
EPiC Series in Computer Science

Volume 36, 2015, Pages 275–295

GCAI 2015. Global Conference on Artificial Intelligence

An Algebra of Combined Constraint Solving
Eugenia Ternovska

Simon Fraser University
ter@sfu.ca

Abstract

The paper describes a project aiming at developing formal foundations of combined multi-
language constraint solving in the form of an algebra of modular systems. The basis for integration
of different formalisms is the classic model theory. Each atomic module is a class of structures. It can
be given, e.g., by a set of constraints in a constraint formalism that has an associated solver. Atomic
modules are combined using a small number of algebraic operations. The algebra simultaneously re-
sembles Codd’s relational algebra, (but is defined on classes of structures instead of relational tables),
and process algebras originated in the work of Milner and Hoare.

The goal of this paper is to establish and justify the main notions and research directions, make
definitions precise. We explain several results, but do not give proofs. The proofs will appear in several
papers. We keep this paper as a project description paper to discuss the overall project, to establish
and bridge individual directions.

1 Introduction
Almost all non-trivial commercial software systems use libraries of reusable components. Component-
based engineering is also widely used in VLSI circuit design, supported by a large number of libraries.
The theory of combining conventional imperative programs and circuits is relatively well-developed.
However, in knowledge-intensive computing, characterized by using so-called declarative program-
ming, research on programming from reusable components is not very developed1. It would be very
desirable to be able to take a program written in Answer Set Programming (ASP), combine it (say, as
a non-deterministic choice) with a specification of a Constraint Satisfaction Problem (CSP), and then,
sequentially, with an Integer Linear Program (ILP), and send feedback as an input to one of the first
two programs. Such a programming method, from existing components, possibly found on the web,
would be extremely useful. The main challenge however is that the programs may be written in different
languages (even legacy languages), and rely on different solving technologies.

Recently, there has been a lot of work on technology integration. Examples include but are not
limited to [1, 2, 3, 4, 5]. Combined solving is perhaps most developed in the SMT community, where
theory propagations are tightly interleaved with satisfiability solving [6, 7]. Declarative and imperative
types of programming sometimes have to be combined for best results.

Solving methods often rely on decomposition which are also studied in knowledge representation.
A method for large knowledge base decompositions is developed by E. Amir and S. McIlraith [8].

1Related work that is most relevant is discussed at the end of the paper.

G.Gottlob, G.Sutcliffe and A.Voronkov (eds.), GCAI 2015 (EPiC Series in Computer Science, vol. 36), pp. 275–295

An Algebra of Combined Constraint Solving Eugenia Ternovska

Tree decompositions are used to tame complexity in the work by S. Woltran and colleagues [9, 10].
Several similar notions of tightening - relaxation, abstraction - refinement, as well as several notions of
equivalence are used in constraint solving and hierarchical program development.

For efficient solving, special propagators are identified and either implemented separately or inte-
grated tightly into the main reasoning mechanism. For example, acyclicity [11] is added to SAT and
ASP as a special propagator. BDDs are also used as special (and more powerful) propagators in hybrid
constraint solving [12]. Experts can identify special sub-problems, which might still be combinatorially
hard, but the solutions of which can help to solve the main problem. It is desirable to specify domain-
specific propagators declaratively. A method for writing such specifications is proposed in our recent
work [13].

Various kinds of meta-reasoning are used on top of knowledge-intensive methods. Meta-reasoning
(high-level control) is used, for example, in dlvhex, a nonmonotonic logic programming system aiming
at the integration of external computation sources and higher-order atoms [14]. Sophisticated control is
used in [15], where the authors develop a method for lazy model expansion, where the grounding is gen-
erated lazily (on-the-fly) during search. The authors of [16] use bootstrapping for the IDP system, where
inference engine itself is used to tackle some tasks solved inside a declarative system declaratively.

However, practical constraint solving remains a complex task. K. Francis noted, in [17]: “The results
of the 2013 International Lightning Model and Solve competition served as a reminder that our tools are
too hard to use. The winners solved the problems by hand, suggesting that creating an effective model
was more time consuming (or daunting) than solving the problems.”

Several research questions still need to be answered to bring solving and development technologies
to the next level.

1. The technologies are diverse, some use declarative representations, some are purely imperative.
What is common in all those advanced technologies, what would be a basis for integration? What
are the units we combine, decompose into?

2. How can we combine those units? The language of combinations should be both expressive and
feasible computationally.

3. What is the notion of a solution, how can such modular systems be solved?

4. What is (are) reasonable notion(s) of equivalence, modular system containment?

Our main goal is to provide a mathematical basis for combined constraint solving, and for specifying
high-level control of such solving.

We believe that integration of technologies, from separate communities cannot be done on the basis
of one language. Communities that develop technologies are attached to their languages. Experts usually
get training (often during their PhD study) in one technology, and tend to keep applying it. It would be a
utopia to assume that everyone would eventually switch to using a common representation language. It
is also impractical to assume that axiomatization of each module would be translated to one language for
solving. In such a translation, language-solver-specific efficiency adjustments in axiomatizations would
be lost. Thus, a language-independent way of integration is needed. Since [18] we have been arguing
that model theory is a good basis for integration in a language-independent way.

In this paper, we continue the line of research we started in [18] where Modular Systems were
introduced. They were further developed in [19, 20, 21, 22, 23, 24, 25, 26]. The main conceptual shift
proposed in those works was to take model-theoretic approach seriously. Due to the model-theoretic
view, the formalism is language-independent, and combines modules specified in arbitrary languages.

A formalism for combining such programs should allow for arbitrary languages, and, at the same
time, should lay foundations for solving combined systems, employing the solving power of solvers
for languages used in the system. It should provide heterogeneity in the syntax, homogeneity in the
semantics. Heterogeneity in the syntax is important because modules can be represented in different

276

An Algebra of Combined Constraint Solving Eugenia Ternovska

languages. Homogeneity in the semantics is crucial for developing efficient solving algorithms. The
first question is what a module is. In addition, a small but expressive set of operations for combining
modules is needed. The formalism should have controlled expressiveness. On one hand, it should have
enough expressive power to be able to produce interesting and useful combinations of modules, provide
guarantees to be able to represent any problem, if its complexity is within the power of the language. On
the other hand, the formalism should be efficiently implementable. Note that there is a tension between
these two requirements. An increase in expressive power comes at the expense of efficiency. Finally, the
formalism should contain a small number of operations, but sufficient for specifying high-level control.

In this paper, we define the notion of a module, which is language-independent, and describe an
algebra for combining such modules, and consider its version with information propagation. We draw
parallels with Codd’s relational algebra, and process algebras originating from the work of Hoare and
Milner. We discuss meta-solving, where the main solver is viewed as a “master” communicating with
“slaves”, individual modules that may have their own solvers associated with the language of the module
(e.g., CSP, ASP modules). We argue, from the complexity-theoretic perspective, that such meta-solving
is possible, for an interesting fragment, with the current technology for solving problems in the com-
plexity class NP.

Several notions of inclusion (abstraction-refinement) and equivalence are possible for our algebra.
We discuss two, one has more set-theoretic flavour, and the other is more behaviour-based.

The goal of the paper is to establish and justify the main notions, make definitions precise. We
explain several results, but do not give proofs. We keep this paper as a project description paper to
discuss the overall project, to establish and bridge individual directions. The paper contains two main
parts. The first part, presented in Section 2, describes the general version of our algebra of modular
systems. The second part, presented in Section 3, defines a directional variant of the algebra, where the
information flow is specified.

2 Algebra of Modular Systems

A vocabulary (denoted, e.g. τ, σ, ε, ν) is a finite sequence of non-logical (predicate and function) sym-
bols, each with an associated arity. A τ -structure, e.g. A = (A;SA1 , ..., S

A
n , f

A
1 , ..., f

A
m , c

A
1 , ..., c

A
l) is a

domain A together with interpretations of predicate symbols, function and constants (0-ary functions)
in τ . To simplify presentation, we view functions as a particular kind of relations and consider relational
structures only. We use notations vocab(A), vocab(φ), vocab(M) to denote vocabulary of structure A,
formula φ and module M , respectively, and we use B|σ to mean structure B restricted to vocabulary σ.
Symbol := means “denotes” or “is by definition”.

Informally, a module represents a piece of knowledge. Semantically, it corresponds to a class of
structures. A module can be given by a knowledge base in some logic, be a specification of a robotic
agent, be e.g. an ASP, CSP, ILP, CP program. It can even be a human making decisions. In practise, any
decision procedure, of arbitrary complexity, could be used to specify a module.

