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Abstract

Invariant assertions play an important role in the analysis and documentation of while
loops of imperative programs. Invariant functions and invariant relations are alternative
analysis tools that are distinct from invariant assertions but are related to them. In this
paper we discuss these three concepts and analyze their relationships. The study of invari-
ant functions and invariant relations is interesting not only because it provides alternative
means to analyze loops, but also because it gives us insights into the structure of invariant
assertions, and may help us enhance techniques for generating invariant assertions.
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1 Introduction

In [5], Hoare introduced the concept of an invariant assertion as a useful tool in the analysis
of while loops. The study of invariant assertions, and their use in the analysis of while loops,
have been the focus of active research in the seventies and eighties, and the subject of renewed
interest in the last few years. In this paper we wish to investigate the relationships between this
well known, thoroughly researched, concept, and two distinct but related concepts: invariant
functions [12] and invariant relations [9]. We consider a while loop w on space S defined by
w = while t do B. These three concepts can be summarily and informally characterized as
follows:

• An invariant assertion (as defined for the purposes of our discussion) is a predicate α on
S that is preserved by application of the loop body.

• An invariant function is a total function on S whose value is preserved by application of
the loop body.

• An invariant relation is a reflexive transitive relation that is a superset of the loop body’s
function.
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In section 3, we give definitions of all three concepts, using a uniform model, namely the
calculus of relations, which we introduce in section 2. In section 4 we discuss the interrelations
between these concepts, and explore complementarities between their respective insights on
loop behavior. In section 5 we summarize our results and explore venues of further research.

2 Relational Mathematics

2.1 Elements of Relations

We consider a set S defined by the values of some program variables, say x, y and z; we typically
refer to elements of S by s, and we note that s has the form s = 〈x, y, z〉. We use the notation
x(s), y(s), z(s) to refer to the x-component, y-component and z-component of s. We may
sometimes use x to refer to x(s) and x′ to refer to x(s′), when this raises no ambiguity. We use
relations to represent program specifications and program functions; we then refer to S as the
space of the specification, and also refer to it as the space of any program that manipulates these
variables. Constant relations on some set S include the universal relation, denoted by L, the
identity relation, denoted by I, and the empty relation, denoted by ∅. Given a predicate t, we
denote by I(t) the subset of the identity relation defined as follows: I(t) = {(s, s′)|s′ = s∧t(s)}.

Because relations are sets, we use the usual set theoretic operations between relations (union,
intersection, complement, cartesian product). Operations on relations also include the converse,

denoted by R̂, and defined by R̂ = {(s, s′)|(s′, s) ∈ R}. The product of relations R and R′ is the
relation denoted by R ◦ R′ (or RR′) and defined by R ◦ R′ = {(s, s′)|∃t : (s, t) ∈ R ∧ (t, s′) ∈
R′}. The prerestriction (resp. post-restriction) of relation R to predicate t is the relation
{(s, s′)|t(s) ∧ (s, s′) ∈ R} (resp. {(s, s′)|(s, s′) ∈ R ∧ t(s′)}). We admit without proof that
the pre-restriction of a relation R to predicate t is I(t)◦R and the post-restriction of relation R
to predicate t is R ◦ I(t). The domain of relation R is defined as dom(R) = {s|∃s′ : (s, s′) ∈ R}.
The range of relation R is denoted by rng(R) and defined as dom(R̂). We admit without proof
that for a relation R, RL = {(s, s′)|s ∈ dom(R)} and LR = {(s, s′)|s′ ∈ rng(R)}. The nucleus

of relation R is the relation denoted by µ(R) and defined as RR̂.

We say that R is deterministic (or that it is a function) if and only if R̂R ⊆ I, and we say

that R is total if and only if I ⊆ RR̂, or equivalently, RL = L. Given two total deterministic
relations R and R′, we say that R is more-injective than R′ if and only if RR̂ ⊆ R′R̂′. To
understand this definition, consider that each function partitions its domain into equivalence
classes, called the level sets of the function [6]; a more-injective function is one whose level sets
define a finer partition of the domain. A total deterministic relation R is said to be injective if
and only if it is more-injective than I.

