
EPiC Series in Computing

Volume 54, 2018, Pages 104–109

ARCH18. 5th International Workshop on Applied
Verification of Continuous and Hybrid Systems

ARCH-COMP18 Category Report:

Results on the Falsification Benchmarks

Adel Dokhanchi1, Shakiba Yaghoubi1, Bardh Hoxha2, Georgios Fainekos1, Gidon
Ernst3, Zhenya Zhang4, Paolo Arcaini4, Ichiro Hasuo4, and Sean Sedwards5

1 School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ, U.S.A.
{adokhanc, syaghoub, fainekos}@asu.edu

2 Department of Computer Science,
Southern Illinois University, Carbondale, IL, U.S.A.

bhoxha@cs.siu.edu
3 Computing and Information Systems,
University of Melbourne, VIC, Australia

gidon.ernst@unimelb.edu.au
4 National Institute of Informatics, Tokyo, Japan

{zhangzy,arcaini,hasuo}@nii.ac.jp
5 Intelligent Systems Engineering Lab,
University of Waterloo, ON, Canada

sean.sedwards@uwaterloo.ca

1 Introduction

This report presents the outcomes of the 2018 friendly competition in the ARCH workshop [3]
for category of the falsification of temporal logic specifications over Cyber-Physical Systems.
The results extend those of the competition of the previous year 2017 by including an addi-
tional approach to falsification. Namely, this report includes the 2017 outcomes by the tool
S-TaLiRo [2] and presents new results by the tool FalStar [1]. The benchmarks are avail-
able on the ARCH website (cps-vo.org/group/ARCH). In this report, we present results on a
powertrain model developed by Toyota Technical Center which contains a complex automatic
air-fuel control subsystem [11].

2 Falsification Tools

S-TaLiRo [5] is a Matlab toolbox that searches for system behaviors that falsify (do not
satisfy) specifications presented in Signal Temporal Logic (STL) [12]. It can analyze arbitrary
Simulink models [10] or user-defined black box systems, e.g., autonomous vehicles modeled
in a robotics simulator [13]. S-TaLiRo performs automated randomized test case generation
based on stochastic optimization techniques guided by formal requirements in STL. Among the

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 104–109

http://cps-vo.org/group/ARCH


ARCH-COMP Falsification results Dokhanchi et al.

advantages of the toolbox is the seamless integration inside the Matlab environment, which
is widely used in the industry for model-based development. For a recent overview of the S-
TaLiRo functionality see [6]. The tool is publicly available on-line at [2] under General Public
License (GPL).

FalStar is an experimental prototype of a falsification tool that explores the idea to con-
struct falsifying inputs incrementally in time, thereby exploiting potential time-causal depen-
dencies in the problem. It implements several algorithms: time-staging [9], a two layered
framework combining Monte-Carlo tree search with stochastic optimization [14], and a proba-
bilistic algorithm that adapts to the difficulty of the problem. The latter algorithm was used
for this competition. The code is publicly available under the BSD license [1].

3 Benchmark: Powertrain Control

The Powertrain Control benchmark presented in this report was first introduced in [11]. The
benchmark provides a high complexity model of an automatic air-fuel control system. It consists
of an air-fuel controller and a mean-value engine model. The closed loop system takes two
exogenous inputs: the throttle angle θin and, the engine speed ω. It has 3 continuous-valued
states associated with the controller and 5 continuous-valued states associated with the plant.
In addition, there are states which are introduced by the variable delay.

The controller has 4 modes of operation: “Startup”, “Normal”, “Power” and “Fault”. De-
pending on the operation mode, the system should satisfy different requirements. We used a
slightly modified version of the requirements presented in Eq. (27) of the paper by Jin et al.
[11]. The following specification needs to be satisfied when the system is in the “Normal” mode:

φPB =2(τs,T )((rise(a) ∨ fall(a))→ 2(η,ζ)(|µ| < β))

where a = 40, rise(a) ≡ (θin ≤ 8.8◦) ∧3(0,ε)(θin ≥ a) for a small enough ε, fall(a) is defined
similarly, τs = 11 is the necessary time for the system to enter the “Normal” mode from the
“Startup” mode, T = 50 is the total simulation time, η = 1 is the settling time required after a
rise or fall event happens, ζ = 5 is the end of the current time interval in which the input is
kept constant, and, finally, µ is the normalized error signal that indicates the error in the value
of the state Air/Flow ratio from a reference value.