Fix a vocabulary τ . An atomic module symbol (or simply an atom) is an expressionM(Si1 , . . . , Sik),
where {Si1 , . . . , Sik} is called the vocabulary of M , denoted vocab(M). For simplicity, we assume
vocab(Mi) ∩ vocab(Mj) = ∅ for Mi 6= Mj . We always have vocab(M) ⊆ τ . We sometimes omit
arguments from atomic module symbol expressions M(Si1 , . . . , Sik), and write simply M . We write S
to denote tuple 〈Si1 , . . . , Sik〉.

The semantics of an atom M(S) is given using an interpretation that is specific to that module.
Such an interpretation indicates whether M(S) is true (notation B |=M M(S)) or false on τ -structure
B (notation B 6|=M M(S)). For any two τ -structures B1, B2 which coincide on {Si1 , . . . , Sik}, where
{Si1 , . . . , Sik} = vocab(M), we have B1 |=M M(S) iff B2 |=M M(S).

277

An Algebra of Combined Constraint Solving Eugenia Ternovska

An atomic module (a semantic notion) that interprets atomic symbolM(Si1 , . . . , Sik) is a restriction
of all structures where M is true to vocab(M). In what follows, we will use atomic module symbols
to refer to the corresponding atomic modules. That is, we will refer to modules by their names. For
example, we will say “module M”, where M is an atom.

Examples of Atomic Modules Represented in ASP and CSP

Modules can be given in many different ways. In particular, they can be axiomatized in classical first-
order or higher-order logic.2 It is harder to see how to represent modules in non-classical setting. We give
examples of modules that encode well-known combinatorial problems, and show how those modules are
representable in CSP and ASP.

The Constraint Satisfaction Problem (CSP) is: Instance: (V,D,C) where V is a finite set of vari-
ables, D is a set of values (also called domain), C is a finite set of constraints {C1, . . . , Cn}. Each
constraint is a pair (xi, Ri), where xi is the scope, a list of variables of length mi, and Ri is a mi-ary
relation over D. Question: Is there f : V → D such that f(xi) ∈ Ri for all i? We call it the traditional
AI form of CSP. One can also search for such f .

A homomorphism is a function h : A → B such that ∀i[(a1, . . . , ani) ∈ RAi ⇒ (h(a1), ..., h(ani)) ∈
RBi]. CSP in homomorphism form is: Instance: Two τ -structures, A and B. Question: Is there a homo-
morphism h : A → B?

We now explain a general translation from CSP instances in homomorphism form3 to a representa-
tion as an atomic module (as a class of structures). An atomic module representing general CSP problem,
MCSP, where τ = {R1, . . . Rl}, is a class of structures of the form

C = (D; dom(A), RA1 , . . . R
A
l︸ ︷︷ ︸

A

, dom(B), RB1 , . . . R
B
l︸ ︷︷ ︸

B

, HC),

where D is an all-inclusive domain (it includes the domains of both structures), dom(A), dom(B) are
new unary relations representing the domains of the two structures, and HC is a relation representing
homomorphism function h from A to B.

We assume familiarity of the reader with Answer Set Programming. The main definitions and exam-
ples can be found, e.g. in [29]. We separate IDB and EDB predicates in each program, as is common in
Datalog. Intuitively, EDB predicates are given by a database, and IDB predicates are definable in terms
of those. For a program Π, we use Π′ to denote an ASP program obtained by augmenting Π with ground
atoms representing the database, the interpretations of the EDB predicates. We say a module is repre-
sentable in ASP if there is an ASP program Π such that the stable models of Π′, for each interpretation
of the EDB predicates, when limited to the vocabulary of the module, are precisely the structures of the
module.

In computer science, combinatorial decision problems are encoded as sets of binary strings. In finite
model theory [30], such problems are represented as classes of structures. For example, 3-Colouring is
represented by all graphs (which are structures) that are 3-colourable. We say a module M represents
a problem if the structures for which the interpretation of M is true consist of the instance and the
certificate of the problem, e.g., a graph and its colouring.

Example 1. Hamiltonian Circuit In this example, τ is any vocabulary that includes {E,CV }. An
atomic module representing Hamiltonian Circuit problem denoted by MHC(E,CV), is a class of struc-
tures of the form B = (V ;EB, CBV) such that G = (V ;EB) is a graph, CBV is a cyclic permutation (i.e.,
an ordering that “returns” to its source) on V such that every pair of successive nodes in the ordering

2Systems based on extensions of classical logic are IDP [27] and Enfragmo [28].
3To relate to a more traditional AI representation of CSP, think of elements in A as of variables. Tuples in relations in A

correspond to constraint scopes, and elements in B to values. Relations in B are constraint relations.

278

An Algebra of Combined Constraint Solving Eugenia Ternovska

are adjacent in G. The module is representable by a CSP instance (C,D) in homomorphism form where
C = (V ;EC , (6=V)C), D = (V ;ED, (6=V)D) and there is a homomorphism H from C to D. This CSP
instance represents a class of structures of the form E = (V ;EC , (6=V)C , ED, (6=V)D, HE). Notice that
6=V andH are auxiliary, not a part ofMHC(E,CV), and are specific to the CSP representation. Module
MHC(E,CV) is also representable in ASP,4 where relation EB corresponds to symbol edge, relation
CBV corresponds to cycle. Please see Remark 1.

1 {cycle(X,Y) : edge(X,Y)} 1 : − node(X).
1 {cycle(X,Y) : edge(X,Y)} 1 : − node(Y).

reachable(Y) : − cycle(s, Y).
reachable(Y) : − cycle(X,Y), reachable(X).

: − node(X), not reachable(X).

(1)

This ASP program is from page 89 of [29], where a detailed explanation can be found.

Remark 1. Note that even though we start with a vocabulary for a module, and then define a module as a
class of structures interpreting that vocabulary, a module is still a class of structures where each relation
is just a relation, i.e., is “anonymous”. There are two ways of connecting structures and vocabularies
for those structures in model theory. The first way, used here, is to start with a vocabulary, and then
define interpretations for that vocabulary. The second way is to start with structures (D;R1, . . . Rn)
and then introduce vocabulary for that structure by associating a vocabulary symbol with each relation.
Our first submission of this paper followed the latter route, but was criticized by the reviewers as being
hard to understand. Each way of dealing with this issue has its own advantages and disadvantages.

Example 2. Betweenness This problem was originally posed by Opatrny in 1979 [32]. Let τ be any
vocabulary that contains {M,F}. An atomic module representing Betweenness problem, MB(M,F),
is a class of structures of the form B = (V ;MB, FB) where V is a finite set, MB ⊆ V 3, mapping
FB : V → Q is such that it generates a linear ordering of V such that, for each triple (r, b, g) ∈MB,
we have r < b < g or r > b > g. It is representable by CSP instance (V,Q, C) in the traditional AI
form, where V is a set variables, Q is the domain for those variables, and C is a set of constraints,
C = {Cm |m ∈M}, Cm = ((u, v, w), Rb), Rb = {(a, b, c) ∈ Q3 | a < b < c or a > b > c}.

Example 3. k-Colouring Vocabulary τ here contains al least {E,Col}. An atomic module representing
k-Colouring problem, MkCol(E,Col), is a class of structures of the form B = (V ;EB, ColB), where
ColB is a relation representing function that maps vertices to colours such that adjacent vertices are
of different colour. In 3-Colouring module, M3Col(E,Col), Col refers to a homomorphism GB → K3

expressed by binary relation Col ⊆ V × {r, b, g}. Module M3Col is also representable in ASP by the
following program.

1{Col(X, r), Col(X, b), Col(X, g)}1 : −V (X).
⊥ : −Col(X, r), Col(Y, r), E(X,Y).
⊥ : −Col(X, b), Col(Y, b), E(X,Y).
⊥ : −Col(X, g), Col(Y, g), E(X,Y).

(2)

Compound Modules

Compound modules are constructed from atomic ones using five basic operations and recursion. Our
general strategy is to introduce a language as expressive as possible, while controlling the expressive
power. This strategy guarantees that solvers can be constructed for interesting fragments of the resulting
language, using atomic modules as oracles, as we proposed in [18].

4We give examples in ASP and CSP, but any other formalism, of arbitrary expressiveness, e.g. Essence [31], would work.

279

An Algebra of Combined Constraint Solving Eugenia Ternovska

A compound module is defined by an algebraic expression M = E(M1, . . . ,Ms), where every
atom has the form Mi(Si1 , . . . , Sik), and E is built by the grammar

E ::= > |Mi|(E + E)|(E × E)|(E − E)|πν(E)|σΘ(E)|Recursion. (3)

Symbol > represents a tautological module that is true on every structure, and Mi are atomic module
symbols. The operations (except recursion) are similar to Codd’s relational algebra, but are of a higher
order,5 and are defined on classes of structures rather than on relational tables. Notice that the framework
works for modules with infinite structures.

We intentionally leave recursion unspecified. Recursion in (3) is a place holder. There is a discus-
sion about recursion in a later section.