A relation R is said to be rectangular if and only if R = RLR. A relation R is said to be
reflexive if and only if I ⊆ R, transitive if and only if RR ⊆ R and symmetric if and only if
R = R̂. We are interested in two special types of rectangular relations: rectangular surjective
relations are called vectors and satisfy the condition RL = R; rectangular total relations are
called invectors (inverse of a vector) and satisfy the condition LR = R. In set theoretic terms,
a vector on set S has the form A× S, and an invector has the form S × A, for some subset A
of S. Vector A× S can also be written as I(A) ◦ L.

2.2 Refinement Ordering

We define an ordering relation on relational specifications under the name refinement ordering:
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Definition 1. A relation R is said to refine a relation R′ if and only if

RL ∩R′L ∩ (R ∪R′) = R′.

In set theoretic terms, this equation means that the domain of R is a superset of (or equal
to) the domain of R′, and that for each element in the domain of R′, the set of images by
R is a subset of (or equal to) the set of images by R′. This is similar to, but different from,
refining a pre/postcondition specification by weakening its precondition and/or strengthening
its postcondition [4, 14]. We abbreviate this property by R w R′ or R′ v R. We admit that,
modulo traditional definitions of total correctness [3, 4, 7], the following propositions hold:

• A program P is correct with respect to a specification R if and only if [P ] w R, where
[P ] is the function defined by P (we may, by abuse of notation use P to refer to [P ] when
the context allows).

• R w R′ if and only if any program correct with respect to R is correct with respect to R′.

Intuitively, R refines R′ if and only if R represents a stronger requirement than R′.

2.3 Refinement Lattice

We admit without proof that the refinement relation is a partial ordering. In [2] Boudriga et
al. analyze the lattice properties of this ordering and find the following results:

• Any two relations R and R′ have a greatest lower bound, which we refer to as the meet,
denote by u, and define by:

R uR′ = RL ∩R′L ∩ (R ∪R′).

• Two relations R and R′ have a least upper bound if and only if they satisfy the following
condition (which we refer to as the consistency condition):

RL ∩R′L = (R ∩R′)L.

Under this condition, their least upper bound is referred to as the join, denoted by t,
and defined by:

R tR′ = RL ∩R′ ∪R′L ∩R ∪ (R ∩R′).
Intuitively, the join of R and R′, when it exists, behaves like R outside the domain of R′,
behaves like R′ outside the domain of R, and behaves like the intersection of R and R′

on the intersection of their domain. The consistency condition provides that the domain
of their intersection is identical to the intersection of their domains.

• Two relations R and R′ have a least upper bound if and only if they have an upper bound;
this property holds in general for lattices, but because the refinement ordering is not a
lattice (since the existence of the join is conditional), it bears checking for this ordering
specifically.

• The lattice of refinement admits a universal lower bound, which is the empty relation.

• The lattice of refinement admits no universal upper bound.

• Maximal elements of this lattice are total deterministic relations.

See Figure 1. The outline of this figure shows the overall structure of the lattice of specifications.

ECPS vol. 7999 3



Comparison of Invariant Assertions, Relations and Functions Louhichi, Mraihi, Labed, Mili

φ
   

   
   

