ci[Li] are those cgi’s that have no intersection with Ip(Γ|i−1), and
whose selected literal appears negated in Ip(Γ|i−1). Similar to pcgi’s, by the first requirement,
ccgi’s are not satisfied by Ip(Γ|i−1). The second requirement is the negation of that for pcgi’s:
the selected literal of a ccgi is the complement of a literal in Ip(Γ|i−1). Then, the ccgi’s of Li

are simply its instances in the ccgi’s of Ai ✄ Ci[Li]. In essence, the pcgi’s of Li are those that
can be added to the current model, whereas the ccgi’s are those that contradict the current
model. For lack of space we cannot discuss the rôle of ccgi’s further; however, a constrained
clause that has neither pcgi’s nor ccgi’s is useless for the search of a model, and therefore such
a clause can be discarded.

When a clause is removed, because it is disposable, or because it is replaced by its resolvent in
SGGS-resolution, all the clauses that depend on it according to the assignment are also deleted.
Furthermore, when a splitting rule replaces a clause A✄ C[L] by its splitting split(C,D) with
respect to another clause B✄D[M ] in the sequence, it is possible to delete some of the clauses
in split(C,D), provided the representative of D is kept. While the deletion of disposable clauses
is part of the inference system, these additional deletions are heuristic at this stage.

We conclude this description of the inference system with an example at the first-order level:
Figure 2 shows a refutation for S = {¬P (f(x)) ∨ ¬Q(g(x)) ∨ R(x), P (x), Q(y), ¬R(c)} with
I all-negative.

Refutational Completeness and Goal Sensitivity

An SGGS derivation terminates either with a sequence including the empty clause, or with a
sequence which no inference rule can be applied to. We proved that SGGS is refutationally

complete: if S is unsatisfiable, any fair SGGS derivation generates a clause sequence containing
the empty clause; if S is satisfiable, the derivation may be infinite, and its limit represents
a model of S. The notion of fairness defined for SGGS derivations basically states that any
inference, that is infinitely often possible, is eventually done. The argument of the proof of
refutational completeness rests on a well-founded convergence ordering on clauses sequences,
which in turn uses the already mentioned well-founded total ordering on ground literals. By
well-foundedness, a derivation that is a non-ascending chain, admits limit, in the form of a
limiting sequence. We prove that a bundled derivation, which satisfies a few simple restrictions,
forms a non-ascending chain, and therefore has a limiting sequence. Then we show that if S is
unsatisfiable, a fair bundled derivation terminates with a contradiction, because if it does not,
there is always an inference that modifies the limit, contradicting well-foundedness.
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Γ0. ε

Γ1. [P (x)] (SGGS-extension)
Γ2. [P (x)], [Q(y)] (SGGS-extension)
Γ3. [P (x)], [Q(y)], ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)] (SGGS-extension)
Γ4. [P (x)], [Q(y)], ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)], [¬R(c)] (SGGS-extension)
Γ5. [P (x)], [Q(y)], x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)],

¬P (f(c)) ∨ ¬Q(g(c)) ∨ [R(c)], [¬R(c)] (split third clause)
Γ6. [P (x)], [Q(y)], x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)],

[¬R(c)], ¬P (f(c)) ∨ ¬Q(g(c))∨ [R(c)] (move last clause left)
Γ7. [P (x)], [Q(y)], x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)],

[¬R(c)], ¬P (f(c)) ∨ [¬Q(g(c))] (resolve last two clauses)
Γ8. [P (x)], top(y) 6= g ✄ [Q(y)], z 6≡ c✄ [Q(g(z))],

[Q(g(c))], x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)],
[¬R(c)], ¬P (f(c)) ∨ [¬Q(g(c))] (split second clause)

Γ9. [P (x)], top(y) 6= g ✄ [Q(y)], z 6≡ c✄ [Q(g(z))],
¬P (f(c)) ∨ [¬Q(g(c))], [Q(g(c))],
x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)], [¬R(c)] (move last clause left)

Γ10. [P (x)], top(y) 6= g ✄ [Q(y)], z 6≡ c✄ [Q(g(z))],
¬P (f(c)) ∨ [¬Q(g(c))], [¬P (f(c))],
x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)], [¬R(c)] (resolve clauses 4 and 5)

Γ11. top(x) 6= f ✄ [P (x)], y 6≡ c✄ [P (f(y))], [P (f(c))],
top(y) 6= g ✄ [Q(y)], z 6≡ c✄ [Q(g(z))],
¬P (f(c)) ∨ [¬Q(g(c))], [¬P (f(c))],
x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)], [¬R(c)] (split first clause)

Γ12. top(x) 6= f ✄ [P (x)], y 6≡ c✄ [P (f(y))], [¬P (f(c))],
[P (f(c))], top(y) 6= g ✄ [Q(y)], z 6≡ c✄ [Q(g(z))],
¬P (f(c)) ∨ [¬Q(g(c))],
x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)], [¬R(c)] (move ¬P (f(c)) left)

Γ13. top(x) 6= f ✄ [P (x)], y 6≡ c✄ [P (f(y))], [¬P (f(c))],
⊥, top(y) 6= g ✄ [Q(y)], z 6≡ c✄ [Q(g(z))],
¬P (f(c)) ∨ [¬Q(g(c))],
x 6≡ c✄ ¬P (f(x)) ∨ ¬Q(g(x))∨ [R(x)], [¬R(c)] (resolve clauses 3 and 4)

Figure 2: Example of a refutation by SGGS in first-order logic.