The formula states that whenever event rise or fall happens (the antecedent, which is over
the input signal), µ should remain in the specified bound after the settling time η, and before
other changes are made to the input (after time ζ). The antecedent of the formula is over the
input signals of the system. In this report, the acceptable error bound β is reduced to 0.008
to make falsification feasible. Note that abrupt changes in the value of the input signal are
acceptable and necessary here to satisfy the antecedent but, frequent changes in the input are
not (less than time ζ). As a matter of fact, increasing the frequency of the changes renders the
problem less interesting since falsification becomes easier.

4 Experimental Results

The 2017 experiments with S-TaLiRo [2] were conducted on a 64-bit Intel Xeon CPU (2.5GHz)
with 64-GB RAM and Windows Server 2012 running MATLAB 2015a. For these experiments,
we used the following stochastic optimization methods: Simulated Annealing (SA) [4] and
Uniform Random (UR) sampling. We remark that all the experiments were performed with

105



ARCH-COMP Falsification results Dokhanchi et al.

0 5 10 15 20 25 30 35 40 45 50

!

1066

1068

1070

0 5 10 15 20 25 30 35 40 45 50

3
in

0

50

t
0 5 10 15 20 25 30 35 40 45 50

7

-0.02

0

0.02

Figure 1: A falsifying piecewise constant input signal (θin) found by S-TaLiRo and the corre-
sponding output trajectory (µ) of the powertrain system for specification φPB . The specification
φPB is falsified at time t = 20.785, and the robustness value is −6.12 × 10−5. The input fo-
cuses on antecedent falsification up to time t = 25. The first 11 sec are ignored based on the
requirements in φPB .

the default parameters for each optimization method. It would be expected that further im-
provements can be achieved by tuning the performance of the optimization algorithms for each
benchmark problem. All the benchmark problems are available with the S-TaLiRo distribution
[2] or from the ARCH workshop repository [3].

The experiments added to the report in 2018 from FalStar were conducted on a 64-bit Intel
i7-7600U CPU (2.8GHz with 4 cores and 16-GB RAM and Ubuntu 16.04, running MATLAB
2018a. The same Simulink model was used so that the results are comparable. We measure the
success rate of finding a falsifying input as a primary indicator of the performance of the tools.
Moreover, we state the number of simulations required for success. Note that the computational
overhead of the falsification tools is negligible in comparison to running the simulations, so that
the number of simulations is indicative of the performance of the tools.

We compare results for the following falsification algorithms.

One is a general falsification algorithm using SA where the optimizer minimizes the robust-
ness value with respect to the given STL specification. This is the standard method used in
S-TaLiRo. The second one is Vacuity Aware Falsification (VAF) [7]. In VAF, for reactive
specifications, as a first step in falsification, we attempt to satisfy the antecedent and, then,
falsify the specification. In this report, we review last year’s results [8], which demonstrate that
S-TaLiRo can search over complex constraint input spaces. The S-TaLiRo VAF is publicly
available [2]. Since the antecedent can be satisfied at any time after τs, in our S-TaLiRo
implementation, in general, we attempt to satisfy the antecedent in a fraction of T (T/2 here)
so that there is enough time in the future to falsify the whole formula (even though in this
particular benchmark this may not be of consequence).

106



ARCH-COMP Falsification results Dokhanchi et al.

0 5 10 15 20 25 30 35 40 45 50
1099

1100

1101

0 5 10 15 20 25 30 35 40 45 50
0

50

100

in

0 5 10 15 20 25 30 35 40 45 50
-0.02

-0.01

0

0.01

Figure 2: A falsifying trace found by FalStar corresponding to the trial with Min Tests = 1
in Table 1. The specification φPB is falsified by the three spikes after t = 11.

The third is a novel “Adaptive” algorithm implemented in FalStar that constructs input
signals incrementally by constructing a tree on the search space. The key feature of the al-
gorithm is that it tries “obvious” input signals first, i.e., such that they take extreme input
values θ = 0.0 or θ = 61.1. Only if such values turn out not to be useful, the search gradually
switches to more fine-grained choices. Moreover, the algorithm is biased towards extending
prefixes that have lead to less robust traces previously.

We used 50 runs (experiments) for each algorithm with 100 tests (simulations) for each run.
The experimental results are presented in Table 1. A sample falsifying input and trajectory for
S-TaLiRo is shown in Fig. 1, and one for FalStar is shown in Fig. 2. In the tables, “Min
Tests” indicates the minimum number of tests in the case of falsification, while “Min Rob.”
indicates the minimum best robustness values achieved for the cases without falsification (not
applicable for the adaptive algorithm as it always finds a trace with negative robustness). This
gives an idea on how close these cases were to falsification.