   

```
```

```
``̀

�
�
�
�
�

@
@

@
@
@

@
@
@
@
@

�
�

�
�
�R R′

R uR′

R tR′
�
��

@
@@

�
��

@
@@

�
��

@
@@

�
��

@
@@

�
��

@
@@

Total Functions

Figure 1: Lattice Structure of Refinement

2.4 Loop Semantics

Our study requires that we present some background on loop semantics, which we use through-
out the paper to support our discussions and our arguments. Because these are not original
results, we present them briefly, without proof. We consider a deterministic program P on some
variables x1, x2, ... xn. We let S be the space defined by all the values that the aggregate of
variables may take. Because P is deterministic, its semantics is captured by a function, which
we denoted by [P ] and define by

[P ] = {(s, s′)| if p starts execution in state s then it terminates in state s′}.

From this definition, it stems that dom([P ]) can be interpreted as

dom([P ]) = {(s, s′)| if P starts execution in state s then it terminates}.

We submit two fundamental theorems about loops, which we will use subsequently.

Theorem 1. Sub-goal Induction Theorem. We consider a while loop w = while t do B

on space S and a total relation R on the same space S (such that dom(R) = S), w is correct
with respect to R if:

• dom([w]) = S.

• I(¬t) ⊆ R.

• I(t) ◦ [B] ◦R ⊆ R.

This theorem is due to Morris and Wegbreit [15]; we have rewritten it in relational terms,
to make it useful for our purposes.
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Theorem 2. Mills Theorem. We consider a while loop w = while t do B on space S that
terminates for all states in S, and a function W on the same space S, then [w] = W if and
only if:

• dom(W ) = S.

• I(¬t) ◦W = I(¬t).

• I(t) ◦ [B] ◦W = I(t) ◦W .

This theorem is due to H.D. Mills [13]. Even though it was derived independently from (and
prior to) the Sub-goal Induction Theorem, it could be considered as a special case of it (the
case where the specification at hand, R, is deterministic). Because these two theorems assume
that [w] is total, we are interested in restricting our study to loops that meet this condition;
the proposition below provides that this assumption causes no loss of generality.

Proposition 1. We consider a while loop w on space S. We let s0 be an element of dom([w])
and we denote by s1, s2, ... sn be the sequence of states obtained by the successive executions
of the loop body, where sn is the state obtained when the loop terminates. Then, for all i,
0 ≤ i ≤ n, si ∈ dom([w]).

Since initial states, intermediate states, and final states are all in dom([w]), we can let S be
dom([w]) without loss of generality, as then all the states of interest are within S. This choice
of state space makes the while statement’s function total by construction. In the sequel, we
implicitly assume this condition throughout.

The following theorem represents, for our purposes, our semantic definition of while loops.

Theorem 3. Given a while statement of the form w = while t do B. If w terminates for all
the states in S, then [w] = (I(t) ◦ [B])∗I(¬t).

3 Invariants

In this section we present in turn the three invariants in parallel and present, for each: a formal
definition in relational terms, an ordering relation between invariants, a characterization of the
strongest invariant, and an elucidation of their relation to the function of the loop.

3.1 Formal Definitions

We consider a while statement of the form w = while t do B on some space S, and we
assume that w terminates normally for any initial state s in S. We define in turn, invariant
assertions, invariant relations, and invariant functions. For the sake of uniformity, we use the
same mathematical baggage to represent them, namely the calculus of relations.

For the sake of illustration, we consider a running example on which we apply our definitions
and propositions. We consider the following while loop on array variables a and b, real variables
x and y, and index variables i and j:
while (i!=N+1)

{x=x+a[i]; y=y+b[j]; i=i+1; j=j-1;}
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3.1.1 Invariant Assertions