Remark 2. We would like to emphasize that we are fully aware of stable model semantics [33] and the
issues related to combining, e.g. a : − not b., b : − not c., c : − not a.. These issues can be resolved in
modules internally, with the appropriate semantics. This is not what we are interested in in this version
of the algebra. For us, each module is a black box, and its axiomatization is not visible from the outside.
For modular systems under supported semantics and their connections to Multi-Context Systems [34],
please see [23].

Five Basic Operations (Semantics)

Satisfaction relation for compound algebraic expressions |=E is built inductively from module-specific
satisfaction relations |=Mi

.
1. Product (M1(R) ×M2(S)). For a structure B with vocabulary τ , we have B |=(M1×M2) (M1 ×
M2)(R,S) iff both B |=M1

M1(R) and B |=M2
M2(S). That is, module M1 ×M2 represents a class

of structures such that, when restricted to vocab(Mi), it coincides with Mi, i ∈ {1, 2}.
2. Union (M1(R) +M2(S)). For a structure B with vocabulary τ , B |=(M1+M2) (M1 +M2)(R,S) iff
at least one of B |=M1

M1(R) and B |=M2
M2(S) holds.6

3. Set Difference (M1(R) − M2(S)). For a structure B with vocabulary τ , we have B |=(M1−M2)

(M1 − M2)(R,S) iff B |=M1
M1(R) and B 6|=M2

M2(S). Thus, M1 − M2 represents a class of
structures over the joint vocabulary that are in M1, but not in M2.
4. Projection (πν(M(S))) is a family of unary operations, one for each ν. The semantics is given by
B |=πν(M) πν(M(S)) if B |=M M(S). The operation restricts the structures of M to ν ⊆ vocab(M).
5. Selection is a family of unary operations of the form σΘ(M), where Θ is a condition that can be
applied as a test to each structure of M 7. It returns the subclass of M that satisfy condition Θ. The
condition is an expression that is built up using ∧, ∨, ¬, from equivalence operators ≡, 6≡, applied to
relation symbols in M and to interpretations of those (thus, we bring semantic elements into syntax in
the latter case). E.g. M1.P ≡ M2.S means that the interpretations of P (from M1) and S (from M2)
are the same.8 Selection is used to connect modules by equating relational symbols of equal arity.

The semantics is given by B |=σΘ(M) σΘ(M) iff B |=M M and B |=FO Θ, where |=FO is the
satisfaction relation in the standard first-order sense.

Remark 3. Note that selection can be used to express grounding, the first stage of solving in e.g. ASP
solvers. For that, Θ has to be of the form (R1 ≡ ‘RA1 ’) ∧ · · · ∧ (Rn ≡ ‘RAn ’), where we use single

5For example, projection is onto relational rather than object variables.
6Note that in relational algebra, both arguments to the union and the difference must be relations of the same arity. Here,

tuples S, R can be of different length because interpretations are over τ -structures, where τ includes the vocabularies of all
modules.

7The notation σΘ for selection clashes with the notation for instance vocabulary σM for module M , but the distinction is
always clear because Θ is a special formula.

8Recall that we assumed, for simplicity, that vocab(Mi) ∩ vocab(Mj) = ∅ for Mi 6= Mj .

280

An Algebra of Combined Constraint Solving Eugenia Ternovska

quotation marks (‘, ’) to bring semantic elements, interpretations of predicates Ri in instance structure
A, into the syntax.

Remark 4. One may argue that selection should not be an atomic operation but be represented by
a module. This is certainly a possibility. The oracle for that new module would be a SAT solver. The
situation here is similar to the situation with equality. One can either use equality as “built-in” or use
the axioms of equality and run a theorem prover.

Example 4. The following algebraic expression specifies a combination of 3-Colouring and Hamilto-
nian Circuit.

M3Col−HC(E1, Col) := πE1,Col(σ(MHC.CV ≡M3Col.E2)(MHC(E1, CV)×M3Col(E2, Col)). (4)

Here, the selection operator requires the interpretations of CV in MHC and of E in M3Col to be the
same. Thus, Hamiltonian Circuit gets coloured. Projection hides the interpretation of CV in MHC,
since it is the same as E2’s in M3Col, after selection is applied. Notice that the direction of information
propagation is not specified, because it is not specified what the input is.

Example 5. The following algebraic expression specifies a new module that is a class of graphs that
are cycles.

MCycle(E) := πE(σ(MHC.E≡MHC.CV)(MHC(E,CV)).

Logic Counterpart of the Algebra

Just as relational algebra has a counterpart in relational calculus, our algebra has a counterpart in higher-
order logic. The algebraic operations are expressible through the logic constructs of conjunction, dis-
junction, negation and second-order existential quantifier. We give an example to illustrate the idea.
Expression (4) is represented in logic as

M3Col−HC(E1, Col) := ∃E2 [(MHC(E1, E2) ∧M3Col(E2, Col)]. (5)

Because of the model-theoretic approach, the formalism can be used as multi-logic logic of modular
systems. For example, in the formula (5), one can simply substitute a specification of HC in brackets
({, }) for atomic module symbol MHC(E1, E2) and a specification of 3Col for M3Col(E2, Col)). Those
specifications of atomic modules can be written in any formalism, e.g., CSP, ASP, ILP. The multi-logic
logic was suggested in [18]. See also [26] and [22], where a concrete example is given.

Note that, to keep our presentation simple, we do not explain quantification (or projection) over ob-
ject variables (those ranging over domain elements). Mathematically, such quantification is equivalent
to second-order quantification over one-element sets, and can be mimicked by the second-order quan-
tification we already have. In a more elaborate presentation of the formalism, quantification over object
variables would be explained explicitly. Note that, similarly to relational variables, free object and func-
tion variables can also be used for communication between modules. Note also that while individual
modules are already capable of solving optimization tasks (the optimum value can be given in one of
the arguments), the least fixed point construct can generate the least value over a collection of modules
combined in an algebraic expression.

From (4) and (5), the reader can observe the correspondence of the algebra to second-order logic.
However, when we add information propagation to the algebra in the second part of the paper, we
will also see that the algebraic view allows us to combine modules with information propagation into
computational processes, like in process algebras. In addition, since we have recursion, the algebraic
expressions are essentially Golog [35] programs.

281

An Algebra of Combined Constraint Solving Eugenia Ternovska

Modular System Inclusion and Equivalence

Modular System Equivalence is one of the most important algorithmic tasks for modular systems. This
is because in system development and rapid prototyping, it is useful to be able to replace a part of the
system by an equivalent one, while preserving the overall functionality.

We say that two atomic or compound modules are equal,9 denoted M = M ′, if B |=M M iff
B |=M ′ M ′. For example, (M1 + M2) ×M3 = (M1 ×M3) + (M2 ×M3), for any choice of atoms
M1, M2 M3. Another related notion is the notion of behavioural equivalence called bisimulation. We
discuss this notion later in the paper, after we introduce a version of our algebra with information flow.

The notions of abstraction-refinement and tightening-relaxation are often used in reasoning about
computational processes and operations research. We formalize a counterpart of those notions in the
notion of containment for modular systems. We say that a M1 is contained in M2, denoted M1 v M2,
if B |=M2

M2 is true whenever B |=M1
M1 is true. In behavioural terms, we will talk about the notion

of simulation (one direction of the bisimulation relation), when we discuss information flow.
This is essentially the problem of logical implication for our algebraic expressions. As we would

expect, we have M1 = M2 iff M1 v M2 and M2 v M1. Modular system equivalence problem is
undecidable in general. The proof is by reduction from Finite Validity problem. Thus, inclusion problem
is also undecidable. However, it is decidable (NP-complete) for a broad subclass of modular systems.
A conjunctive compound module (CCM) is a module expressible by a relational algebra expression:

πR̄(σΘ(M1 × · · · ×Mn)),

where Θ is a conjunction of equivalence (≡) atomic formulas. CCMs are also expressible in logic form
by formulas in prenex normal form built from atomic modules M(R1, . . . , Rn), and ∧ and ∃ (applied
to relational symbols) only.

∃S1 . . . ∃Sk Φ(R1, . . . , Rn, S1, . . . , Sk),

where Φ(R1, . . . , Rn, S1, , Sk) is a conjunction of atomic modules of the form M(T1, . . . , Tl), and Si,
Rj , Tl are relational variables.

For conjunctive modules, Module Inclusion is NP-complete. We show it, using results about Ho-
momorphisms, in a joint work with Andrei Bulatov. This is similar to the well-known theorem by A.
Chandra and P. Merlin, from 1977 [36].

Recursion

One way to add recursion is to embed declarative languages axiomatizing modules (e.g, CSP, ASP,
etc.) inside a general-purpose programming language, as K. Francis [17] proposed. Another way is to
introduce recursion declaratively. This latter version is more similar to the declarative nature of our
formalism. The declarative specification can later be refined, through hierarchical development, into a
declarative or an imperative implementation.

