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Abstract 
It is well known that water distribution networks can be optimised by evolutionary 

algorithms. However, while such optimisation can result in mathematically optimal 
solutions, the ability of the algorithm to generate novelty can often lead to solutions that 
are not practical for implementation. This work describes a distributed optimisation 
platform that will enable the inclusion of a human decision maker in the optimisation 
process. The architecture of the platform is described, and examples of its execution on 
benchmark problems is described, using an automated client that interacts with the 
platform in lieu of a human decision maker. 

1 Introduction 
The use of evolutionary algorithms (EAs) to optimise water distribution network (WDN) designs 

is well known (Wang et al., 2014; Farmani et al., 2005). Variants of EAs, such as genetic algorithms, 
have been shown to offer solutions that are optimal against a mathematically defined objective 
function, or set of functions. Such solutions, though optimising the problem as defined by the 
functions, can be unsuitable for implementation in the real world; problem objectives might be ill-
defined, incomplete, or change over time, and a problem might have constraints that have been 
ignored in its definition. An automatic optimisation problem will struggle to cope with scenarios such 
as this, whereas an engineer will be able to leverage their experience and be more able to adapt and 
take these considerations into account. To this end, this work explores an interactive optimisation 
approach combining an engineer and automated optimisation. 

Interactive EAs (IEAs) (Takagi, 2001; Luque et al., 2011) include an expert – in this case, an 
engineer – to use their judgement or experience to guide the execution of an algorithm. Two common 
components of an automatic EA are the selection operator and the perturbation operator. An EA is an 
iterative process, running over a number of generations, and the selection operator is responsible for 
identifying which of a pool of candidate solutions should be used as the basis for new solutions in the 
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next generation. The process is driven by the quantified objective values, such that those with better 
objective values are (or are more likely to be) retained in favour of those with poorer values. In IEAs 
an engineer is substituted for a selection operator by showing them various solutions and asking them 
to identify those that they prefer. Perturbation is the process by which changes are introduced into an 
existing solution – common perturbation operators are crossover and mutation. These can be replaced 
in IEAs with mechanisms that allow experts to change the solution themselves. In the case of WDN 
design, an interactive perturbation operator might allow the expert to select a new pipe diameter. 

The HOWS (Human-Computer Optimisation for Water Systems Planning and Management)* 
project seeks to explore the inclusion of a human decision maker in WDN design. One of the keys to 
interactive evolution is to make best use of the human element of the system, to reduce the possibility 
of user fatigue.  This can be accomplished by providing tools to visualise solutions as intuitively as 
possible and allowing experts to consider solution quality in their own time on their own machine.  
These considerations therefore require a remote, distributed solution to the problem of water 
distribution network optimisation. Central to this is a server application that receives optimisation 
requests, generates and evaluates candidate solutions to the WDN design problem at hand, and returns 
them to the server. This paper describes the HOWS optimisation server achieves this, and 
demonstrates its use on with an automated client used to optimise two benchmark WDN networks – 
the New York Tunnels and Hanoi networks. 

2 Background 
The optimisation of WDNs using EAs is well understood, however the use of interaction has seen 

much less attention within hydroinformatics. The underlying idea behind interactive EAs (IEAs) is 
that by including an expert in the optimisation process, instead of using them to set up (a priori) an 
automatic optimisation procedure or select a final solution (a posteriori) from one, better solutions 
can be generated (Takagi, 2001; Luque et al., 2011; Tokui and Iba, 2000). 

One approach to interactive evolution is to allow the decision maker to manipulate the solutions 
directly, giving them the ability to introduce changes and generate new offspring solutions (replacing 
crossover and mutation operators) themselves. A second approach is to require them to identify the 
best solution, or to rank a set of presented solutions (replacing the selection operator). A third 
approach is to combine elements of both to allow the user to modify and rank evolved solutions, 
although measures must also be taken to manage user fatigue in such situations (Takagi, 2001). To the 
authors’ knowledge, all of these approaches represent significant novelty in the design of WDNs. In 
this work, interactive solution generation is considered. 

3 System Architecture 
The HOWS framework is designed to allow expert users to interact remotely with partially 

optimised water distribution network models, and follows a client-server architecture. This paper is 
concerned with the server-side aspects of the framework, outlining the basic optimisation algorithm 
that has been implemented. The paper also describes the message passing procedures used to present 
results to the client side for visualisation and interaction. 

 

                                                             
* The HOWS project (“Human-Computer Optimisation for Water Systems Planning and Management”) is a 

three-year EPSRC-funded project running at the University of Exeter’s Centre for Water Systems 
(http://www.howsproject.uk). 
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Figure 1: The HOWS framework. The server-side optimiser described herein is shown in red and 
green, with interaction provided by the HOWS visualisation engine (shown in yellow and blue). 