Traditionally, an invariant assertion α for the while loop w = while t do B with respect to a
precondition/ postcondition pair (φ, ψ) is defined as a predicate on S that satisfies the following
conditions:

• φ⇒ α.

• {α ∧ t}B{α}.

• α ∧ ¬t⇒ ψ.

As defined, the invariant assertion is dependent not only on the while loop, but also on the loop’s
specification, in the form of a precondition/ postcondition pair. This precludes meaningful
comparisons with invariant relations and invariant functions, which are dependent solely on
the loop. Hence we redefine the concept of invariant assertion in terms of the second condition
alone. Also, to represent an invariant assertion, we map the predicate on S into a vector (a
relation) on S. Specifically, we represent the predicate α by the vector A defined by

A = {(s, s′)|α(s)}.

Definition 2. Given a while statement of the form, w = while t do B, an invariant assertion
is defined as a non-empty vector A on S that satisfies the following condition:

A ∩ T ∩ [B] ⊆ Â,

where T is the vector defined by predicate t, i.e. T = {(s, s′)|t(s)}.

This is a straightforward interpretation, in relational terms, of the second condition (above),
{α ∧ t}B{α}. For the sake of illustration, we submit that the following vector satisfies the

condition of Definition 2: A = {(s, s′)|x =
∑i−1

k=1 a[k]}. We compute the left hand side of the
definition:

A ∩ T ∩ [B]
= { Substitutions }

{(s, s′)|x =
∑i−1

k=1 a[k] ∧ i 6= N + 1 ∧ a′ = a ∧ b′ = b∧
x′ = x+ a[i] ∧ i′ = i+ 1 ∧ y′ = y + b[j] ∧ j′ = j − 1}

⊆ { Set Theory }
{(s, s′)|x =

∑i−1
k=1 a[k] ∧ i 6= N + 1 ∧ a′ = a ∧ x′ = x+ a[i] ∧ i′ = i+ 1}

= { Simplification }
{(s, s′)|x =

∑i−1
k=1 a[k] ∧ i 6= N + 1 ∧ a′ = a ∧ x′ =

∑i−1
k=1 a[k] + a[i] ∧ i′ = i+ 1}

= { Simplification }
{(s, s′)|x =

∑i−1
k=1 a[k] ∧ i 6= N + 1 ∧ a′ = a ∧ x′ =

∑i
k=1 a[k] ∧ i′ = i+ 1}

= { Substitution }
{(s, s′)|x =

∑i−1
k=1 a[k] ∧ i 6= N + 1 ∧ a′ = a ∧ x′ =

∑i′−1
k=1 a

′[k] ∧ i′ = i+ 1}
⊆ { Set Theory }

{(s, s′)|x′ =
∑i′−1

k=1 a
′[k]}

= { Substitution }
Â.

Note that we have not proven that the assertion x =
∑i−1

k=1 a[k] holds after each iteration;
rather we have only proven that if this assertion holds at one iteration, then it holds at the
next iteration. This is in effect an inductive proof without a basis of induction.
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3.1.2 Invariant Relations

Invariant relations are reflexive transitive relations that are supersets of the loop body’s func-
tion. By virtue of this definition, one can see that an invariant relation contains pairs of states
(s, s′) such that s′ follows from s by application of an arbitrary number (including zero) of
iterations.

Definition 3. Given a while loop of the form w = while t do B on some space S, and given
a relation R on S, we say that R is an invariant relation for w if and only if R is reflexive,
transitive, and satisfies the following conditions (where T is the vector defined by predicate t
and T is the complement of T ):

• The Invariance Condition: T ∩ [B] ⊆ R.

• The Convergence Condition: R ◦ T = L.

To highlight its important properties, we may sometimes refer to an invariant relation as
a reflexive transitive invariant relation; these two terms refer to the same concept. Note that
unlike the definition of invariant assertions (Definition 2) the definition of invariant relations
(Definition 3) is not recursive: the term R appears on one side only of each equation. What
makes it inductive, nevertheless, is the fact that R is reflexive and transitive; reflexivity serves
the basis of induction, and transitivity serves the inductive step of an inducytive proof to the
effect that this relation holds between any two states s and s′ such that s′ is obtained from s
by application of an arbitrary number of iterations.

As for the convergence condition, it provides that any state in S can be mapped by R onto
a state in S that satisfies ¬t. Given that R represents the effect of applying the loop body an
arbitrary number of times, this condition ensures that these applications eventually produce a
