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Abstract 
Performance of networked systems greatly depends on their topologic or connectivity 

structure. Nowadays, the analysis of the relevant features influencing the emerging 
behavior of networked systems is possible because of the increasing computational power 
and availability of information. Complex Network Theory classifies the connectivity 
structures of real systems using the nodal degree, the average path length, the clustering 
coefficient and the probability of connection. However, networked city infrastructures, 
e.g. water distribution networks (WDNs), are constrained by the spatial characteristics of 
the environment where they are laid. Therefore, networked infrastructures are classified 
as spatial networks and the classification of their connectivity structure requires a 
modification of the classic framework. To this purpose, the paper proposes a 
classification of WDNs using the neighbourhood nodal degree instead of the classic 
degree, the network size instead of the probability of connection and the classic average 
path length. The research will show that the clustering coefficient is not useful to describe 
the behavior of these constrained systems. 

1 Introduction 
The complex network theory (CNT) is useful to analyze the behavior of many systems in real world: 

relationships of individuals, Internet with hyperlinks, city infrastructures (e.g. streets, water systems), 
etc. Several network models have been proposed and developed in order to simplify the study of real 
systems, whose connectivity structures are defined using the nodal degree, the average path length, the 
clustering coefficient and the probability of connection. 

                                                        
* Corresponding author: antonietta.simone@poliba.it 

Engineering
EPiC Series in Engineering

Volume 3, 2018, Pages 1971–1978

HIC 2018. 13th International
Conference on Hydroinformatics

G. La Loggia, G. Freni, V. Puleo and M. De Marchis (eds.), HIC 2018 (EPiC Series in Engineering, vol. 3),
pp. 1971–1978



Erdos and Rényi (Erdös & Rényi, 1959; Erdös & Rényi, 1960) first studied the degree distribution 
of real systems introducing the random networks. In random networks, the degree is randomly 
distributed around an average value meaning that many nodes have a similar number of connections, 
i.e. the network is characterized by a high homogeneity. Random networks describe network features 
in a more realistic way with respect to regular networks, i.e. networks having a regular topology. The 
degree distribution of regular networks, in fact, is characterized by an absolute homogeneity, i.e. all 
nodes have the same degree. Later, Watts and Strogatz (Watts & Strogatz, 1998) defined the small 
world networks based on Milgram’s experiment (Milgram, 1967) on six degrees of separation of social 
networks, that is, to connect two nodes within a network requires at most six steps. They demonstrated 
the existence of the small world effect for the most part of real systems (WWW, social networks, etc.) 
starting from regular networks and replacing some of the links with others between different nodes, 
giving randomness to the network. Therefore, the small world networks present a certain level of 
homogeneity, which is lower than regular and higher than random networks. The degree distribution of 
small world networks is very similar to random networks; thus, a Poisson distribution of nodal degrees 
is assumed to cover from regular to random networks (Figure 1). In fact, for random networks, the 
Poisson distribution model shows that each pair of nodes is connected randomly with a probability p, 
which generates a network having a great number of nodes with similar degrees. For regular networks, 
the probability p is zero and tends to increase with increasing random connections in the network; for 
small world networks, the probability is greater than the null value of regular networks but rather lower 
than values of random networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the same period, Barabási and Albert (Barabási & Albert, 1999; Albert, et al., 2000) introduced 

the scale-free networks, i.e. real networks with many nodes having a much lower degree than few nodes, 
named hubs. The degree distribution of scale-free networks is non-homogeneous, showing a Pareto 
distribution of nodal degrees, therefore they cannot be classified as random, small world or regular 
networks (Figure 1). 

 
Figure 1.  Degree distribution for regular, small world, random (bottom) and scale-

free (down) networks 
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Figure 1 shows that regular networks are highly ordered. This means that their shortest path length 
linking two nodes are very high, differently from what happens to real networks. Instead, the shortest 
path length for random network, which are highly random, are very low.  

