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Figure 1: Clustering of aircraft trajectories crossing Switzerland airspace on August 1st, 2018

Abstract
Problems tackled by researchers and data scientists in aviation and air traffic manage-

ment (ATM) require manipulating large amounts of data representing trajectories, flight
parameters and geographical descriptions of the airspace they fly through. The traffic
library for the Python programming language defines an interface to usual processing and
data analysis methods to be applied on aircraft trajectories and airspaces. This paper
presents how traffic accesses different sources of data, leverages processing methods to
clean, filter, clip or resample trajectories, and compares trajectory clustering methods on
a sample dataset of trajectories above Switzerland.

1 Introduction
The large volume of available aircraft time-series, or more specifically trajectory data, be it data
from onboard Flight Monitoring Systems (FMS), Automatic dependent surveillance–broadcast
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(ADS-B) trajectories from large-scale databases like the OpenSky Network [19] or radar tracks
available from air navigation service provider (ANSP), opens up a wide range of possibilities for
statistical analytics [18], open-data aircraft modelling [22, 21], performance reviews, academic
studies [16, 17, 15] or journalistic stories [12].

All these studies follow a general process starting from data acquisition (storage and query-
ing) and data preprocessing (cleaning, selection, normalisation, transformation, feature extrac-
tion), and ending with data visualisation.

The traffic library [14] is an open-source Python package available under the MIT licence.
The library provides:

1. parsers to common sources of air traffic management (ATM) related data including a
download assistance tool for the OpenSky Impala shell (Section 2);

2. a declarative grammar to process trajectories, including resampling, filtering faulty data,
projecting, querying, intersecting with airspaces (Section 3);

3. exporting facilities to common visualisation tools such as Matplotlib and Altair [24], or
Cartopy, Google Earth, Leaflet and Cesium for geospatial data.

We will go in this paper through the possibilities of the library and apply them to the
common use case of trajectory clustering. After a brief review of common and lesser-known
trajectory clustering methods in Section 4, we will compare results in Section 5.

2 Sources of data
The traffic library1 has been designed to manipulate large amounts of data representing tra-
jectories, flight parameters and geographical descriptions of the airspace they fly through. It is
based on three main core classes for handling aircraft trajectories (Flight), collections of trajec-
tories (Traffic) and airspaces (Airspace). Common operations relevant to trajectories evolving in
controlled airspaces range from basic attributes: time of entry, time of exit, duration, maximum
or minimum altitudes or speed; to more complex operations like intersections of trajectories
with airspaces, distances between pairs of trajectories, etc.

Basic navigational data is embedded in the library, together with parsing facilities for the
most common sources of information with a main focus on Europe for the time being. A very
basic (and outdated) database of airports with their runways, navigational beacons, ATS routes
and European FIRs is currently available:

from traffic.data import airports, navaids, eurofirs

airports["LSZH"] # accessible through "ZRH" as well
navaids.extent("Switzerland")["ZUE"] # ZURICH EAST VOR-DME
eurofirs["LSAS"] # SWITZERLAND FIR

Eurocontrol gives access to their Demand Data Repository (DDR) files in a standardised
format to describe trajectories and filed flight plans. A specific class is provided to parse
these files commonly referred to by their .so6 extension. Descriptions of the structure of the
European airspace during an AIRAC cycle may also be accessed by providing a reference to
the appropriate location on disk.

The openskymodule is dedicated to handling data from the OpenSky Network infrastructure,
both from the publicly available REST API and from the Impala historical database open to

1A comprehensive documentation is available at https://traffic-viz.github.io/
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academics. The main history() function builds and executes the proper SQL requests based
on its arguments (including date, callsign, tail number and geographic extent), then downloads
and parses the response.

Any Flight instance with trajectory information coming from ADS-B capable transponders,
from multilateration or from radar tracks may be enriched with additional information from
Mode S Enhanced Surveillance (EHS)2 such as heading, roll angle, indicated airspeed or selected
altitude. The .query_ehs() method builds the appropriate request to download all relevant raw
DF20 and DF21 messages before decoding them with the pyModeS [20] library.

In the following, we use one day of data of traffic above Switzerland on August 1st, 2018:
from traffic.data import eurofirs, opensky

switzerland_raw = opensky.history(
"2018-08-01 05:00", # UTC time by default
"2018-08-01 22:00",
bounds=eurofirs["LSAS"]

)

3 Trajectory processing
One of the most natural way to model time series is by using a set of named vectors associated
to semantic properties such as type (float, integer, dates, etc.), sampling rate or physical unit.
Several programming languages provide appropriate data structures to fit that need, such as
data frames in R or the Pandas library in Python.