final state, i.e. a state that causes the loop to terminate.

To illustrate this concept, we consider again the example of the array sum, presented above,
and propose the following invariant relation for it.

R = {(s, s′)|x+

N∑
k=i

a[k] = x′ +

N∑
k=i′

a′[k] ∧ i ≤ i′}.

This relation is clearly reflexive and transitive. To check the invariance condition, we compute
the intersection T ∩ [B] ∩R and check that it equals T ∩ [B].

T ∩ [B] ∩R
= { Substitution }

{(s, s′)|i 6= N + 1 ∧ x′ = x+ a[i] ∧ i′ = i+ 1 ∧ a′ = a

∧y′ = y + b[j] ∧ j′ = j − 1 ∧ b′ = b ∧ x+
∑N

k=i a[k]

= x′ +
∑N

k=i′ a
′[k] ∧ i ≤ i′}

= { Substitution }
{(s, s′)|i 6= N + 1 ∧ x′ = x+ a[i] ∧ i′ = i+ 1 ∧ a′ = a

∧y′ = y + b[j] ∧ j′ = j − 1 ∧ b′ = b ∧ x+
∑N

k=i a[k]

= x+ a[i] +
∑N

k=i+1 a
′[k] ∧ i ≤ i′}

= { Simplification }
{(s, s′)|i 6= N + 1 ∧ x′ = x+ a[i] ∧ i′ = i+ 1 ∧ a′ = a

∧y′ = y + b[j] ∧ j′ = j − 1 ∧ b′ = b ∧ x+
∑N

k=i a[k]

= x+
∑N

k=i a
′[k] ∧ i ≤ i′}

= { Logical Simplification }
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{(s, s′)|i 6= N + 1 ∧ x′ = x+ a[i] ∧ i′ = i+ 1 ∧ a′ = a
∧y′ = y + b[j] ∧ j′ = j − 1 ∧ b′ = b ∧ i ≤ i′}

= { Associativity }
{(s, s′)|i 6= N + 1 ∧ x′ = x+ a[i] ∧ (i′ = i+ 1 ∧ i ≤ i′)
∧a′ = a ∧ y′ = y + b[j] ∧ j′ = j − 1 ∧ b′ = b}

= { Logical Simplification }
{(s, s′)|i 6= N + 1 ∧ x′ = x+ a[i] ∧ i′ = i+ 1
∧a′ = a ∧ y′ = y + b[j] ∧ j′ = j − 1 ∧ b′ = b}

= { Substitution }
T ∩ [B].

To check the convergence condition, we compte R ◦ T and check that it is the full relation.
R ◦ T

= { Substitution }
{(s, s′)|x+

∑N
k=i a[k] = x′ +

∑N
k=i′ a

′[k] ∧ i ≤ i′} ◦ {(s, s′)|i = N + 1}
= { Relational Product }

{(s, s′)|∃s′′ : x+
∑N

k=i a[k] = x′′ +
∑N

k=i′′ a
′′[k] ∧ i ≤ i′′ ∧ i′′ = N + 1}

= { Simplification }
{(s, s′)|∃s′′ : x+

∑N
k=i a[k] = x′′ ∧ i ≤ N + 1 ∧ i′′ = N + 1}

= { Simplification/ Interpretation }
{(s, s′)|true }

= { Definition }
L.

3.1.3 Invariant Functions

Invariant functions are functions whose value remains unchanged by application of the loop
body’s function [12].

Definition 4. Let w be a while statement of the form while t do B that terminates normally
for all initial states in S. We say that a function F on S is an invariant function if and only
if it is total and satisfies the following condition: (T ∩ [B]) ◦ F = T ∩ F.

To illustrate the concept of invariant function, we consider the array program, and submit
the following function:

F


a
x
i
b
y
j

 =



a

x+
∑N

k=i a[k]
N + 1
a

x+
∑N

k=i a[k]
N + 1

 .

We briefly verify that this function is invariant with respect to application of the loop body
(assuming s satisfies condition t).

F

[B]


a
x
i
b
y
j



 = F


a

x+ a[i]
i+ 1
b

y + b[j]
j − 1

 =



a

x+ a[i] +
∑N

k=i+1 a[k]
N + 1
a

x+ a[i] +
∑N

k=i+1 a[k]
N + 1

 =



a

x+
∑N

k=i a[k]
N + 1
a

x+
∑N

k=i a[k]
N + 1
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= F


a
x
i
b
y
j

 .

3.2 Orderings Invariants

Invariants are not created equal. For example true is an invariant assertion for any loop,
though not a very useful assertion; the full relation (L) is an invariant relation for any loop,
though not a very useful relation; finally a constant function is an invariant function for any
loop, though not a very useful function. In this section we briefly review how each type of
invariant is ordered.

3.2.1 Ordering Invariant Assertions by Implication

Invariant assertions are naturally ordered by logical implication. As we recall from Defini-
tion 2, the invariant assertions are represented by non-empty vectors; hence stronger invariant
assertions are represented by smaller vectors. Even though α = false does satisfy the condition

{α ∧ t}B{α},

we do not consider it as a legitimate invariant assertion because it cannot be represented by a
non-empty vector. The inclusion ordering among non empty vectors defines a lattice structure,
where the join is the intersection of vectors and the meet is the union of vectors.

For the sake of illustration, we consider the following invariant assertions, say A0 and A1,