A real networked system, generally, has an average path length typical of small world networks, i.e. 
lower than regular network and greater than random networks. It is worth to note that also scale free 
networks can have a low average path length, similarly to small world ones, because the presence of 
hubs reduces the degree of separation among nodes, given that, generally, WDNs are not scale free 
networks (Giustolisi, et al., 2017). 

The article shows the usefulness of the neighbourhood nodal degree instead of the classic degree 
(that is uninformative due to the very limited range of degree values), the network size instead of the 
probability of connection and the classic average path length in the classification of WDNs, highlighting 
the uselessness of the clustering coefficient. 

2 Classic Network Classification 
The degree distribution P(k) is defined as the fraction of nodes in the network having degree k: 

         (1) 

 
where nk is the number of nodes having degree k and n is the total number of nodes. The formulation 

of the Poisson model for degree distribution (Watts & Strogatz, 1998) is 
 

       (2) 

 
where p is the probability of connection of nodes and <k> is the average degree of the network. The 

formulation of the Pareto model for degree distribution is: 
 
         (3) 
 
where γ is a constant generally ranging from 1.5 to 3 (Barthélemy, 2011 ). 
Random and small world networks, modelled by the Poisson distribution, can be characterized by 

the clustering coefficient Cp and the average path length Lp, normalized by clustering coefficient C0 and 
average path length L0 of the ring lattice regular network, respectively. Figure 2 shows that regular 
networks (with null p) have high Lp/L0 and Cp/C0, small world networks (with intermediate p) have a 
low Lp/L0 and a high Cp/C0and random networks (with p close to the unit value) have low both Lp/L0 
and Cp/C0. Generally, the probability p determines the average degree of the network,  

         (4) 
 
The situation changes for WDNs whose average degree is determined by spatial constraints. It is 

possible to state that the average degree for WDNs ranges between 2 and 3, hence, it is possible to write,    
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where the probability of connection is very low for the network connectivity structure of WDNs 
because of spatial constraints, besides being inversely proportional to the size of the network.  

 

 
 
 
 
 

3 Characterization of network connectivity structures of WDNs 
WDNs are infrastructure networks whose evolution is constrained by urban limits. For these 

networks the topological information about the graph (stored in the adjacency matrix) and the spatial 
information about nodes are necessary. Spatial information relates to the construction process 
influenced by spatial constraints. In fact, spatial networks are generally manmade, and they 
progressively grow, filling the space, based on connection costs, nodal distances and constrains related 
to the impracticality of some connections (Buhl, et al., 2004). The main function of such networks is to 
allow the efficient circulation along edges and communication among nodes within the network. They 
need to be reliable with respect to random failures and intentional threats, and, therefore, they cannot 
present characteristics of scale free networks (Barthélemy, 2003). For the specific case of spatial 
networks related to city infrastructures, such as WDNs, the spatial constraints are buildings and streets, 
therefore the possible number of nodal degrees results strongly constrained as well as the maximum 
nodal degree. Consequently, the degree distribution can appear regular in some portion of the network 
based on an elementary topology, generally squared, corresponding to regular configuration of streets 
where pipes are installed. This fact further hampers the effectiveness in identifying the probability 
distribution for a network having a low maximum degree, which is generally lower than degree equal 
to ten.  

Due to the very limited range of nodal degree values (i.e., between 3 and 7), the classification of 
such networks using the classic strategy based on the degree distribution is uninformative. In fact, such 
limited range of degree values does not allow the reliable identification of the relevant probability 
distribution function (i.e., Pareto or Poisson). To overcome these limitations and propose a good 
classification of these systems, the neighbourhood nodal degree (Giustolisi, et al., 2017) is used herein. 
It spans over a range of values greater than the standard nodal degree, resulting into a statistically more 

 
Figure 2. The explanation of small world networks with respect to regular and random networks. 
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reliable classification of WDNs, exploiting the topological information of the nearest neighbours and 
allowing to reliably inferring probability distribution function. Furthermore, the characterization of 
network connectivity structures of WDNs considers the network size and the classic average path length 
for each network. 