Pandas comes with a set of chainable methods appropriate for generic processing including
handling missing data, slicing, querying or resampling. Collections of trajectories need specific
operations related to their evolution in controlled airspaces. These operations range from the
calculation of basic attributes (e.g. time of entry, time of exit, duration, maximum or minimum
altitudes or speed) to more complex operations like intersections of trajectories with airspaces,
distances between pairs of trajectories and more.

ADS-B does not provide unique flight identifiers. Transponder codes (hexadecimal identi-
fiers) and callsigns (associated to missions—like emergency services or aerial surveys,—or to
routes for commercial aircraft) may be enough to identify most of the commercial trajectories
in a short time interval (less than a day), but they are not usually sufficient as stop-over (and
most diverted) flights consist of several legs with the same callsigns. traffic provides default
heuristics to iterate on large scale data frames, following unique identifiers if provided, and
yields legs one at a time:
for flight in switzerland_raw:

pass # yields flight legs one at a time

Data from a large scale ADS-B capable receivers’ network such as OpenSky Network is
provided as is, i.e. noisy and faulty data included. traffic includes a set of methods to filter
out unusable data such as trajectories with nothing but NaN latitude and longitude coordinates,
replicated faulty samples or wrongly decoded callsigns. A commonly seen noisy pattern in
OpenSky data is the presence of spikes in several features, including altitude. To filter them
out, traffic offers specific methods implementing algorithms based on a cascade of median
filters (see Figure 2).

2Mode S EHS improves situation awareness for air traffic controllers who may cross-check aircraft intentions
with given clearances. Aircraft are selectively interrogated by Mode S capable Secondary Surveillance Radars
(SSR)—unlike ADS-B data which is continuously broadcasted. Mode S EHS is rather well implemented in
Europe, partially implemented in Northern America and nonexistent in areas without radar coverage.
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.

.
# Download data and filter to remove spikes
raw_data = opensky.history(

"2018-05-30", callsign="TRA051"
)
filtered = raw_data.filter().assign(

callsign="TRA051 (filtered)"
)

( # Visualisation using the Altair framework
original.last(hours=1).encode("altitude") +
filtered.last(hours=1).encode("altitude")

)

Figure 2: Altitude signal before and after filtering on the last hour of flight for the B738 flying
TRA051 on May 30th, 2018.

Trajectory simplification is a widely shared concern when handling trajectory data, esp.
when memory resources are at stake. The Douglas-Peucker [7] algorithm is a well-known sim-
plification technique for geospatial trajectories that works by discarding the points that are
relatively close to a straight line. Resampling is a different way to reduce the size of the time
series by changing its sampling rate, or by only keeping a given number of samples equally
distributed along time. Figure 3 plots various simplifications applied to a sample trajectory.
Depending on the needs, shape preservation or data equally distributed along time may be
preferable.

After applying a set of processing operations to all the flights in a Traffic structure, a final
merging operation concatenates the data back into a single data frame so as to return a new
Traffic instance. Processing a collection of trajectories can be expressed in a programmatic,
imperative form like:

cumul = []
for flight in collection:

if flight.min("altitude") < 30000:
continue

cumul.append(flight.filter().resample("30s"))
new_collection = Traffic.from_flights(cumul)

or in an equivalent, equally efficient, flattened human-readable declarative form, which could
read like "select trajectories flying above FL300; then apply filtering; then apply resampling".

The flattened human-readable declarative description avoids creating an unnecessary large
number of full iterations and is kept computing efficient by allowing operations on a Traffic
structures to be lazily stacked on for a future evaluation in one single (possibly multiprocessed)
loop. More specifically:

• map operations typed Flight → Optional[Flight] Ê are stacked: the flight is discarded if
None is returned.

• filter operations Flight → bool Ë return True if the Flight should be kept, False if not.
They are stacked using the .filter_if() method.

• the final reduce operation Ì is called .eval() and returns a Traffic structure.
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from shapely.geometry import box
from traffic.data.samples import texas_longhorn

red = box(-96.2, 29.6, -95.7, 29.82) # bounding box

# a) Douglas-Peucker (1km resolution) yields 23 samples
texas_longhorn.clip(red).simplify(1e3)
# b) 25 samples
texas_longhorn.clip(red).resample(25)
# c) one sample per minute yields 50 samples
texas_longhorn.clip(red).resample("1T")

Figure 3: Trajectory of aircraft N56821 on Sep. 17th, 2017, clipped to its inside Longhorn shape
part (2981 samples) and simplified using various methods.