defined as: A0 = {(s, s′)|x =

∑i−1
k=1 a[k]}, A1 = {(s, s′)|x =

∑i−1
k=1 a[k] ∧ y =

∑N
k=j+1 b[k]}. To

check that A1 is an invariant assertion of the loop, we compute the expression A1 ∩ T ∩ [B].
We find,

A1 ∩ T ∩ [B]
= { Substitutions }

{(s, s′)|x =
∑i−1

k=1 a[k] ∧ y =
∑N

k=j+1 b[k] ∧ i 6= N + 1 ∧ a′ = a ∧ b′ = b∧
x′ = x+ a[i] ∧ i′ = i+ 1 ∧ y′ = y + b[j] ∧ j′ = j − 1}

⊆ { Simplification, Substitution }
{(s, s′)|x =

∑i−1
k=1 a[k] ∧ y =

∑N
k=j+1 b[k] ∧ a′ = a ∧ b′ = b∧

x′ =
∑i

k=1 a[k] ∧ i′ = i+ 1 ∧ y′ =
∑N

k=j b[k] ∧ j′ = j − 1}
= { Substituting Indices }

{(s, s′)|x =
∑i−1

k=1 a[k] ∧ y =
∑N

k=j+1 b[k] ∧ a′ = a ∧ b′ = b∧
x′ =

∑i′−1
k=1 a[k] ∧ i′ = i+ 1 ∧ y′ =

∑N
k=j′+1 b[k] ∧ j′ = j − 1}

= { Substituting Arrays }
{(s, s′)|x =

∑i−1
k=1 a[k] ∧ y =

∑N
k=j+1 b[k] ∧ a′ = a ∧ b′ = b∧

x′ =
∑i′−1

k=1 a
′[k] ∧ i′ = i+ 1 ∧ y′ =

∑N
k=j′+1 b

′[k] ∧ j′ = j − 1}
⊆ { Set Theory }

{(s, s′)| x′ =
∑i′−1

k=1 a
′[k] ∧ y′ =

∑N
k=j′+1 b

′[k]}
= { Substitution }

Â1.
We leave it to the reader to check that A0 is also an invariant assertion. Also, because A1 is a
subset of A0, we find that A1 represents a stronger assertion of the loop.
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3.2.2 Ordering Invariant Relations by Refinement

Invariant relations are ordered by refinement, which, as we have discussed in section 2.2, has
lattice-like properties. More refined relations give more information on loop behavior. Because
they are by definition reflexive, invariant relations are total. If we consider the definition of
refinement (Definition 1), we find that it can be simplified as follows

RL ∩R′L ∩ (R ∪R′) = R′

⇔ { R and R′ are total }
L ∩ L ∩ (R ∪R′) = R′

⇔ { Set Theory }
R ∪R′ = R

⇔ { Set Theory }
R ⊆ R′.

Hence for invariant relations, refinement is synonymous with set inclusion. We illustrate this
ordering with a simple example. We leave it to the reader to check that the following two
relations are invariant relations for the array sum program.

R0 = {(s, s′)|a = a′ ∧ x+

N∑
k=i

a[k] = x′ +

N∑
k=i′

a′[k]}.

R1 =

{(s, s′)|a = a′∧x+

N∑
k=i

a[k] = x′+

N∑
k=i′

a′[k]∧b = b′∧y+

j∑
k=1

b[k] = y′+

j′∑
k=1

b′[k]∧ i+j = i′+j′}.

Invariant relation R1 refines invariant relation R0 because they have the same domain and the
latter is a subset of the former. Clearly, the latter also provides more information on loop
behavior than the former.

3.2.3 Ordering Invariant Functions by Injectivity

Invariant functions are total by definition, hence they all have the same domain. When we
write an equation such as F (s) = F ([B](s)), this gives all the more information on B that F is
more injective, i.e. partitions its domain finely. If F were a constant, then this equation does
not tell us anything about B, since it holds for all B. Hence we order invariant functions by
injectivity.

To illustrate this ordering, we consider the following two invariant functions, and we leave
it to the reader to check that they are indeed invariant functions for the array sum program:

F0


a
x
i
b
y
j

 =



a

x+
∑N

k=i a[k]
N + 1
a

x+
∑N

k=i a[k]
N + 1

 .F1


a
x
i
b
y
j

 =



a

x+
∑N

k=i a[k]
N + 1
b

y +
∑j

k=1 b[k]
i+ j −N − 1

 .

To check which (if any) of F0 and F1 is more-injective than the other, we compute their nuclei,
and find

µ(F0) = {(s, s′)|a = a′ ∧ x+

N∑
k=i

a[k] = x′ +

N∑
k=i′

a′[k]}.

10 EasyChair Workshop Proceedings



Comparison of Invariant Assertions, Relations and Functions Louhichi, Mraihi, Labed, Mili

µ(F1) = {(s, s′)|a = a′ ∧ x+

N∑
k=i

a[k] = x′ +

N∑
k=i′

a′[k]∧

b = b′ ∧ y +

j∑
k=1

b[k] = y′ +

j′∑
k=1

b′[k] ∧ i+ j = i′ + j′}.

Clearly, F1 is more-injective than F0, since µ(F1) ⊆ µ(F0).

3.3 Invariants and the Loop Function

In this section we present theorems that relate the invariant assertions, invariant relations and
invariant functions to the function of the loop.

3.3.1 Invariant Assertions and Loop Functions

In this section we consider a theorem that provides an interesting link between the function of