In our case, recursion is either

1. a least fixed point construct, µXjE, as in the Least Fixed Point logic FO(LFP) (see [37]), or

2. an extended Datalog program (in brackets({, }), used within algebraic expressions, similar to ID-
logic [38].

9We use equality symbol (=) as a meta-symbol between algebraic expressions, and equivalence symbol (≡) as a logical
connective (biconditional) in formulas.

282

An Algebra of Combined Constraint Solving Eugenia Ternovska

The first option, µXjE, will be used in the version of the algebra with information flow.10 In the sec-
ond option, the rule-based syntax of Datalog is more convenient for knowledge representation. The two
versions are inter-translatable. Note that we do not overuse recursion. Recursion is limited to where it
is needed computationally. The “classical” part allows for an easy component-wise replacement (strong
equivalence holds).11

Monotonicity in fixed point computation is ensured by positive occurrences of atomic module sym-
bols in the Datalog rules (or variables Xj in the µXjE construct).

Remark 5. It is important to note that we proceed cautiously with respect to adding expressive power,
and this type of recursion adds at most polynomial time computation to the complexity of the modules.
For instance, logic programs under stable model semantics [33] and dlvhex programs [14] would
be too expressive for our current goals. For related complexity results please refer to [39]. However,
negation under well-founded semantics does not add more than a polynomial time computation, thus,
such negation can be easily added. If complexity considerations are not important, one can definitely
add negation as failure, and even use disjunctions in the heads of Datalog rules. Note that, if needed,
our algebra can be used under supported semantics to mimic stable model semantics for classical logic
[23]. However, that version is not used here.

Our future work includes using the recursive construct to specify high-level control in solving com-
binatorially hard problems using dynamic programming and tree decomposition, along the lines of the
work by S. Woltran and several collaborators [9, 10].

3 Version of the Algebra with Information Flow
Modules that have inputs and outputs are very common. For example, many software programs and
hardware devices are of that form. In [40], we formalized the task of model expansion. In this task, a
given structure, which might have an empty vocabulary, is expanded with interpretations of new vo-
cabulary symbols to satisfy a specification. Complexity-wise, model expansion lies in-between model
checking (full structure is given) and satisfiability (no structure is given). However, unlike those two
tasks, model expansion has not been studied extensively. At the same time, it is very common in con-
straint solving. Current research trends show that studying it in the context of hybrid constraint solving
is very important.

In this section, we propose a formalism to study this task in the context of modular systems. This
formalism can be viewed as a modal counterpart of the algebra above, in the same way as modal logic
is a fragment of first-order logic, and the modal mu-calculus µL is a fragment of FO(LFP) (see e.g. [41]
for references).

There are significant benefits in studying modal fragments of our algebra. Such fragments possess
good model-theoretic and algorithmic properties, and will lead to (1) automatic hybrid solver generation
and (2) automatic generation of solvers with special-purpose propagators.

Model Expansion Task for Atomic Modules

For atomic modules that are specified in a logic-based formalism, one can talk about model expansion.
Given: a formula φ in logic L over vocabulary σ ∪ ε, such that σ ∩ ε = ∅ and σ-structure A.
Find: structure B such that B|σ = A and B |= φ.

10Both version of the recursive construct can be used in the dynamic variant of the algebra (Section 3), however it is shorter
to explain µXjE.

11People who are more comfortable with a rule-based syntax, can ignore the “classical” part of the algebra and use only the
Datalog construct, since it is a well-formed expression on its own.

283

An Algebra of Combined Constraint Solving Eugenia Ternovska

We call σ instance (input) and ε expansion (output) vocabularies. Logic L corresponds to a specifica-
tion/modelling language, e.g. ASP, CP, First-order logic with Inductive definitions [27]. The case σ = ∅
is called model generation. The case ε = ∅ corresponds to model checking, when full structure is given,
and the task is to check if the formula is true in the structure. Note that at least the domain needs to be
given, otherwise, say, for first-order logic, the task becomes that of satisfiability, which is undecidable.

Model expansion tasks are common in AI planning, scheduling, logistics, supply chain management,
etc. Java programs, if they are of input-output type, can be viewed as model expansion tasks, regardless
of what they do internally. ASP systems, e.g., Clasp [42] mostly solve model expansion, and so do CP
languages such as Essence [31], as shown in [43]. Problems solved in ASP competitions are mostly
in model expansion form. CSP in the traditional AI form (respectively, in the homomorphism form) is
representable by model expansion where mappings to domain elements (respectively, homomorphism
functions) are expansion functions.

As we mentioned above, selection operation can formalize grounding, thus connecting designated
input symbols to an input structure. As a result, only structures that expand the instance structure are
selected. This way selection specifies the direction of information propagation, from problem instances
to expansions of the inputs. In fact any direction of information propagation can be specified if needed,
e.g. from colours to graphs in 3-Colouring.

Example 6. Hamiltonian Circuit problem12 Given: a graph G = (V ;EG). Find: a cyclic ordering
of V such that every pair of successive nodes in the ordering are adjacent in G. This model expan-
sion task is representable in the algebra by restricting the atomic module MHC(E,CV) to the given
input graph, G = (V ;EG). We write algebraic expression to represent this restriction as follows:
σ(E≡‘EG ’)MHC(E,CV). This expression is equivalent to fixing interpretation of relational variable E,
and leaving relational variable CV free to interpretation. As a result, interpretations of the free symbols
give us all possible Hamiltonian Circuits for the given graph.

Example 7. k-Colouring problem Given: a graph G = (V ;EG) and a number k. Find: A colour-
ing of V in k colours such that adjacent vertices are of different colour. The problem is tractable for
k = 2, NP-complete for k ≥ 3. This model expansion task is representable in the algebra by restricting
the atomic module M3Col(E,Col) to the given input graph, G = (V ;EG). We write algebraic expres-
sion to represent this restriction as follows: σ(E≡‘EG ’)M3Col(E,Col). Given graph G on the input, the
interpretations of Col that satisfy the ASP program above (2) are exactly the proper 3-colourings of G.

Note that the same axiomatization can be used in different ways. Say, in 3-Colouring, a colouring
could be given, and one could be searching for possible edges.

As we saw in the examples, an atomic module M can be given through representing it by a formula
φ in some logic (a formalism) L such as ASP,13 CSP, such that vocab(M) = vocab(φ) = σ ∪ εa ∪ ε.
That is, φ may contain auxiliary expansion symbols εa that are different from the output symbols ε of
M . (It may not even be possible to axiomatize M in that particular logic L without using any auxiliary
symbols).

Modules as Non-Deterministic Operators

Model-theoretic view in our framework has a dual, operational view. The duality allows us to inter-
pret atomic modules both declaratively (as models of axiomatizations) and imperatively (as elementary
actions). Notice that, when input vocabulary is specified, each module (atomic or combined) can be

12While data complexity in these examples is NP-complete, it can be arbitrary in general.
13 To use ASP representation of modules where the direction of information propagation is arbitrary (including where the

interpretations of the heads of the rules are given on the input), stable model semantics has to be modified slightly, as noted in
[44] where the authors introduce input answer sets.

284

An Algebra of Combined Constraint Solving Eugenia Ternovska

viewed as a non-deterministic operator. The operator takes a structure that provides interpretation to the
input vocabulary, and outputs expansions of that structure obtained by the internal laws of the module.
Alternatively, we can view each module as a higher-order binary input-output relation.

From now on, we assume that input (σM), output (εM) vocabularies are assigned to some atoms M .
We require σM ∩ εM = ∅, σM ∪ εM ⊆ vocab(M). In algebraic expressions and corresponding logic
formulas, we underline designated input symbols, i.e., those in σM . Output symbols are free (are not
quantified). For example:

∃E2 [(MHC(E1, E2) ∧M3Col(E2, Col)]. (6)

The quantified symbol E2 is not visible from the outside. The expansion (output) vocabulary of this
compound modular system is ε = {Col}, the instance vocabulary is σM = {E1}.

M
σ

ε
τ τ

B1 B2 Figure 1: Modules as non-
deterministic operators.
Each σ ∪ ε-structure in
module M has interpreta-
tion of its σ part on the left,
and of ε part on the right.