In our example, we applied the following preprocessing operations on the raw dataset of
trajectories flying over Switzerland:

import pandas as pd

def enroute(flight: "Flight") -> bool: # Ë
"Returns True if flight is most likely enroute."
return (

flight.duration > pd.Timedelta("10 minutes")
# filter ground vehicles with no track angles (NaN)
and flight.min("track").notnull()
# we consider enroute flights never fly below FL300
and flight.min("altitude") > 30000

)

switzerland = (
switzerland_raw
# a set of heuristics to remove most faulty data
.clean_invalid()
# assign identifiers (default pattern: {callsign}_{index})
.assign_id() # Ê
# cascade of median filters to remove spikes
.filter().filter(altitude=53) # Ê
# keep only en-route flights
.filter_if(enroute) # Ë
# resample to one point every 10 seconds
.resample("10s") # Ê
# multiprocessed evaluation using 4 cores
.eval(desc="preprocessing", max_workers=4) # Ì

)
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4 Trajectory clustering
Clustering is an unsupervised data analysis technique widely used to group similar entities into
clusters according to a similarity (or distance) function. Multiple clustering algorithms exist
in the literature to cluster point-based data such as K-means [13], BIRCH [26], OPTICS [1],
DBSCAN [8] and HDBSCAN [5]. When clustering is applied to trajectories, it requires a proper
distance function to be defined between trajectory pairs, which is challenging because of the
functional nature of trajectories. The most common approach is to simply sample the trajectory
to obtain a n-dimensional vector of points for the use of point-based clustering algorithms and
distances such as the Euclidean one.

Trajectory clustering methods based on Euclidean distance do not always produce satisfying
results, especially when applied to trajectories with different lengths. Fortunately, more specific
distances for trajectory and time series exist in the literature [4]. For instance, warping-based
distances such DTW [3], LCSS [25], EDR [6], ERP [6] find an optimal way of aligning the time
dimension of trajectories to achieve a perfect match between them. Other distances take better
into account the geometry of the trajectories and in particular its shape. The best well known
shape-based distances are the Hausdorff [11] and the Fréchet [9] but they do not compare
trajectories as a whole. More recently, a more promising shape-based called Symmetrized
Segment-Path Distance (SSPD) distance has been proposed [4, 10] which takes into account
the total length, the variation and the physical distance between two trajectories. The SSPD
distance has been used by Basora et al. [2] in their framework for the analysis of en-route flows
based on trajectory clustering with the HDBSCAN algorithm.

Another approach for trajectory clustering that are commonly represented as highly di-
mensional data is to reduce data dimensionality, project trajectories in a low dimension space
as a preprocessing step and apply a traditional clustering algorithms in the lower dimension
space. Various techniques can be used to project high-dimensional data: principal component
analysis [17] identifies the directions with the more variance and proceeds with a linear transfor-
mation of the input data. Autoencoders [15] are a particular kind of hourglass-shaped neural
networks, trained to learn a (non-linear) projection/encoding and a reconstruction/decoding
operation so that the input and the output of the network match. In the following, we un-
fold the implementation of a clustering in a two-dimensional space obtained through a t-SNE
algorithm [23].

traffic provides a convenient clustering API applicable to collections of trajectories. The
label associated to each trajectory will be added to the underlying DataFrame:

Traffic.clustering(
clustering: ClusteringProtocol, # provides fit() and predict()
nb_samples: int, # all trajectories are first resampled
features: List[str] = ["x", "y"],
projection: Optional[pyproj.Proj], # computes x and y
transform: Optional[TransformerProtocol] = None # StandardScaler()

).fit_predict()

The Traffic.clustering method prepares the data present in a traffic.core.Traffic structure in
order for it to match the API of usual clustering objects, providing fit(), predict() and/or
fit_predict() methods. Geographical coordinates (latitude and longitude) are first projected
into x and y coordinates in a local referential through projection methods. The use of standard
projections (like EuroPP in Europe) is recommended; if none available, consider conformal conic
projections centered around the area of interest. Selected features are then resampled to match
a given dimension before being scaled. The final fit_predict() call applies the clustering to the
prepared data and subsequently label the whole trajectories.
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# CH1903+ is a standard projection system
# in Switzerland
from traffic.core.projection import CH1903p
from traffic.drawing import countries

with plt.style.context("traffic"):
ax = plt.axes(projection=CH1903p())
ax.add_feature(countries())
switzerland.plot(ax, alpha=0.1)

Figure 4: Sample dataset of flight trajectories over Switzerland on August 1st 2018 used for
clustering in Section 5

Traditional clustering algorithms provided in common ML libraries such as scikit-learn can be
passed as is. More complex methods can also be defined. In the following example, t-SNE first
projects the trajectories to a two-dimensional space and we apply DBSCAN to label samples
on that space. Note that the nature of t-SNE algorithms does not allow to label new samples to
make them fit an existing cluster, but the self.labels_ attribute lets us go around this limitation
to produce a "one-shot" clustering.