Table 1: General Falsification

Optim. Fals Min Max Avg Tests Min Max Avg Rob.

UR 7/50 18 93 52 1.7× 10−5 0.0035 8.81× 10−4

SA 9/50 13 83 50 3.54× 10−5 0.0042 0.0012
VAF-UR 9/50 12 96 63 3.4× 10−6 0.003 0.00086

VAF-SA 29/50 7 95 39 2.38× 10−6 0.0043 0.0013
Adaptive 50/50 1 23 6 n/a n/a n/a

107



ARCH-COMP Falsification results Dokhanchi et al.

5 Conclusions

We have presented some preliminary base results for the falsification competition of the ARCH
workshop. The results indicate that black box search based test generation methods do not
perform much better than random sampling on this challenging benchmark. On the other
hand, utilizing some information on the structure of the specification in VAF can help in at
least doubling the rate of falsifications.

Furthermore, the adaptive algorithm shows that random sampling under a strong bias to-
wards extreme solutions can in fact lead to high falsification rates. For the powertrain bench-
mark, this is not too surprising: A large deviation of the air to fuel rate from the reference
value is likely linked to extreme changes in the throttle.

As a main outcome of the 2018 ARCH friendly competition, the powertrain model [11] may
be considered as solved in the context of falsification tools, and, hence, the participants of the
friendly competition will focus on identifying new benchmark problems for the future iterations
of the competition.

Acknowledgement FalStar is supported by ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603), JST; and Grants-in-Aid No. 15KT0012, JSPS.
S-TaLiRo has been partially supported by NSF awards 1350420, 1446730 and 1361926, and
the NSF I/UCRC Center for Embedded Systems.

References

[1] FalStar : https://github.com/ERATOMMSD/falstar.

[2] S-TaLiRo : https://sites.google.com/a/asu.edu/s-taliro/.

[3] Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH) http://cps-vo.

org/group/ARCH.

[4] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Probabilistic temporal
logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst., 12(2s):95:1–95:30,
May 2013.

[5] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-taliro: A tool for
temporal logic falsification for hybrid systems. In Tools and algorithms for the construction and
analysis of systems, volume 6605 of LNCS, pages 254–257. Springer, 2011.

[6] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nickovic, and S. Sankara-
narayanan. Specification-based monitoring of cyber-physical systems: A survey on theory, tools
and applications. In Lectures on Runtime Verification - Introductory and Advanced Topics, volume
10457 of LNCS, pages 128–168. Springer, 2018.

[7] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos. Vacuity aware falsification for MTL
request-response specifications. In IEEE International Conference on Automation Science and
Engineering, 2017.

[8] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. E. Fainekos. ARCH-COMP17 category report:
Preliminary results on the falsification benchmarks. In ARCH17. 4th International Workshop on
Applied Verification of Continuous and Hybrid Systems, collocated with Cyber-Physical Systems
Week (CPSWeek) on April 17, 2017 in Pittsburgh, PA, USA, pages 170–174, 2017.

[9] G. Ernst, I. Hasuo, Z. Zhang, and S. Sedwards. Time-staging enhancement of hybrid system
falsification. In Symbolic and Numerical Methods for Reachability Analysis (SNR), EPTCS, 2018.

[10] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of automotive control
applications using s-taliro. In Proceedings of the American Control Conference, 2012.

108

https://github.com/ERATOMMSD/falstar
https://sites.google.com/a/asu.edu/s-taliro/
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH


ARCH-COMP Falsification results Dokhanchi et al.

[11] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Powertrain control verification
benchmark. In Proceedings of the 17th international conference on Hybrid systems: computation
and control, pages 253–262. ACM, 2014.

[12] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Proceedings
of FORMATS-FTRTFT, volume 3253 of LNCS, pages 152–166, 2004.

[13] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski. Simulation-based adversarial test generation for
autonomous vehicles with machine learning components. In IEEE Intelligent Vehicles Symposium
(IV), 2018.

[14] Z. Zhang, I. Hasuo, G. Ernst, and S. Sedwards. Two-layered falsification of hybrid systems guided
by monte carlo tree search. Preprint, http://arxiv.org/abs/1803.06276.06276, 2018.

109

http://arxiv.org/abs/1803.06276.06276

	Introduction
	Falsification Tools
	Benchmark: Powertrain Control
	Experimental Results
	Conclusions