the loop and an adequate (in a sense to be defined) invariant assertion. We consider the following
program structure, which we annotate by intermediate assertions and invariant assertions:

f =

begin {s=s0} init; {s=[init](s0)}

while t do {F(s)=F(s0) && s in dom(W inter F)} B;

{s=F(s0)}

end.

A theorem by Mili et al. [8], which is based on earlier findings by Morris and Wegbreit [15],
Mills [13] and Basu and Misra [1] provides that program f computes some total function F on
S if:

1. The specification Y defined by Y = FF̂ ∩L ̂(F ∩W ) (where W is the function of the while
loop) is total.

2. Segment init is correct with respect to specification Y = FF̂ ∩ L ̂(F ∩W ).

3. The following predicate is an invariant assertion: α(s0, s) ≡ (s0, s) ∈ FF̂ ∩ L ̂(F ∩W ).

The invariant assertion α is adequate, in the sense that it is strong enough that, if the loop
does compute function F , then this loop invariant allows us to construct a Hoare-style proof to
this effect.

3.3.2 Invariant Relations and Loop Function

In this section, we submit two propositions that elucidate the relation between invariant rela-
tions and loop functions. The first proposition shows us how to derive an invariant relation
from the function of the loop.

Proposition 2. Given a while loop w on space S of the form w: while t do B; we assume
that w terminates for all s in S, and we let W be the function defined by w. Then R = µ(W )
is an invariant relation for w.
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Proof. We establish in turn the invariance condition, then the convergence condition of Defi-
nition 3. But First, we briefly check that R is reflexive and transitive. Relation R is reflexive
by virtue of being the nucleus of a total relation; also, it is transitive by virtue of the following
brief argument:

R ◦R
= { Substitution, definition of nucleus }

(WŴ )(WŴ )
⊆ = { Associativity, determinacy of W }

WŴ
= { substitution }

R.

The Invariance Condition. We consider the third condition of Mills’ Theorem (Theorem 2),
and we proced by logical implication.

I(t) ◦ [B] ◦W = I(t) ◦W
⇔ { Monotonicity }

I(t) ◦ [B] ◦W ⊆W
⇔ { Multiplying on both sides by Ŵ , Monotonicity }

I(t) ◦ [B] ◦W ◦ Ŵ ⊆W ◦ Ŵ
⇔ { Substitution }

I(t) ◦ [B] ◦R ⊆ R
⇔ { Reflexivity of R }

I(t) ◦ [B] ⊆ R
⇔ { Rewriting }

T ∩ [B] ⊆ R.

The Convergence Condition. We consider the left hand side of the convergence condition in
Definition 3, and proceed as follows:

R ◦ T
= { Substitution, rewriting }

W ◦ Ŵ ◦ I(¬t) ◦ L
= { Laws of inverse, associativity }

W ◦ ( ̂I(¬t) ◦W ) ◦ L
= { Second condition, Mills Theorem }

W ◦ I(¬t) ◦ L
= { Post restriction of W to its range }

W ◦ L
= { Totality of W }

L.
qed

Proposition 2 shows us how to derive an invariant relation from the loop function; a much
more useful result in practice is how to derive the function of the loop (or an approximation
thereof) from an invariant relation. This is the subject of the following proposition.

Proposition 3. We consider a while loop w on space S of the form w: while t do B, which
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terminates for any element in S. If R is an invariant relation of w then

[w] w R ∩ T .

The proof of this Proposition is given in [10], hence will not be given here. Given that this
proposition provides a lower bound of the loop function, one may want to know under what
condition the lower bound is tight enough to be the actual loop function. The answer is fairly
straightforward:

• The relation R = (T ∩ [B])∗ is an invariant relation, since it is reflexive and transitive,
by construction. Also, it is a superset of (T ∩ [B]), by construction, and it satisfies the
convergence condition by virtue of the totality of W .

• The relation R = (T ∩ [B])∗ is the smallest invariant relation of the loop. Indeed, the
reflexive transitive closure of (T∩[B]) is the smallest relation that is a superset of (T∩[B]).

• The lower bound of [w] obtained from this invariant relation is the function of the loop,
by virtue of Theorem 3.

This concludes the discussion of the relation between invariant relations of a loop and the
