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1 Introduction

Sahlqvist-style correspondence results remain a perennial theme and an active topic of research within
modal logic. Recently, there has been interest in extending the classical results in this area to the modal
mu-calculus [7]. For instance, in [8] van Benthem, Bezhanishvili and Hodkinson define a class of
Sahlqvist formulas for the modal mu-calculus, all of which have frame correspondents in first-order
logic with least fixed points (FO+LFP). The analysis pursued in that paper is model theoretic in the
tradition of the well known Sahlqvist-van Benthem algorithm.

Parallel to the model theoretic approach to this type of result, there exists an algebraic-algorithmic
approach (see e.g., [3, 4, 5]) which derives correspondence (and canonicity) results by means of ‘calculi
of correspondence’ consisting of simple derivation rules which depend for their soundness on the order
theoretic properties of the operations interpreting the logical connectives in the algebraic semantics.
As indicated in Part 1 [2], these rules are divided into approximation and adjunction rules, together
with the Ackermann rules used to eliminate propositional variables. As also indicated in [2], the major
challenge to extending the algebraic-algorithmic approach to the modal mu-calculus is obtaining sound
approximation and adjunction rules for formulas involving fixed point binders: in the binder-free setting
each connective can be treated in isolation on its own order-theoretic merits; in the presence of binders
the the analysis must take into account the order-theoretic behaviour of whole formulas. As a result the
derivation rules become significantly more involved.

Outline. In this talk we shall:

1. show how the calculus of correspondence, and hence the ALBA algorithm, can be extended to
handle the intuitionistic modal mu-calculus, by adding the recursive Ackermann-rules and the
residuation and adjunction rules for µ-formulas discussed in [2];

2. define the class of recursive µ-inequalities and compare it with related classes in the literature;

3. show that the extended ALBA successfully eliminates all propositional variables from all recur-
sive µ-inequalities;

4. conclude that, consequently, all recursive µ-inequalities have frame correspondents in first-order
logic with least fixed points.
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Language and semantics. We will be working in the language L of intuitionistic modal logic aug-
mented with the connective −. This language will be interpreted on modal bi-Heyting algebras: an
algebra (A,∧,∨,→,−,>,⊥) such that both (A,∧,∨,→,>,⊥) and (A,∧,∨,−,>,⊥)∂ are Heyting alge-
bras is a bi-Heyting algebra; a modal bi-Heyting algebra is an algebra (A,∧,∨,→,−,>,⊥,�,^) such
that (A,∧,∨,→,−,>,⊥) is bi-Heyting algebra and � and ^ preserve finite meets and joins, respectively,
and �> = > and ^⊥ = ⊥. The relational duals of these algebras are intuitionistic modal Kripke frames,
i.e., the usual intuitionistic Kripke frames augmented with (constrained) relations for interpreting � and
^. The language L+ extends L with the addition of the connectives _ and � interpreted in perfect
bi-Heyting algebras as the left and right adjoints of � and ^ respectively, and with special variables
NOM = {j, i,k, . . .} and CNOM = {m,n, l, . . .} which range over the sets J∞(C) and M∞(C) of join- and
meet-irreducible elements of perfect bi-Heyting algebras C.

2 The calculus of correspondence and the algorithm ALBA
The calculus of correspondence consists of rewrite rules applicable to sets of inequalities in the lan-
guage L+. The most important rule is the recursive Ackermann rule, based on a recursive version of
Ackermann’s Lemma:

∃p[&n
i=1 αi(p) ≤ p & &m

j=1 β j(p) ≤ γ j(p)]
(RArec)

&m
j=1 β j(µp.[

∨n
i=1 αi(p)]/p) ≤ γ j(µp.[

∨n
i=1 αi(p)]/p)

subject to the restrictions that the αi(p) and β j are positive in p and that the γ j are negative in p.
Applied from top to bottom, this rule eliminates the propositional variable p. Since it is the pres-

ence of propositional variables which is responsible for the second-order quantification in the standard
frame-correspondents, it is the aim of the ALBA algorithm (as an ‘implementation’ of the calculus of
correspondence) to eliminate all occurring propositional variables from a given L-inequality. Through
the approximation and adjunction rules (discussed in part 1 [2]) inequalities are brought into a form to
which (RArec), or an order-dual version of it, is applicable. This comes at the cost of introducing syntax
from the extended language L+. This is harmless, as the standard first-order translation on intuition-
istic modal Kripke frames extends to accommodate the adjoints _ and �, and moreover the join- and
meet-irreducible elements of perfect bi-Heyting algebras over which the special variables in NOM and
CNOM range correspond to first-order definable subsets of these frames.

For a complete list of all the rules of deduction employed by ALBA, please refer to [1].

3 The recursive µ-inequalities
In this section we include in the L the binary connectives ◦ and ?, the algebraic interpretations of
which are,respectively, ∨-preserving and ∧-preserving in both coordinates. This is done to widen the
applicability of the of the ensuing definitions to a broader spectrum of logics.

An order-type over n ∈ N is an n-tuple ε ∈ {1, ∂}n. For every order-type ε, let ε∂ be its opposite
order-type, i.e., ε∂i = 1 iff εi = ∂ for every 1 ≤ i ≤ n.

For any L-sentence ϕ(p1, . . . pn), any order-type ε over n, and any 1 ≤ i ≤ n, an ε-critical node in
the signed generation tree of ϕ is a (leaf) node +pi with εi = 1, or −pi with εi = ∂. An ε-critical branch
in the tree is a branch terminating in an ε-critical node. The intuition, which will be built upon later, is
that variable occurrences corresponding to ε-critical nodes are to be solved for, according to ε.