With this view on modules as non-deterministic operators, modular systems are transition systems,
where states are τ -structures and transitions are “applications of modules”. Figure 1 represents one of the
possible non-deterministic transitions performed by moduleM . ModuleM “looks” at the interpretations
of the input symbols σM in the structure B1 on the left, and expands B1|σM to produce interpretation of
εM recorded in the structure B2 (one of the “M -successor” structures) on the right. Interpretations of all
other symbols, including those in σM , stay the same, and get transferred from B1 to B2 by inertia. This
is similar to the frame axioms in the situation calculus as described in R. Reiter’s book [45]. Notice that,
similarly to the situation calculus, inertia is applied to atomic modules only. Each structure (denoted by
the dashed lines in the figure) in module M is composed from its σM part recorded in the structure B1

on the left, and its εM part recorded in the structure B2 on the right. Notice also that because of inertia,
successor structure B2 contains information about both σM and εM part of a structure in M . Thus, the
union of all M -successor structures, when limited to vocab(M), is the entire module M .

To illustrate transitions using our examples, in (6), first MHC(E1, CV) makes transition by pro-
ducing possibly several Hamiltonian Circuits. The interpretation of the expansion vocabulary, {CV }
changes, everything else is transferred by inertia. Then each resulting structure is taken as in input to
3-Colouring, M3Col(E2, Col), where {CV } is “fed” to E2, although this is hidden from the outside
observer by the existential quantifier in (6). The second module produces non-deterministic transitions,
one for each generated colouring.

A Dynamic Version of the Algebra

Here we take advantage of the view on modules as binary higher-order input-output relations. We focus
on information-flow counterpart of the algebra, a version that may be called dynamic. We may also call
it “a logic of hybrid MX tasks”.

Fix a relational vocabulary τ and a vocabulary of atomic module symbols τMS . We require
vocab(Mi) ⊆ τ for each Mi ∈ τMS .

Let τP , where τP ⊆ τMS , be a vocabulary of atomic module symbolsMi(Si1 , . . . , Sik) where inputs
are not specified. We call them propositions. Let τact, where τact ⊆ τMS , be a vocabulary of atomic
module symbols Mi(Si1 , . . . , Sik), where inputs are underlined. We call them actions. For one module

285

An Algebra of Combined Constraint Solving Eugenia Ternovska

symbol Mi, we can potentially have both a proposition and several actions, depending on the choice of
the inputs. For simplicity, we assume vocab(Mi) ∩ vocab(Mj) = ∅ for i 6= j.

We define a calculus of binary relations as a fragment of the previously defined algebra as follows.

α ::= > |Mi? |Ma | Zj | α+ α | α ◦ α | α− α | πν(α) | σΘ(α) | ∼ α | µZj .α (7)

Here,> is a symbol that represents the tautology binary relation,Mi are propositions,Ma are actions,∼
is a unary operation introduced in [41] which is a special kind of negation, as is used in modal temporal
logics. Variables Zj range over actions. We require that Z occurs positively (under an even number of
negations ∼) in µZj .α.

The calculus (7) is a fragment of our algebra (3) because ∼ is definable, as will be shown below;
concatenation is product with a specified direction; and µZj .α is a version of the general recursion in
(3) where the direction of fixed point computation is aligned with the direction of transitions, as will be
seen from the semantics. (We limit ourselves to intuitions and do not give any precise propositions or
theorems here, since it is only a project description paper). The operations we introduce in (7) subsume
those we used in previous work [19, 20, 21, 22, 23, 24, 25]. In particular, concatenation here is exactly
like sequential composition we used before, and feedback is definable using selection, where an input is
equated with an output. There is a strong connection of the dynamic version of the algebra to the recent
work [41], which we will explain in a future paper.

Semantics

Define a transition system T := (V ; (MTa)a, (M?Ti)i) that has domain V which is the class of all
τ -structures, and it interprets all actions Ma as subsets of V × V denoted by JMaKT and all monadic
propositionsMi? by structures (now nodes in the transition graph) JMi?KT ⊆ V on which they are true.
Variables Zj that occur free in α are interpreted, as actions, as subsets of V × V . Their interpretations
are denoted ZTj .

We define the extension JαKT of formula α in T inductively as follows.

J>KT := {(B, C) ∈ V T × V T for all B, C in V }.
JMi?KT := {(B,B) ∈ V T × V T | B |=Mi Mi}.
JMaKT := {(B1,B2) ∈ V T × V T | B1|τ\εMa = B2|τ\εMa and B2 |=Ma

Ma}.
Jα1 + α2KT := Jα1KT ∪ Jα2KT .
Jα1 ◦ α2KT := {(A,B) ∈ V T × V T | ∃C((A, C) ∈ Jα1KT and (C,B) ∈ Jα2KT)}.
Jα1 − α2KT := Jα1KT − Jα2KT .
Jπν(α)KT := {(B1,B2) ∈ V T × V T | ∃C1∃C2 ((C1, C2) ∈ JαKT , C1|ν = B1|ν and C2|ν = B2|ν)}.
J∼ αKT = {(B,B) ∈ V T × V T | ∀B′ (B,B′) 6∈ JαKT }, no outgoing α-transition.
JµZj .αKT :=

⋂{
R ⊆ V T × V T : JαKT [Z:=R] ⊆ R

}
.

Semantics of selection requires a recursive definition. Case 3 for σ(P≡Q) coincides with Feedback op-
erator used in our previous work.

Jσ(P≡Q)(α)KT :=(B1,B2) ∈ V T × V T

∣∣∣∣∣∣∣∣
Case 1: (B1,B2) ∈ JαKT and vocab(Θ) ⊆ σα and B1 |=FO Θ or
Case 2: (B1,B2) ∈ JαKT and vocab(Θ) ⊆ εα and B2 |=FO Θ or
Case 3: P ∈ σα and Q ∈ εα and
∃C ((C,B2) ∈ JαKT and B1|τ\{P} = C|τ\{P},B2 |=FO (P ≡ Q)

 .

286

An Algebra of Combined Constraint Solving Eugenia Ternovska

Jσ(P 6≡Q)(α)KT :=

(B1,B2) ∈ V T × V T
∣∣∣∣∣∣

Case 1: same
Case 2: same
Case 3: P ∈ σα and Q ∈ εα and PB1 6= QB2

 .

Jσ(Θ1⊕Θ2)(α)KT :=
{

(B1,B2) ∈ V T × V T
∣∣ (B1,B2) ∈ JσΘ1(α)KT ⊕ (B1,B2) ∈ JσΘ2(α)KT

}
,

where ⊕ stands for either ∧ (and) or ∨ (or).
Note that the semantics of µZj .α is exactly like that of the least fixed point operator in the modal mu-

calculus Lµ. One direction of our project is to investigate the precise connections of various fragments
of our algebra with Lµ and other related logics.

Some definable operations are:

D := σ∧
P,Q∈τ P≡Q>(P,Q), the diagonal relation,

⊥ := >−>.

By these definitions,
JDKT = {(B,B) ∈ V T × V T },
J⊥KT = ∅.

Let π1 abbreviates projection onto the first argument of the binary relation (onto all the inputs). Thus,

Jπ1(α)KT := {(B,B) ∈ V T × V T | ∃B′ (B,B′) ∈ JαKT }.

This operation identifies the states in V where α “holds”.
We have several important equalities between algebraic expressions (some are from [41]).

M1? ◦M2? = M1?×M2?,
∼ α = (D − π1(α)),
π1(α) = ∼∼ α,
D = ∼ ⊥.

Example 8. This modular system can be used by a company that provides logistics services. It decides
how to pack goods and deliver them. It solves two NP-complete tasks interactively, – Multiple Knapsack
(module MK) and Travelling Salesman Problem (module MTSP). The system takes orders from cus-
tomers (items Items(i) to deliver, their profits p(i), weights w(i)), and the capasity of trucks available
c(t), decides how to pack Pack(i, t) items in trucks, and for each truck, solves a TSP problem. The feed-
back about solvability of TSP is sent back to MK . Module MTSP takes a candidate solution from MK ,
together with the graph of cities and routes with distances, allowable distance limit and destinations for
each product. The output of this module is the route, for each truck Route(t, n, c), where t is a truck, n
is the number in the sequence, and c is a city. The Knapsack problem is written, in, e.g. Integer Linear
Programming (ILP), and TSP in Answer Set Programming (ASP). The modules MK and MTSP are
composed in sequence, with a feedback going from an output of MTSP to an input of MK . A solution
to the compound module, MLSP , to be acceptable, must satisfy both sub-systems.

Model Expansion and Model Checking Tasks for Modular Systems

The model expansion task for atomic modules introduced above generalizes to modular systems. The
goal here is, given input relations, produce structures that satisfy the entire algebraic expression α.

287

An Algebra of Combined Constraint Solving Eugenia Ternovska

Figure 2: Logistics Service Provider
σB≡B′(MK ◦MTSP).

MK MTSP

MLSP

RoutePack

Pack

E L
Dest

BB′

Item
p
w
c

Given: B|σ and algebraic expression E with input symbols σ. Find: B such that B satisfies α. Struc-
ture B expands structure B|σ and is called a solution for modular system represented by E for particular
input B|σ . This task generalizes Model Expansion task introduced in [40] to the case of multi-language
constraint solving.