 
(1+1)—evolution strategy 
1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9 : 
10: 

x = initialise() 
y = evaluate(x) 
A = initialise(x, y) 
while stopping criterion not met do: 
   x’ = copy(x) 
   x’ = mutate(x’) 
   y’ = evaluate(x’) 
   A = update(A, x’, y’) 
   x = select(A) 
return A, x, y 

 
Figure 2: Pseudocode describing the (1+1)—evolution strategy driving the optimisation process. 
 
The server uses a multi-objective (1+1)—evolution strategy (Schwefel, 1965), described in Figure 

2, to generate solutions to the problem at hand (currently a WDN design problem, however the system 
has been designed with flexibility to easily accommodate further algorithms and problems through a 
modular software development approach). The execution of the algorithm begins by generating an 
initial random solution to the problem, evaluating it under the problem objective functions, and using 
the resulting objective values to initialise an archive of solutions that will represent the algorithm’s 
current approximation to the true Pareto front. 

At each generation, the current working (parent) solution is used to generate a single child 
solution. This is done by making a copy of the parent solution that can be mutated. Mutation is done 
using the so-called “creep mutation”, whereby the diameter of a randomly chosen pipe is increased or 
decreased to the next available diameter. This has been shown to produce competitive results when 
compared to other heuristics (Walker, et al., 2016), but, again, can easily be substituted within the 
framework for another heuristic (or sequence of heuristics). The objective functions of the new child 
are evaluated, and the archive is updated; any solutions dominated by the new child are removed from 
the archive, and if the solution is not dominated by any members of the archive then it is itself 
archived. At the end of the generation, the parent solution for the next generation is selected by 
choosing a member of the archive at random. The algorithm runs for a fixed budget of function 
evaluations. In this work, a budget of 50,000 function evaluations was used. 

Message passing is an important consideration of a distributed optimisation platform such as this. 
In order to maximise flexibility, the results of the optimisation run (the Pareto front and all of its 
WDN designs) are encoded using JSON (JavaScript Object Notation – a standard format for 
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exchanging data online) (JSON Advocate Group, 2006) and transmitted across the Internet to the 
client, which can then present the information to the user. User interactions are then returned to the 
server, again using a JSON message, and a record of them is kept in a database. 

The client communicates with the server using HTTP messages; four kinds of message can be 
processed by the server currently: 

• A request for network information. The client sends a unique identifier for a WDN, 
which the server uses to retrieve the EPANET file describing the network before 
converting it into a JSON object and returning it to the client. 

• A request for problem-specific information. The server uses the WDN identifier to 
return information relating to the optimisation problem (e.g., a list of legal pipe 
diameters). 

• A request to start an optimisation session. An optimisation “session” (where a session 
is defined as beginning with a randomly initialised solution and ending with an optimised 
one) is assigned a unique key, so that information pertaining to the optimisation (e.g., 
which pipes have been mutated) process can be stored in a database and retrieved. The 
key is generated by requesting one (generated at random) from the server. 

• A request to initiate a period of automated optimisation. The client encodes the 
current working solution (incorporating any modifications they have made to it) and the 
number of generations to optimise for. The server then optimises for that number of 
generations, before the JSON representation of the evolved network, its corresponding 
objective values, and the current archive are returned to the client. An example of the 
message sent from the client to the server is shown in Figure 3. 

• The client can use a local search operator to exhaustively search the possibilities for a 
given pipe. A pipe ID is sent to the server, which considers all possible pipe diameters for 
that pipe. A JSON message is returned to the client containing all of the solutions, and 
their corresponding objective functions. 

{"diameters": [{"id": "1", "diameter": 144.0}, {"id": "2", "diameter": 156.0}, 
{"id": "3", "diameter": 156.0}, {"id": "4", "diameter": 108.0},  {"id": "5", 
"diameter": 132.0}, {"id": "6", "diameter": 48.0}, {"id": "7", "diameter": 
84.0}, {"id": "8", "diameter": 156.0}, {"id": "9",  "diameter": 168.0}, {"id": 
"10", "diameter": 96.0}, {"id": "11",  "diameter": 144.0}, {"id": "12", 
"diameter": 144.0}, {"id": "13",  "diameter": 72.0}, {"id": "14", "diameter": 
108.0}, {"id": "15",  "diameter": 72.0}, {"id": "16", "diameter": 144.0}, 
{"id": "17",  "diameter": 108.0}, {"id": "18", "diameter": 180.0}, {"id": "19",  
"diameter": 180.0}, {"id": "20", "diameter": 48.0}, {"id": "21",  "diameter": 
144.0}], "sessionId": "DBBT0R2JUV", "ngens": 50,  "problemStr": "nyt"} 

Figure 3: An example of the JSON message passed from the client to the server to initiate an optimisation of 
the New York Tunnels problem. The optimisation will run for 50 generations. 