For every L-sentence ϕ(p1, . . . pn), and every order-type ε, we say that +ϕ (resp. −ϕ) agrees with
ε, and write ε(+ϕ) (resp. ε(−ϕ)), if every leaf node in the signed generation tree of +ϕ (resp. −ϕ)
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Outer Skeleton Inner Skeleton PIA
∆-adjoints Binders Binders

+ ∨ ∧

− ∧ ∨

+ µ
− ν

+ ν
− µ

SLR SLA SRA
+ ^ C ◦ −

− � B ? →

+ ^ C ∨

− � B ∧

+ � B ∧

− ^ C ∨

SLR SRR
+ ∧ ◦ −

− ∨ ? →

+ ∨ ? →

− ∧ ◦ −

Table 1: Skeleton and PIA nodes.

which is labelled with a propositional variable is ε-critical. In other words, ε(+ϕ) (resp. ε(−ϕ)) means
that all propositional variable occurrences corresponding to leaves of +ϕ (resp. −ϕ) are to be solved for
according to ε. We will also make use of the sub-tree relation γ ≺ ϕ, which extends to signed generation
trees, and we will write ε(γ) ≺ ∗ϕ to indicate that γ, regarded as a sub- (signed generation) tree of ∗ϕ,
agrees with ε.

Definition 3.1. Nodes in signed generation trees will be called skeleton nodes and PIA nodes according
to the specification given in table 1. A branch in a signed generation tree ∗ϕ, for ∗ ∈ {+,−}, ending
in a propositional variable is an ε-good branch if, apart from the leaf, it is the concatenation of three
paths P1, P2, and P3, each of which may possibly be of length 0, such that P1 is a path from the leaf
consisting only of PIA-nodes, P2 consists only of inner skeleton-nodes, and P3 consists only of outer
skeleton-nodes. Moreover,

1. The formula corresponding to the uppermost node on P1 is a mu-sentence.

2. On any SRR-node in P1 of the form γ � β, where β is the side where the branch lies, γ is a mu-
sentence and ε∂(γ) ≺ ∗ϕ (see above for this notation).
Unpacking the condition ε∂(γ) ≺ ∗ϕ specifically to the L-signature, we obtain:
a) if γ � β is +(γ ? β), +(γ ∨ β), +(β→ γ), or −(β − γ), then ε∂(+γ);
b) if γ � β is +(γ → β), −(γ ∧ β), −(γ ◦ β), or −(γ − β), then ε(+γ).

3. On any SLR-node in P2 of the form γ � β, where β is the side where the branch lies, γ is a mu-
sentence and ε∂(γ) ≺ ∗ϕ (see above for this notation).
Unpacking the condition ε∂(γ) ≺ ∗ϕ specifically to the L-signature, we obtain:
a) if γ � β is −(γ ? β),−(γ ∨ β), −(β→ γ), or +(β − γ), then ε(+γ);
b) if γ � β is −(γ → β), +(γ ∧ β), +(γ ◦ β), or +(γ − β), then ε∂(+γ).

Definition 3.2. Given an order-type ε, the signed generation tree ∗ϕ, with ∗ ∈ {−,+}, of an L-sentence
ϕ(p1, . . . pn) is ε-recursive if every ε-critical branch is ε-good. Such a signed generation is non-trivially
ε-recursive if contains at least one ε-critical branch.

An L-inequality ϕ ≤ ψ is ε-recursive if the signed generation trees +ϕ and −ψ are both ε-recursive.
An L-inequality ϕ ≤ ψ is recursive if it is ε-recursive for some order-type ε.

The signed generation tree ∗ϕ, with ∗ ∈ {−,+}, is ε-PIA if it is ε-recursive and all ε-critical branches
consist only of PIA-nodes. Such a signed generation is non-trivially ε-PIA if contains at least one
ε-critical branch.
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Example 3.3. Consider the inequality

^µX.[(p ∨ X) ∨ ∼νY.[^(X ∨ ∼((Y ∧ p) ∧ µZ.∼(�p ∧ ¬Z)))→ ^�p]] ≤ ^�p.

This is ε-recursive with εp = 1. Indeed, in the positive generation tree of the left-hand side, there are
two critical branches, respectively corresponding to the first and third occurrences of p in the formula,
counting from the left. The branch leading from the first is +p,+∨,+∨,+µX,+^, and partitioning this
as P1 = ∅, P2 = +∨,+∨,+µX, and P3 = +^, satisfies the requirements of definition 3.2. The branch
leading from the third is

+p,+�,+∧,−∼,−µZ︸               ︷︷               ︸
P1

,−∧,+∼,+∨,+^,− →,−νY,+∼,+∨,+µX︸                                                ︷︷                                                ︸
P2

, +^︸︷︷︸
P3

,

and partitioning it as indicated satisfies the requirements of definition 3.2. In particular, there are no SRR
nodes, and the only occurring SLR node is − →, which clearly satisfies condition 3(a) of the definition.

Proposition 3.4. When restricted to the classical semantics (boolean algebras with operators or Kripke
frames) the class of recursive µ-inequalities strictly contains both the regular formulas of [6] and the
Sahlqvist mu-formulas of [8].

4 Alba succeeds of all recursive µ-inequalities
Theorem 4.1. ALBA succeeds on all recursive µ-inequalities. Hence every recursive µ-inequality has
a FO+LFP correspondent on intuitionistic modal Kripke frame.

Example 4.2. ALBA succeeds on the inequality

^µX.[(p ∨ X) ∨ ∼νY.[^(X ∨ ∼((Y ∧ p) ∧ µZ.∼(�p ∧ ¬Z)))→ ^��p]] ≤ ^�p.

which, as discussed in example 3.3, is ε-recursive with εp = 1.
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