# See implementation: https://github.com/DmitryUlyanov/Multicore-TSNE
from MulticoreTSNE import MulticoreTSNE

class TSNE_Clustering():
def __init__(self):

self.tsne = MulticoreTSNE(n_jobs = 4)
self.latent_clustering = DBSCAN(eps=2, min_samples=10)

def fit(self, X):
self.Y = self.tsne.fit_transform(X)
self.labels_ = self.latent_clustering.fit_predict(self.Y)

5 Comparison of clustering methods

In this section, we compare the results of three different clustering methods on the sam-
ple collections of 1244 trajectories flying over Switzerland. Figure 4 plots the whole set of
trajectories with enough transparency to get an idea of the main flows. Results are on Figure 6:

1. DBSCAN with a default ε = 0.5 value and a minimum of 10 trajectories per cluster yields
19 clusters and a fair share of 50% of outliers;

2. a GaussianMixture of 19 components for a fair comparison with previous method—however
GMM allows no outlier;

3. a custom implementation with a DBSCAN applied on the non-linear two-dimensional
projected space (see Figure 5) through t-SNE with default parameters yields 20 clusters
and very few outliers (less than 1%).
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Figure 5: Result of the DBSCAN clustering on the two-dimensional space where t-SNE pro-
jected all the trajectories

Sample trajectories cluster naturally in the two-dimensional space as t-SNE is designed
to keep close (resp. far) samples in the trajectory space (according to Euclidean distance)
close (resp. far) in the two-dimensional space. The relative position of all clusters in the
two-dimensional space has no particular meaning.

from sklearn.cluster import DBSCAN
from sklearn.mixture import GaussianMixture
from sklearn.preprocessing import StandardScaler

from traffic.core.projection import CH1903p

methods = [
DBSCAN(eps=0.5, min_samples=10),
GaussianMixture(n_components=19),
TSNE_Clustering()

]

t_cluster = [
switzerland.unwrap()
.clustering(

nb_samples=15,
projection=CH1903p(),
features=["x", "y", "track_unwrapped"],
clustering=clustering,
transform=StandardScaler(),

).fit_predict()
for clustering in methods

]

The following table describes the number of trajectories per cluster k ∈ {0, · · · 5}:
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Figure 6: Comparison of clustering methods: DBSCAN, Gaussian Mixture and DBSCAN on
the latent space produced by t-SNE
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DBSCAN GMM t-SNE
0 62 98 75
1 30 107 77
2 23 27 112
3 17 119 55
4 14 156 78
5 25 29 34

Figure 6 plots the six first clusters yielded by the three considered methods. There is no
reason why cluster k according to DBSCAN should match cluster k according to GaussianMixture
(GMM) or t-SNE + DBSCAN (t-SNE). However, some comparisons can safely be made:

• generally speaking, clusters yielded by GMM have more dispersion that DBSCAN and to
a lesser extent, than t-SNE.

• clusters yielded by t-SNE (T) usually catch more trajectories than DBSCAN (D): compare
D0 (62) with T0 (75); D1 (30) with T3 (55); D2 (23) with T2 (112); D4 (14) with T5
(34) and D5 (25) with T4 (78);

• since GMM (G) allows no outlier, the dispersion associated to each cluster comes with
clusters making not much sense, like G3 in dark green probably related to D2 in light
green but including trajectories coming from the south, or G4 in pink which groups two
flows into one cluster.

6 Conclusion

The traffic library brings a convenient API to work with common sources of air traffic data. In
this paper, we went through the whole process of downloading (Section 2) and processing (Sec-
tion 3) trajectories over Switzerland on a given days before implementing a custom clustering
algorithm (Section 4) comparing it with reference clustering algorithms (Section 5).

An executable Google Colab version of the code presented in this paper is available from
the documentation of the traffic library on https://traffic-viz.github.io/.
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