4 Experiments 
An end-to-end test has been made using the server and a simple, web browser-based, client, which 

initiates an optimisation run and then displays the Pareto front approximation – the preliminary results 
for these tests are included here, and more extensive experiments are ongoing. Two tests were run, 
optimising two benchmark WDN problems: New York Tunnels and Hanoi. The formulation of the 
optimisation problems is shown in the table below: 
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New York Tunnels Hanoi 

f1 = 1.1dk
1.24 × lk( )

k=1
∑  

f2 = ĥn − hn( ) > 0( )
n=1
∑  

f1 = 1.1dk
1.5 × lk( )

k=1
∑  

f2 = ĥn − hn( ) > 0( )
n=1
∑  

Notation: 
dk: diameter of the k-th pipe in the network. 
lk: length of the k-th pipe. 
ĥn : the target head deficit at the n-th node in the network. 
hn: the actual head deficit at the n-th node. 

Table 1: Optimisation problem formulation for New York Tunnels and Hanoi. 

The objective functions are computed using EPANET (Rossman, 2000) to simulate the networks. 
The results of optimising the New York tunnels problem (Schaake and Lai, 1969) is shown in Figure 
4, which illustrates the estimated Pareto front identified by the algorithm for that problem. Similar 
results were produced for the Hanoi problem, and are shown in Figure 5. As can be seen, the 
algorithm has generated a range of solutions across the front. Information about each of these 
networks was encoded by the server as a JSON object and transmitted to the client for visualisation; 
this contains structural information, including the topology of the network, as well as hydraulic 
information (such as the head deficit and water quality). The use of this information by the client is 
beyond the scope of this paper and is not discussed further. 
 

  
Figure 4: A Pareto front generated by optimising the New York Tunnels (left) and Hanoi (right) problems 

with the server-side optimiser. 
 

Figure 4 presents two sets of results generated using the server as an optimisation platform. The 
left-hand plot shows thirty Pareto fronts generated by optimising New York Tunnels, while the right-
hand plot shows a corresponding thirty fronts for the Hanoi problem. They were generated by using a 
test harness that called the server repeatedly. At each step, the server executed 50 generations of the 
(1+1)—ES optimiser described above. Each time the optimiser was invoked, a JSON representation 
of the current working solution was passed, and at the end of the 50 generations the current solution 
was returned, again as a JSON message, along with the current state of the archive. At the end of each 
iteration the archive is stored on the server so that when a new invocation is received for that session 

Towards Interactive Evolution for Multi-Objective WDN Design Walker et al.

2263



(identified by the client sending the session key) the archive can be easily retrieved. This means that 
optimisation could be restarted after any period, assuming that the key is retained. 

To demonstrate the flexibility of the server, an additional run was completed for the New York 
Tunnels problem using a different client. This client is JavaScript-based, and displays results in a web 
browser (Google Chrome was used herein, however the same approach would work in any modern 
web browser). Other client applications are currently under development, including one to provide a 
browser-based 3-dimensional view and one exploiting virtual reality technology. These are beyond 
the purview of this work and are not discussed herein. 

 

 
Figure 5: Another estimated Pareto front for New York Tunnels; this was generated using the server, which 

was this time invoked from a client application running in a web browser and rendered using D3 (a JavaScript 
visualisation framework). 

5 Interaction 
The optimiser outlined in the previous section is entirely automatic. The overall aim is to provide 

the user with as many ways of interacting with the evolutionary process (e.g., mutating solutions, 
identifying preferences and setting constraints) as possible. As an initial step toward this, the client 
software that asks the user to modify solutions by selecting the diameter of a pipe of their choice from 
a list of available options is currently being trialed.  At this stage, the selection of solutions is entirely 
automatic, however even this minimal amount of interaction will allow for the engineer to be 
substantially more involved in the optimisation process than has previously been possible. Whereas a 
user would be able to judge the best pipe from the set of bi-objective results returned by the server, in 
this work the best solution must be determined automatically. The set of alternatives is ranked using 
the Pareto sorting procedure that is used to rank a population of solutions in the well-known NSGA-II 
algorithm (Deb et al., 2002). This produces a partial ordering of solutions, meaning that some of the 
options might be incomparable. Searching for non-dominated options, wherein no option is superior 
to a non-dominated option, the case may arise in which multiple options are non-dominated. If this 
occurs, one of the non-dominated options is selected at random. In order to make conditions between 
the two experiments as close as possible, the (1+1)—ES was run for one generation fewer than the 
original experiment (running for 49 generations instead of 50). 
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Figure 6: Pareto fronts for the New York Tunnels (left) and Hanoi (right) problems. The same fronts shown 
in Figure 4 are shown in blue, while the red points were generated by the “interactive” version. Neither 

“interactive” version is any worse than the fully automatic version, and incorporating the look-ahead technique 
has improved the Pareto front distribution in both cases. 