function of the loop.

3.3.3 Invariant Functions and Loop Function

A theorem by Mili et al. [12] provides that the function of the loop is an invariant function of
the loop.

4 Relations between Invariants

4.1 Invariant Assertions and Invariant Relations

We have shown in [11] that from an invariant relation we can infer an invariant assertion. We
have not found a way to infer an invariant relation from an invariant assertion, because invariant
assertions are unary relations whereas invariant relations are binary relations.

4.2 Invariant Relations and Invariant Functions

In [11] we have shown that

• From an invariant function F , we can derive an invariant relation R as the nucleus of F .
Such invariant relations are symmetric, in addition to being reflexive and transitive.

• Any invariant relation that is symmetric, in addition to being reflexive and transitive, is
the nucleus of an invariant function. For example, the following invariant relation

R = {(s, s′)|x+

N∑
k=i

a[k] = x′ +

N∑
k=i′

a′[k] ∧ a = a′}.
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is the nucleus of the invariant function,

F


a
x
i
b
y
j

 =



a

x+
∑N

k=i a[k]
N + 1
a

x+
∑N

k=i a[k]
N + 1

 .

whereas the following invariant relation

R = {(s, s′)|x+

N∑
k=i

a[k] = x′ +

N∑
k=i′

a′[k] ∧ i ≤ i′}

is not the nucleus of any invariant function because it is not symmetric.

Contrary to what the names suggest, an invariant function is not an invariant relation that
happens to be deterministic. The only relation that is reflexive and deterministic at once is
the identity, and the only loop body that accepts the identity as an invariant relation is skip,
which is of no interest.

4.3 Invariant Assertions and Invariant Functions

Contrary to what the names may suggest, an invariant assertion is not an invariant function
that takes boolean values. Rather an invariant function takes the same values before and after
application of the loop body whereas an invariant assertion may be false before and become
true after. This seems to indicate that a more appropriate name for invariant assertions is
monotonic assertions. Hence we may distinguish between monotonic assertions, which satisfy

{α ∧ t}B{α}

(traditionally called invariant assertions) and genuinely invariant assertions, which satisfy

{α ∧ t}B{α}

{¬α ∧ t}B{¬α}.

This distinction is not a mere exercise in hair-splitting. We conjecture (but have not yet
proven) that an invariant assertion is usually made up of an invariant part and a monotonic
part; and that the invariant part can be derived from invariant functions. Because we have
some machinery to derive invariant functions by static code analysis, this may be useful to
derive the invariant part of invariant assertions.

5 Brief Concluding Remarks

This is an unfinished work; we intend to explore in detail the characteristics of three types of
invariants, and investigate their relations, but there is a lot more to say about these concepts
than we could fit in this this paper. We view this line of research as having two broad goals: first
broaden the scope of tools that we use to analyze while loops; second, deploy the insights gained
from invariant relations and invariant functions to enhance the study of invariant assertions.

Despite the tentative nature of our preliminary conclusions, we are confident of two premises:
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• Given an invariant assertion, we cannot use it to derive an invariant relation.

• Given an invariant generation method, we cannot use it to derive an invariant relation
generation method.

Because invariant functions and invariant relations appear to be useful in generating invariant
assertions, we are exploring means to refine our invariant function and invariant relation gen-
eration techniques; we are also interested in analyzing the structure of invariant assertions, to
see which parts can be derived by means of invariant assertions and invariant functions.
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