Another main result about SGGS is that it is goal sensitive, provided the initial interpreta-
tion I satisfies the input clauses issued from the assumptions, not those issued from the negation
of the conjecture. In other words, let the input set of clauses S be partitioned into T ⊎ iSOS,
where T contains the clauses issued from the assumptions, and iSOS, which stands for input set
of support, contains those issued from the negation of the conjecture. The hypothesis is that I
satisfies T and does not satisfy iSOS. Then, two ground clauses are deemed connected, if they
have complementary literals. The set of goal-relevant clauses is defined as the closure of the set
of ground instances of clauses in iSOS with respect to connection and resolution. Accordingly,
a clause sequence is goal-relevant if all ground instances of all its clauses are. We proved that
SGGS is goal sensitive in the sense that it only generates goal-relevant clause sequences. The
proof shows that SGGS uses assignments of I-true literals to I-false literals to track literals and
ensure that only goal-relevant clause sequences are generated.
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Discussion

Perspectives on instance-based theorem proving were given in [23, 25]. They distinguish between
methods where the interleaving of instance generation and ground reasoning is fine-grained, as
in the model-evolution calculus [4, 5, 7, 8, 6], and methods where it is coarse-grained, as in
Inst-Gen [20, 21, 27, 26], to facilitate the integration of SAT or SMT-solvers, taken “off the
shelf.” SGGS does not feature either kind of interleaving, and therefore differs from all the
methods that do.

The model-evolution calculus generalizes DPLL to first order, with case analysis of dis-
junction and backtracking: SGGS differs from the model-evolution calculus because it is proof
confluent, goal sensitive, and does not reduce to DPLL if given a propositional problem. The
Inst-Gen method may need to keep instances of clauses (e.g., storing both C and Cϑ). The
same remark applies to methods based on instance generation by clause linking, such as the al-
ready mentioned disconnection calculus [10, 29, 30, 31] and hyperlinking strategies [16, 17, 34].
This is a subtle point that is rarely discussed. Informally, in these methods variables represent
particular objects, and are not universally quantified like in resolution. In practice, this also
means that these methods are not compatible with unrestricted subsumption. On the other
hand, in SGGS variables in clauses are universally quantified like in resolution, and in this sense
SGGS is fully a first-order method.

For goal-sensitivity, SGGS is reminiscent of resolution with set of support [37] for the notion
of viewing the input set of clauses as the partition T⊎iSOS, but the two methods differ in many
other aspects. For instance, resolution with set of support is not semantically guided, because
it assumes that T is consistent, but does not use an initial interpretation I that satisfies T and
not iSOS. In SGGS the input set of support is used only to define and prove goal-sensitivity,
but does not take part in the operations of the method. A feature that sets SGGS aside
from all previous methods is the use of assignments between literals to ensure that all derived
clause sequences are goal-relevant. Finding a suitable I is a requirement to be met, in order
to make SGGS goal-sensitive in practice. However, goal sensitivity is especially relevant when
reasoning in large knowledge bases, where an intended model may be known and assumed as
initial interpretation.

In this paper we illustrated SGGS in a narrative, informal way. A presentation in terms of
inference rules transforming a given SGGS clause sequence into another SGGS clause sequence,
under suitable side conditions, is given in [15]. Since SGGS is model-based à la DPLL, we plan
to investigate also presenting it as an abstract transition system, in the style of [33, 12, 19],
showing explicitly in the state also the current partial model.

Research on SGGS has just begun, and there are many directions for future work, first and
foremost practical inference control and implementation. Implementing SGGS will require to
study how to give non-trivial (i.e., not based on sign) initial interpretations, and how to compute
efficiently new mechanisms such as most general falsifiers, clause splittings, disposability tests.
In the method as described here, the initial interpretation I is like a “default” interpretation,
and SGGS generates clause sequences that represent partial models different from I. Another
lead could be to make I also dynamic, as a parameter that can be varied heuristically during
the derivation. Heuristics in DPLL-based SAT-solvers might be a source of inspiration. Other
topics for further investigation include the study of SGGS as a model-building method, and
its extension to theory reasoning, beginning with equality. Theorem proving has made giant
strides, and state of the art systems are very sophisticated in working with mostly syntactic
information (e.g., [36, 28, 35]). The challenge of SGGS is to go towards a semantically-oriented
style of theorem proving, that might pay off for hard problems or new domains.
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