A very naive method to solve model expansion for a modular system α would be to guess a structure
expanding the input, and to check if it satisfies the algebraic expression. However, one can also develop
an algorithm that identifies the set of all states S ⊆ V in the transition system where an algebraic
expression holds. The states in S will contain all expansions, for all instances. Then one can check
whether a particular instance structure is in that set. A basic way to obtain S is by labelling the states
of T by sub-expressions of α that hold in those states, going bottom-up on the structure of α. A better
way is to use Binary Decision Diagrams (BDDs) and perform this labelling symbolically, as is standard
in symbolic model checking. Notice that model expansion in the “flat” setting becomes model checking
in the “modal” setting.

Expressive Power of the Algebraic Operations (Data Complexity)

To talk about solvability of modular systems, we need to discuss the expressive power of the formalism.
In [26], we study the version of algebra with information flow, with operations of Sequential Com-
position, Projection, Feedback and Union only.14 We study data complexity of the MX task, in terms
of the size of the structure given on the input. In Codd’s relational algebra, all operations are of lin-
ear time complexity. Here, there are power-preserving and power-increasing operations. The increase
is due to added guessing power. Sequential composition and complementation are power-preserving.
Union is power-increasing when there is an intersection of the output vocabularies (because union acts
as an OR). Projection adds power when it hides inputs, they become expansions. Feedback equates an
instance symbol to an expansion one. This operation adds guesses because a former input is no longer
being “read” in the input structure, its interpretation is guessed and checked to be be equal to the exten-
sion of the expansion predicate, which is determined by the internal laws of the module. Note that the∼
operation moves the complexity of MX task to a higher level of the polynomial time hierarchy because
it contains an implicit universal second-order quantifier.

Finite model theory (see [30]) connects model theory and database research with computational
complexity. Since [40], we have been arguing for the importance of capturing complexity classes in
KR formalisms aiming at practical applications. Such capturing results show that all problems (and no
more) in a complexity class are expressible. The “no more” part is responsible for implementability.
In a simple fragment, we look at Sequential Composition, Projection, Feedback and Union. Capturing
NP (on structures with finite active domain) holds for all power-increasing operations (in the simple
fragment we considered), if individual modules are in P. More generally, since atomic modules can be of
arbitrary complexity, “NP-step” is added by a modular system, in the fragment we mentioned, compared
to the highest power among atomic modules [26]. The fundamental importance of this fact is that a
solver for this fragment,15 working in cooperation with solvers of individual modules, is implementable

14The complexity of the other operations will be explained in a future paper.
15In fact, implementability holds for a larger fragment than we studied in [26]. At that time, the algebra had fewer operations.

288

An Algebra of Combined Constraint Solving Eugenia Ternovska

with the current solver technology that is able to handle NP.

Solving Modular Model Expansion (Meta-Solving)

Solutions to modular systems can be computed by iteratively questioning individual modules with partial
3-valued structures. If a structure is accepted by a module, the module may suggest (through a formula)
what other properties should be true. If a structure is rejected by a module, a reason (also a formula) may
be given. The algorithm reasons with accumulated formulas, using partial structures as a data structure,
and may retract its earlier decisions. Information is added until all unknowns are filled. A CDCL-like
algorithm for solving modular systems is given in a joint work with David Mitchell [24]. A high-level
algorithm that formulated the idea behind meta-solving, where each module is viewed as an oracle that
accepts or rejects partial structures and returns reasons and advice, is given in FROCOS 2011 paper
with Shahab Tasharroffi [18] and in his PhD thesis. Shahab also proposed the term “meta-solving”
in a recent discussion. Instantiations of the algorithm [18] were shown to capture the work of SMT
(DPPL(T)), ASP-CP, IDP, ILP (represented as modular systems) in [46], and in Xiongnan (Newman)
Wu’s thesis [20]. An important future research direction is to explain good algorithmic properties of
various fragments of the dynamic version of the algebra, and to explore those properties in algorithms
for meta-solving.

Algebra of Modular Systems as Process Algebra

Process Algebras are mathematical languages with well-defined semantics for describing and verifying
properties of concurrent communicating systems. They originated in the work of Milner [47, 48, 49] and
Hoare [50, 51], and then generated enormous literature. Process Algebras are closely connected to Petri
nets, automata theory and formal languages. In process algebras, complex programs, often concurrent,
are specified by algebraic terms. For example, term ((a + b) ◦ c ◦ b) ◦ ((e||d) ◦ c) represents actions
connected by sequential (◦) and parallel (||) compositions and choice (+). It is very interesting that the
same algebra, our algebra of modular systems can be viewed as a process algebra. E.g., a particular
type of parallel composition is expressible through Product where vocabularies are distinct, selection
can be used for synchronization and communication.

Behavioural Equivalences, Bisimulation

The notion of equivalence (and containment) of modular systems above is model-theoretic and does not
take into account behaviour of modular systems over time. Several notions of congruence are introduced
in the process algebras research community, and bisimulation (and simulation) is among the most im-
portant ones. Intuitively, two states v and v′ in transition systems T and T ′ are bisimilar (observationally
equivalent) if they have the same local properties and any transition from v to w in T must be matched
by a transition v′ to w′ of the same kind in T ′ (and vice versa) so that w and w′ are again bisimilar.
Bisimilar systems perform the same sequences of actions, and after each sequence exhibit, recursively,
the same behaviour. Modular systems that are equivalent model-theoretically, are not necessarily bisim-
ilar. For example, while (M1 +M2)×M3 = (M1 ×M3) + (M2 ×M3), for any choice of actions M1,
M2, M3, these two compound modules are not bisimilar. Study of bisimulation and other behavioural
equivalences for our formalism is a future research direction.

Connections to Other Logics

There are very interesting connections of our algebra of modular systems to other logics. In particular,
Bisimulation-Safe Fixed Point Logic (BSFP) recently introduced by F. Abu Zarid, E. Grädel and S. Jaax

289

An Algebra of Combined Constraint Solving Eugenia Ternovska

[41] is a fragment of the logic of hybrid model expansion explained above. Also, Propositional Dynamic
Logic is also a fragment. A connection to the situation calculus and Golog [35, 45] is also pretty clear.

4 Discussion

More on Closely Related Work
To our knowledge, no other work proposed a general framework for high-level control for programming
from reusable components in knowledge-intensive computing, with the desiderata as in the Introduction,
and suggested both model-theoretic and operational (based on a transition system) views.

While the emphasis in most of our earlier work on Modular Systems (starting from [18]) was on
the Model Expansion task, the notion of a module in [18] is mathematically the same as in the current
paper. A module is a class of structures. This is stated explicitly in our NMR’14 paper [22]. This is
because the “yes” instances for the MX task, expanded with solutions, constitute classes of structures.
For example, the module of 3-Colouring is a class of structures that are graphs expanded with proper
3-colourings. As in the curent paper, modules in [18] and our subsequent papers were given by decision
procedures of arbitrary complexity, could be axiomatized in, e.g., ASP, ILP, or SMT theories, and the
input and the output vocabularies were specified. Thus, we have been mostly studying the “dynamic”
(or “modal”) fragment of the general algebra. We consider the dynamic version very important because
it formalizes a typical task in hybrid multi-language constraint solving, and has good computational
properties. Modular systems representing SMT, branch-and-cut based ILP, ASP-CP combinations are
given in [20, 21] to illustrate a high-level algorithm [18] for solving modular systems (what we now call
meta-solving).

We have shown the equivalence of model-theoretic (given via a class of structures) and operational
(given via a transition system) semantics of Modular Systems in our NMR’14 paper [22].

Information propagation in Modular Systems, as defined in [18], happened through equivalent vo-
cabulary symbols. In the current version, selection operator allows us to connect modules with different
vocabularies.

In our earlier papers, we had the requirements, for some algebraic operations, of modules being
composable (no output interference) and independent (no cyclic dependencies). The requirements are
inherited from [52]. However, even in the earlier versions of the algebra, composability was redundant
since the semantics is defined so that when there is an interference, there is no model. This requirement is
dropped now. With the introduction of the selection operator, independence is no longer needed because
modules no longer need to have equal vocabulary symbols in order to connect.

There are important works by other researchers that study related issues. Recently, [53] introduced
a formalism with compositions (essentially, conjunctions) of modules given through solver-level infer-
ences. The importance of that work is in a unifying mathematical view on the work of a variety of solvers
and their combinations, which we believe is essential. In NMR’14 paper [22], we generalized inference-
based modules of [53] as another representation of modules of our formalism of Modular Systems. That
generalization represents inference modules as classes of structures, as introduced in [18].