 
Figure 6 shows the result of using the look-ahead heuristic in addition to the fully automatic 

optimiser. For reference, the results from Figure 4 are repeated. In both cases, the inclusion of the 
additional heuristic has not had a detrimental effect on the results; the extent of the Pareto front in that 
the original results are not superior to those using the heuristic. In fact, the distribution of results for 
the New York Tunnel optimisation shows that solutions are more tightly grouped along the leading 
edge of the Pareto front, indicating that the additional local search has induced greater selection 
pressure into the optimisation process. In the case of Hanoi, the Pareto front has advanced beyond that 
of the fully automated version. This has resulted in the generation of solutions with a lower cost 
compared to the same head deficit score in the automated version. 

The current version of the software developed under the HOWS project has included exposing the 
look-ahead operator through the user interface so that a human user can use it interactively. A known 
issue within the field of IEAs is that of user fatigue (Takagi, 2001). The user is engaged in a repetitive 
task, which they must work at for an extended period of time (recall, the MOEA was run for 50,000 
function evaluations). While users begin by making informed decisions, over time it is likely (or even 
certain) that they will lose focus and begin to make decisions more at random. This has been observed 
in the WDN design task, where users were asked to take part in a “serious game” in which they design 
a WDN (Morley et al., 2017). An ongoing aspect of this work will seek to address this issue, looking 
at ways in which the human decision maker can be relieved of their work for a period of time by 
modelling their interactions with the system and developing a surrogate model to act for them. In the 
current framework, the surrogate model would take the place of the creep mutation operator, 
generating new solutions by following the basic “heuristic” approach the user has been following. To 
this end, all data relating to user interactions is being recorded in a database connected to the server. 

This server platform decouples the optimisation, visualisation and interaction aspects of an 
interactive evolutionary system to allow for the remote interaction of experts with an evolutionary 
process.  This implementation has several benefits, firstly it ensures that users can interact with the 
system in their place of work and do not need to travel, secondly, due to the lightweight 
communication requirements and industry-standard networking implementation, the client application 
can be run within a simple browser, increasing compatibility and opening up the possibility of 
optimisation to those without access to specialist software; finally by decoupling and modularising the 
optimisation component, a variety of optimisation algorithms can be applied and run on remote high-
performance systems such as Amazon Web Services or a supercomputer, dependent on application.  
These principles democratise access to high specification optimisation tools and ensures that access to 
the expert knowledge required for WDN interactive optimisation is as frictionless as possible. 
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6 Conclusion 
This paper has presented a distributed optimisation platform for the optimisation of the WDN 

design problem. The platform comprises a server-based optimisation framework with which a range 
of client applications can communicate. Though at an early stage of development, the platform has 
been shown to be capable of optimising benchmark WDNs (New York Tunnels and Hanoi have been 
demonstrated) and initial investigation shows that interrupting the automatic optimisation process 
with an additional heuristic-based local search operator offers improved results. Experiments are 
currently being conducted that are replacing this operator with information provided by a human 
decision maker through an interactive interface, and is expected to yield fruitful results. 

The design of the framework has been undertaken in a modular fashion, to promote the ease of 
modifying it as the project continues. The optimisation algorithm can be easily replaced; the results 
generated herein were produced using a (1+1)—ES, which operates without a search population. It is 
expected that improved mathematically superior (according to the problem objective functions) might 
be obtained by using a population-based EA, however this would introduce an additional level of 
complexity for the users of the interactive tool. Ongoing work is examining how this might be done 
without increasing the complexity of the tool to the point that any benefits to its use are negated by its 
difficulty. The modularity of the framework also makes it very straightforward to add different 
optimisation problems, both including more complex WDN design problems and entirely different 
optimisation problems encountered by the water industry (e.g., operational problems such as pump 
scheduling). 

Ongoing work is extending the range of interactions available to the user to include selecting 
which of a set of candidate solutions from the archive should be used as the parent in the next 
generation. This implements a common type of interactive evolution, and allows the expert’s 
experience to steer the optimisation process. 

7 Conclusion 
This work was supported by the UK’s Engineering and Physical Sciences Research Council under 

grant EP/P009441/1. 
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