 

3.1 Neighbourhood nodal degree 
Giustolisi et al. (Giustolisi, et al., 2017) proposed the neighbourhood nodal degree with the purpose 

of using the degree distribution concept but also overcoming its limits for infrastructures networks. The 
neighbourhood degree distribution of each node is the sum of the standard degrees of the topologically 
nearest (i.e., adjacent) nodes. The formulation of the neighbourhood degree is 

 
     (6) 

where kn(i) is the “neighbourhood” degree (involving adjacent nodes) of the i-th node, Aij are the 
elements of the adjacency matrix, k(j) is the standard degree of the j-th node, and N(i) is the topological 
neighbourhood of i-th node, i.e. the set of adjacent nodes. 

The difference between the standard degree and the neighbourhood degree is that the first one 
measures the nodal connectivity with adjacent nodes in terms of number of links while the second one 
measures the nodal connectivity at the levels of neighbours. Considering that WDNs are infrastructure 
networks for which, for example, the behavior of single nodes is not relevant from a technical 
standpoint, this extension is helpful to guarantee a reliable analysis of these networks.  

4 Case studies 
Here 21 real WDNs are investigated, each following a Poisson distribution of neighbourhood nodal 

degree, as shown in Giustolisi et al. (Giustolisi, et al., 2017). Table 1 shows the Average path length 
(Ln), the normalized one to ring lattice (Ln/ L0), the Clustering coefficient (Cn), the normalized one to 
ring lattice (Cn/ C0) and the Meshdness coefficient (M) for each network structure of the twenty-one 
WDNs. Networks are ordered according to their size. 
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Figure 3. Normalized average path length Ln/L0 versus decreasing network size for 21 real WDNs  
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Figures 3, 4 and 5 report the diagrams of Ln/ L0 (Figure 3), Cn/ C0 (Figure 4) and M (Figure 5) versus 

the decreasing network size (in place of the probability of connection p), as seen above.  
 
 
 
The diagram in Figure 3 clearly demonstrates that Ln/ L0 increases with decreasing of the network 

size as also shown by the trend line there reported, meaning that decreasing the WDN size, the network 
structure exhibits a higher regularity. This aspect shows that the probability p is not an effective 
parameter for our systems because naturally decreasing with the network size n. Therefore, n has 
substituted p in Watts-Strogatz (Watts & Strogatz, 1998) diagram of Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WDN name Node 
# 

 [Ln]  [Ln/Ln]  [Cn]  [Cn/ C0]  [M] 

Big Town 
Apulia 1 
BWSN 
Apulia 2 
Apulia 3 
Norway 1 
Apulia 4 
Apulia 5 
Apulia 6 
Apulia 7 
Apulia 8 
Apulia 9 
Apulia 10 
Piedmont 1 
Norway 2 
Apulia 11 
Apulia 12 
Exnet  
Apulia 13 
Apulia 14 
Apulia 15 

26761 
18718 
12518 
5288 
5036 
5035 
4242 
4188 
3547 
3000 
2968 
2895 
2810 
2784 
2520 
2403 
1918 
1776 
1762 
1263 
1263 

63.36 
85.47 
93.10 
31.38 
40.10 
81.75 
39.13 
35.48 
46.07 
40.05 
34.38 
34.65 
37.69 
46.71 
57.38 
28.91 
28.40 
19.76 
22.65 
23.18 
23.88 

1.14E-02 
1.95E-02 
3.40E-02 
2.75E-02 
3.70E-02 
6.83E-02 
4.30E-02 
3.82E-02 
5.69E-02 
5.68E-02 
5.31E-02 
5.51E-02 
6.31E-02 
6.98E-02 
9.58E-02 
5.65E-02 
6.65E-02 
5.76E-02 
6.12E-02 
8.30E-02 
8.42E-02 