The basic notions of [54], i.e., the notion of a module and information propagation through the same
vocabulary symbols, are identical, in its mathematical essence, to those in our work [18, 22]16. Com-
position in that framework is the same as Product here. Compositions in [54] cannot achieve the same
expressive power as our algebra since other basic algebraic operations are not expressible through Prod-
uct. A large part of [54] is devoted to establishing connections to Multi-Context Systems (MCSs) [34].
MCSs combine knowledge bases in arbitrary languages, under arbitrary semantics (that do not have to

16Modules in [54] are axiomatized (represented by theories) in logics associated with modules.

290

An Algebra of Combined Constraint Solving Eugenia Ternovska

be model-theoretic) through rules of logic programming with negation as failure. The authors of [54]
give a translation from MCSs to modular systems with one operations (Product). They collect all rules
leading to a module and add them to that module. The semantic of the module is modified so that, when
limited to the original module, it is the same as before, and when limited to the rules, it is stable model
semantics. They conclude that “we showed that modular systems, despite their simplicity, are as expres-
sive as multi-context systems”. This claim is somewhat misleading. The expressive powers of different
formalisms are usually compared in terms of the same units. When some entities are given (modules
in this case), a comparison is made with respect to what new classes of structures the formalisms can
axiomatize using those given entities, or what relations they can define with respect to those entities.
Making individual modules stronger in one of the compared formalisms does compensate for the weak-
ness of the operations, but does not imply the equivalence of the expressive powers. It is pretty clear
that, given a set of modules, the class of structures one can define using, as links between modules, rules
with negation as failure under stable model semantics, as in MCSs, is significantly larger than the class
of structures definable using conjunctions only, as in the formalism of [54]. When membership in each
atomic module is polytime, membership in compound modules that are produced using conjunctions
only will be polytime as well, while membership in MCSs would be NP-hard in general. Thus, MCSs
are significantly more expressive than the formalism of [54]. We also studied connections of a general-
ization of our algebra with MCS in our KR’2014 paper [23]. As a side effect, and to generalize MCSs,
we defined a generalization of our algebra under supported model semantics.

The paper that originally inspired our Modular Systems framework is [52], but we developed a
model-theoretic approach and provided additional operations (in [52], projections and sequential com-
positions are possible, but not feedbacks or the other operations used here.).

A very interesting related work is by D. Fontaine, L. Michel, P. Van Hentenryck [55]. The authors
develop a framework where, what they call “model combinators” are used to compose models, i.e.,
descriptions in some modelling language. The intention of model combinators is similar to our algebraic
operations, but there is no basic combinators, combinators are introduced for each application. What
they call “runnables” are essentially our model expansion tasks, but they do not use model theory. The
authors also introduce model hierarchies, which track relationships among models (which are high-
level descriptions in their, and CP in general, terminology). The framework has an implementation, and
it would be interesting to connect it to mathematical foundations we are developing.

An important and active direction already mentioned above is Satisfiability Modulo Theory (SMT),
(see [7]). Efficient solvers have been developed, e.g. Z3 [56], and its extension with recursion [57]. SMT
can be viewed as a modular system with a SAT module, and where some modules are axiomatized by
built-in theories of SMT solvers. Our work is a generalization of this work to arbitrary modules, not
necessarily SAT or represented by built-in theories, with an algebra to represent sophisticated connec-
tions between modules. Similarly to SMT, combined solvers such as [4] also introduce combinations of
specific formalisms, for example ASP and CP.

Many combinations of logical formalisms have been proposed, notably [58, 59]. However, we need
combinations where logics are not embedded into another logic, but used ‘as is’.

There are many interesting directions for future work, among them an algebraic formalization of
lazy model expansion (on-demand grounding) [15] and a study of a version of our algebra where user’s
inputs are allowed during the execution. However, in that latter direction, it is very easy to obtain a
formalism with undecidable basic properties, so careful constructions need to be used. Many more
potential directions and results are listed in the body of the paper.

291

An Algebra of Combined Constraint Solving Eugenia Ternovska

Conclusion

Integrating different constraint solving technologies is a difficult task, and it is a cornerstone of current
trends in several constraint solving communities. The main challenge is that the programs may be written
in different languages (even legacy languages), and rely on different solving technologies. We identified
a basis for integration, defined what individual modules are. We developed an algebra for combining
modules. In this algebra, we identify five basic operations, through which other useful operations are
expressible, and we introduce Recursion. Identifying a small set of basic operators is very important
both for proving theoretical results and for progress in practical technology. We show that other useful
operations are expressible using the basic operations. We discuss two versions of the algebra, the general
one and the one with information flow. We briefly discuss the complexity of the formalism, and the
descriptive complexity of modular systems, as a function of expressiveness of individual modules. We
also discuss equivalence and inclusion tasks for modular systems. Our formalization leads to several
research directions, many of which are described in the body of the paper.

We believe that our formalism will help developing practical modelling tools for rapid prototyp-
ing and hierarchical modelling in constraint solving, for specifying high-level solving control and for
effective program reuse.

Acknowledgements

I am grateful to my PhD and MSc students and co-authors who participated in this project. Discussions
with Andrei Bulatov, Giuseppe De Giacomo, Marc Denecker, Yves Lesperance, Mirek Truszczynski and
David Mitchell at various stages of this projects were very helpful. I am also grateful to the anonymous
referees who’s comments helped to improve the paper, and to Bart Bogaerts for his comments to an
earlier version. This research is supported by Natural Sciences and Engineering Research Council of
Canada (NSERC).

References
[1] Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic program-

ming. Ann. Math. Artif. Intell. 53(1-4) (2008) 251–287
[2] Balduccini, M., Lierler, Y., Schüller, P.: Prolog and ASP inference under one roof. In Cabalar, P., Son,

T.C., eds.: Logic Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013,
Corunna, Spain, September 15-19, 2013. Proceedings. Volume 8148 of Lecture Notes in Computer Science.,
Springer (2013) 148–160

[3] Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: A hierarchical portfolio of solvers and trans-
formations. In Simonis, H., ed.: Integration of AI and OR Techniques in Constraint Programming - 11th
International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings. Volume 8451 of Lec-
ture Notes in Computer Science., Springer (2014) 301–317

[4] Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Proceedings of the 25th International
Conference on Logic Programming (ICLP’09). Lecture Notes in Computer Science (LNCS), Springer-Verlag
(2009) 235–249

[5] Zhou, N.F., Fruhman, J.: A user’s guide to Picat (version 1.2) (2013-2015) Picat programming language
website: http://www.picat-lang.org/.

[6] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract davis–
putnam–logemann–loveland procedure to dpll(T). J. ACM 53(6) (2006) 937–977

[7] Sebastiani, R.: Lazy satisfiability modulo theories. Journal of Satisfiability, Boolean Modeling and Computa-
tion (JSAT) 3 (2007) 141–224

292

An Algebra of Combined Constraint Solving Eugenia Ternovska

[8] Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and propositional theories. Artif.
Intell. 162(1-2) (2005) 49–88

[9] Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The D-FLAT system for dy-
namic programming on tree decompositions. In Fermé, E., Leite, J., eds.: Logics in Artificial Intelligence -
14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings.
Volume 8761 of Lecture Notes in Computer Science., Springer (2014) 558–572

[10] Charwat, G., Woltran, S.: Efficient problem solving on tree decompositions using binary decision diagrams.
In Francesco Calimeri, Giovambattista Ianni, M.T., ed.: Logic Programming and Nonmonotonic Reasoning,
13th International Conference, LPNMR 2015, Lexington, September 27-30, 2015. Proceedings. Lecture Notes
in Computer Science, Springer (2015)

[11] Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo acyclicity. In Schaub, T.,
Friedrich, G., O’Sullivan, B., eds.: ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-
22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014). Volume 263 of Frontiers in Artificial Intelligence and Applications., IOS Press (2014) 351–356

[12] Gange, G., Stuckey, P.J., Lagoon, V.: Fast set bounds propagation using a BDD-SAT hybrid. J. Artif. Intell.
Res. (JAIR) 38 (2010) 307–338

[13] Tasharrofi, S., Ternovska, E.: Logical machinery of heuristics (preliminary report). In: Proceedings of the 4th
Workshop on Logic and Search Heuristics (LaSH’15), co-located with VSL 2014: VIENNA SUMMER OF
LOGIC 2014. (2014)

[14] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A prover for semantic-web reasoning under the
answer-set semantics. In: 2006 IEEE / WIC / ACM International Conference on Web Intelligence (WI 2006),
18-22 December 2006, Hong Kong, China, IEEE Computer Society (2006) 1073–1074

[15] de Cat, B., Denecker, M., Bruynooghe, M., Stuckey, P.J.: Lazy model expansion: Interleaving grounding with
search. J. Artif. Intell. Res. (JAIR) 52 (2015) 235–286