3.30E-03 
6.68E-04 
1.55E-02 
2.71E-03 
6.95E-04 
3.64E-04 
1.38E-03 
9.95E-04 
0.00E+00 
8.33E-04 
3.37E-04 
0.00E+00 
2.55E-03 
5.99E-04 
6.96E-03 
1.39E-03 
8.69E-04 
4.38E-02 
1.23E-03 
1.06E-03 
0.00E+00 

1.54E-02 
7.45E-03 
9.26E-02 
1.52E-02 
3.80E-03 
5.24E-03 
7.45E-03 
6.48E-03 
0.00E+00 
9.93E-03 
1.99E-03 
0.00E+00 
1.31E-02 
1.09E-02 
9.92E-02 
7.18E-03 
5.89E-03 
1.58E-01 
5.94E-03 
6.79E-03 
0.00E+00 

9.97E-02 
3.40E-02 
7.18E-02 
7.84E-02 
8.08E-02 
2.56E-02 
8.24E-02 
6.45E-02 
4.73E-02 
3.17E-02 
7.30E-02 
7.59E-02 
8.87E-02 
2.00E-02 
2.62E-02 
8.71E-02 
6.16E-02 
1.48E-01 
9.58E-02 
6.58E-02 
5.71E-02 

 

Table 1. Characterization of network connectivity structures of 21 real WDNs considering network size, 
average path length (normalized and not), clustering coefficient (normalized and not) and meshdness 
coefficient for each network. 

 
 
 
 
 
 
 
 

 
Figure 4. Normalized clustering coefficient Cn/C0 versus decreasing network size for 21 real WDNs 

in (Giustolisi, et al., 2017). 
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The normalized clustering coefficient Cn/ C0 versus decreasing network size in Figure 4 shows, 

instead, that the parameter is very low and not depending on network size. This because Cn is based on 
cliques of size three (i.e. triangles) and the spatial constraints of infrastructure networks limit the 
number of elementary topologies. For example, Cn is null for Apulia 6, Apulia 9 and Apulia 15 networks 
as also reported in Table 1. The meshdness coefficient M versus decreasing network size (Figure 5) also 
shows that parameters are very low and not depending on network size (see the tendency lines). 

5 Conclusions 
The paper proposes a different framework to describe the WDNs connectivity structure, also 

considering their spatial constraints, returning important results in terms of classification and structural 
properties of WDNs.  

The neighbourhood nodal degree replaces the classic degree to guarantees a more robust 
identification of a specific statistical distribution (an evident Poisson distribution for the 21 analysed 
WDNs (Giustolisi, et al., 2017)). Furthermore, the probability of connection p is replaced by the 
network size n due to the low value of the average nodal degree (≈2.5). Results show that the average 
path length, i.e. the regularity of a network structure, increases with decreasing the network size. This 
aspect is of considerable importance in the analysis of temporal networks, i.e. networks that vary their 
structure (increase in nodes and edges) over time. For WDNs this happens in the normal evolution of 
the urban centre over decades and indicates that original networks (few nodes and pipes) have a higher 
average path length value, i.e. a greater regularity, with respect to the same network evolved (Giustolisi, 
et al., 2017; Barthélemy, 2011 ).  

These results can be also useful for analysing WDNs emerging behaviour, for example related to 
their vulnerability to random failures and intentional threats. The fact that most of the studied WDNs 
can be modelled using the Poisson distribution of the neighbourhood nodal degree means that they 
present a significant structural resistance to random failures and intentional threats as connectivity 
structure. Different approaches can be used to analyse the WDN behaviour with respect to vulnerability, 
but the classic classification of the connectivity structure nodal degree-based has wide implications for 
classifying them as small world ore purely random considering temporal evolution or for assessing 

 
Figure 5. Meshdness coefficient versus decreasing network size for 21 real WDNs in 

(Giustolisi, et al., 2017). 
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vulnerability using some technical weights (e.g. hydraulic flows) while analysing their connectivity 
structure. 
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