[16] Bogaerts, B., Jansen, J., De Cat, B., Janssens, G., Bruynooghe, M., Denecker, M.: Meta-level representations
in the IDP knowledge base system: Towards bootstrapping inference engine development. In Mitchell, D.,
Denecker, M., eds.: International Workshop on Logic and Search (Lash 2014), Vienna, July 18, 2014. (2014)

[17] Francis, K.: Rethinking the quest for declarativity. In: ModRef’14, International Workshop on Constraint
Modelling and Reformulation. (2014)

[18] Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language modelling of search
problems. In: Proceedings of the 8th International Symposium on Frontiers of Combining Systems (FroCoS).
(October 2011) 259–274

[19] Tasharrofi, S.: Modular Systems. PhD thesis, Simon Fraser University, Burnaby, BC, Canada (December
2013)

[20] Wu, X.N.: Solving model expansion tasks: System design and modularity. Master’s thesis, Simon Fraser
University, Burnaby, BC, Canada (August 2012)

[21] Tasharrofi, S., Wu, X.N., Ternovska, E.: Solving modular model expansion: Case studies. In: Postproceedings
of the 19th International Conference on Applications of Declarative Programming and Knowledge Manage-
ment and 25th Workshop on Logic Programming, Lecture Notes in Artificial Intelligence (LNAI) (2012)
175–187

[22] Tasharrofi, S., Ternovska, E.: Three semantics for modular systems. In: Proceedings of NMR’2014. (2014)
[23] Tasharrofi, S., Ternovska, E.: Generalized multi-context systems. In Baral, C., Giacomo, G.D., Eiter, T.,

eds.: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014, AAAI Press (2014)

[24] Mitchell, D.G., Ternovska, E.: Clause-learning algorithms for modular systems. In Francesco Calimeri,
Giovambattista Ianni, M.T., ed.: Logic Programming and Nonmonotonic Reasoning, 13th International Con-
ference, LPNMR 2015, Lexington, September 27-30, 2015. Proceedings. Lecture Notes in Computer Science,
Springer (2015)

[25] Ensan, A., Ternovska, E.: Modular systems with preferences. In: Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI2015), Buenos-Aires, Argentina, AAAI Press (January 6–12 2015)

293

An Algebra of Combined Constraint Solving Eugenia Ternovska

[26] Tasharrofi, S., Ternovska, E.: Modular systems. In: Proceedings of Workshop on Hybrid Reasoning at IJ-
CAI’15. (2015)

[27] Wittocx, J., Marién, M., Denecker, M.: The IDP system: A model expansion system for an extension of
classical logic. In: Proceedings of the 2nd Workshop on Logic and Search. (2008) 153–165

[28] Aavani, A., Wu, X.N., Tasharrofi, S., Ternovska, E., Mitchell, D.G.: Enfragmo: A system for modelling and
solving search problems with logic. In: 18th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning. (2012) 15–22

[29] Hölldobler, S., Schweizer, L.: Answer set programming and Clasp, a tutorial. In Hölldobler, S., Malikov, A.,
Wernhard, C., eds.: Proceedings of the Young Scientists’ International Workshop on Trends in Information
Processing (YSIP), CEUR Workshop Proceedings (2014) 77–95

[30] Libkin, L.: Elements of Finite Model Theory. Springer Verlag (2004)
[31] Frisch, A.M., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I.: Essence: A constraint language

for specifying combinatorial problems. Constraints 13 (2008) 268–306
[32] Opatrny, J.: Total ordering problem. SIAM J. Comput 8(1) (1979) 111–114
[33] Gelfond, M., Lifschitz, V.: Logic programming. In Warren, D.H., Szeredi, P., eds.: Proceedings of the 6th

International Conference on Logic Programming (ICLP). MIT Press, Cambridge, MA, USA (1990) 579–597
[34] Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: Proceedings of

the 22nd National Conference on Artificial Intelligence (AAAI’07) - Volume 1, AAAI Press (2007) 385–390
[35] Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming language for

dynamic domains. Journal of Logic Programming 31 (1997) 59–84
[36] Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In

Hopcroft, J.E., Friedman, E.P., Harrison, M.A., eds.: Proceedings of the 9th Annual ACM Symposium on
Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, ACM (1977) 77–90

[37] Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S.: Finite
Model Theory and Applications. Springer (2007)

[38] Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. ACM transactions on computa-
tional logic (TOCL) 9(2) (2008) 1–51

[39] Eiter, T., Gottlob, G., Mannila, H.: Expressive power and complexity of disjunctive datalog under the stable
model semantics. In von Luck, K., Marburger, H., eds.: Management and Processing of Complex Data Struc-
tures, Third Workshop on Information Systems and Artificial Intelligence, Hamburg, Germany, February 28 -
March 2, 1994, Proceedings. Volume 777 of Lecture Notes in Computer Science., Springer (1994) 83–103

[40] Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search problems. In: Proc.
AAAI’05. (2005) 430–435

[41] Abu Zaid , F., Grädel, E., Jaax, S.: Bisimulation safe fixed point logic. In Goré, R., Kooi, B.P., Kurucz, A.,
eds.: Advances in Modal Logic 10, invited and contributed papers from the tenth conference on ”Advances in
Modal Logic,” held in Groningen, The Netherlands, August 5-8, 2014, College Publications (2014) 1–15

[42] Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artificial
Intelligence 187-188 (August 2012) 52–89

[43] Mitchell, D.G., Ternovska, E.: Expressiveness and abstraction in ESSENCE. Constraints 13(2) (2008) 343–384
[44] Lierler, Y., Truszczynski, M.: Transition systems for model generators - A unifying approach. TPLP 11(4-5)

(2011) 629–646
[45] Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems.

MIT Press (2001)
[46] Tasharrofi, S., Wu, X.N., Ternovska, E.: Solving modular model expansion: Case studies. In Tompits, H.,

Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A., eds.: Applications of Declarative Program-
ming and Knowledge Management - 19th International Conference, INAP 2011, and 25th Workshop on Logic
Programming, WLP 2011, Vienna, Austria, September 28-30, 2011, Revised Selected Papers. Volume 7773
of Lecture Notes in Computer Science., Springer (2011) 215–236

[47] Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer Science.

294

An Algebra of Combined Constraint Solving Eugenia Ternovska

Springer (1980)
[48] Milner, R.: Synthesis of communicating behaviour. In Winkowski, J., ed.: Mathematical Foundations of

Computer Science 1978, Proceedings, 7th Symposium, Zakopane, Poland, September 4-8, 1978. Volume 64
of Lecture Notes in Computer Science., Springer (1978) 71–83

[49] Milner, R.: A modal characterisation of observable machine-behaviour. In Astesiano, E., Böhm, C., eds.:
CAAP ’81, Trees in Algebra and Programming, 6th Colloquium, Genoa, Italy, March 5-7, 1981, Proceedings.
Volume 112 of Lecture Notes in Computer Science., Springer (1981) 25–34

[50] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10) (October 1969)
576–580

[51] Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8) (August 1978) 666–677
[52] Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework for multi-language con-

straint modeling. In: Proceedings of the 10th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’09). Volume 5753 of Lecture Notes in Computer Science (LNCS)., Springer-
Verlag (2009) 155–168

[53] Lierler, Y., Truszczynski, M.: Abstract modular inference systems and solvers. In: Proceedings of the 16th
International Symposium on Practical Aspects of Declarative Languages (PADL’14). (2014)

[54] Lierler, Y., Truszczyński, M.: An abstract view on modularity in knowledge representation. In: Proceedings
of the 27th AAAI Conference on Artificial Intelligence. (2015)

[55] Fontaine, D., Michel, L., Hentenryck, P.V.: Model combinators for hybrid optimization. In Schulte, C.,
ed.: Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala,
Sweden, September 16-20, 2013. Proceedings. Volume 8124 of Lecture Notes in Computer Science., Springer
(2013) 299–314

[56] de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In Ramakrishnan, C.R., Rehof, J., eds.: Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-
gary, March 29-April 6, 2008. Proceedings. Volume 4963 of Lecture Notes in Computer Science., Springer
(2008) 337–340

[57] Hoder, K., Bjørner, N., de Moura, L.M.: µZ- an efficient engine for fixed points with constraints. In Gopalakr-
ishnan, G., Qadeer, S., eds.: Computer Aided Verification - 23rd International Conference, CAV 2011, Snow-
bird, UT, USA, July 14-20, 2011. Proceedings. Volume 6806 of Lecture Notes in Computer Science., Springer
(2011) 457–462

[58] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with
description logics for the semantic web. Artificial Intelligence 172 (2008) 1495 – 1539

[59] de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: Embedding non-ground logic programs into autoepistemic
logic for knowledge-base combination. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI2007), Hyderabad, India, AAAI Press (January 6–12 2007)

295

	Introduction
	Algebra of Modular Systems
	Version of the Algebra with Information Flow
	 Discussion

