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Combining multi-valued and modal logics into a single system is a long-standing concern in math-
ematical logic and computer science, see for example [7] and the literature cited there. Recent work in
this trend [15, 17, 14] develops modal expansions of many-valued systems that are also inconsistency-
tolerant, along the tradition initiated by Belnap with his “useful four-valued logic” [3]. Our contribution
continues on this line, and the specific problem we address is that of defining and axiomatizing the least
modal logic over the four-element Belnap lattice. The problem was inspired by [5], but our solution is
quite different from (and in some respects more satisfactory than) that of [5] in that we make an exten-
sive and profitable use of algebraic and topological techniques. In fact, our algebraic and topological
analyses of the logic have, in our opinion, an independent interest and contribute to the appeal of our
approach.

Kripke frames provide a semantics for modal logics that is both flexible with regards to intended
applications and interpretations, and highly intuitive. When the non-modal part is multi-valued, though,
one may wonder whether the accessibility relation between worlds should remain two-valued or be
allowed to assume the same range of truth values as the logic itself. Starting from the point of view
of AI applications, [7] argues forcefully that multiple values are an appropriate and useful modeling
device. This is the approach taken in [5] and here, too. Our aim is to study the least modal logic over
the Belnap lattice, that is, the logic determined by the class of all Kripke frames where the accessibility
relation as well as semantic valuations are four-valued.
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Figure 1: The four-element Belnap lattice FOUR

The non-modal system we build on is the propositional logic determined by the Belnap lattice shown
in Figure 1, but the logical/algebraic language that we consider is more expressive than the one originally
introduced by Belnap. We have not only conjunction, disjunction and negation (∧,∨,¬) but also two
implication operations, a weak (⊃) and a strong one (→). Weak implication is defined by

x⊃ y :=
{

t if x /∈ {t,>}
y if x ∈ {t,>}
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while strong implication is given by the term x→ y := (x ⊃ y)∧ (¬y ⊃ ¬x). The set of designated
elements of the logic (truth-like elements to be preserved in derivations) is the same as Belnap logic,
namely {t,>}. We include these two elements as constants in the language, mainly for technical reasons
(see below). The resulting logic in the language 〈∧,∨,⊃,→,¬, t,>〉 can be viewed either as a fragment
of the bilattice logic of Arieli and Avron [2] or as a language expansion (and an axiomatic extension)
of paraconsistent Nelson logic [1, 11]. The second point of view is more suitable for our purpose as it
allows us to apply known results (alongside new ones, proven here for the first time) on paraconsistent
Nelson logic and its algebraic counterpart by simply specializing them to our case. Using the language
of logical matrices [8], we may just say that our non-modal base logic is the propositional logic in the
language 〈∧,∨,⊃,→,¬, t,>〉 determined by the matrix 〈FOUR,{t,>}〉. A Hilbert-style axiomatization
for this logic can be easily derived from the one introduced by Odintsov [11] for paraconsistent Nelson
logic; in fact it is easy to prove that our logic is algebraizable [4] and its algebraic semantics is the
variety generated by FOUR in the above-mentioned algebraic language.

For a modal expansion of this logic we initially focus on the necessity operator 2. Semantically, we
interpret it in suitable Kripke structures. For motivation, let us consider first a classical Kripke model
〈W,R,v〉, where W is a set of “worlds”, R an accessibility relation among them and v a valuation. We
view R as the characteristic function associated with the accessibility relation, i.e., as a map R : W×W →
{0,1}. Similarly, view v : Fm×W → {0,1} as a map assigning to each formula ϕ ∈ Fm at each point
w ∈W a truth value in {0,1}. By so-called standard translation of modal logic into first-order logic, we
obtain the following definition for the semantics of the necessity operator

v(2ϕ,w) :=
∧
{R(w,w′)→ v(ϕ,w′) : w′ ∈W} (1)

where
∧

denotes the infinitary meet corresponding to the universal quantifier and → is Boolean im-
plication. This definition can now easily be adapted to our four-valued setting. We consider Kripke
models 〈W,R,v〉 where both R and v are four-valued, that is, we define R : W×W → FOUR and
v : Fm×W → FOUR. As before, valuations are required to be homomorphisms in their first argu-
ment. Since FOUR carries two implications, there are at least two candidates for the translations of (1)
into the four-valued setting, namely the pairs 〈∧,→〉 and 〈∧,⊃〉. The latter option, which has been used
in [15] to introduce a modal expansion of Belnap logic, has the disadvantage (in our opinion) that the
accessibility relation R, although formally introduced as four-valued, has a two-valued behaviour when
interacting with weak implication. This is so because in FOUR the value of (1), with→ replaced by ⊃,
is the same as the following: ∧

{v(ϕ,w′) : R(w,w′) ∈ {t,>}}.

Our choice for the semantics of the 2 operator is thus based on the pair 〈∧,→〉, that is, in the four-
valued context we replace classical conjunction with the lattice meet and classical implication with
strong implication of FOUR. An important technical advantage of our choice is that FOUR can be
viewed as a residuated lattice [9] with residuated pair 〈∗,→〉, the monoid operation ∗ being defined
by the term x ∗ y := ¬(y→¬x). We obtain thus a commutative monoid 〈FOUR,∗,>〉 satisfying the
following property (residuation): x ∗ y ≤ z iff y ≤ x→ z [16, Proposition 5.4.1]. This means that
certain results of [5] can be straightforwardly transferred to our setting. For instance, given that strong
implication interacts well with negation, we can define a possibility operator 3 as follows [5, p.746]:

v(3ϕ,w) :=
∨
{R(w,w′)∗ v(ϕ,w′) : w′ ∈W}.

This is obviously a generalization of the classical definition, with the monoid operation replacing clas-
sical conjunction; 3 and 2 are thus duals of one another, i.e., 3ϕ is semantically equivalent to ¬2¬ϕ .
The semantic definition of modal consequence is now straightforwardly obtained by adapting the clas-
sical one. We say that a point w ∈W of a four-valued Kripke model M = 〈W,R,v〉 satisfies a formula
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ϕ ∈ Fm if v(ϕ,w) ∈ {t,>}, and we write M,w � ϕ . For a set Γ⊆ Fm, we write M,w � Γ to mean that
M,w � γ for each γ ∈ Γ. As usual in modal logic, we consider two consequence relations. The local
consequence Γ �l ϕ holds if for every model M = 〈W,R,v〉 and every w ∈W , it is the case that M,w � Γ

implies M,w � ϕ . The global consequence relation Γ �g ϕ holds if, for every model M, if M,w � Γ for
all w ∈W , then M,w � ϕ for all w ∈W .

Our main result is the introduction of two Hilbert-style calculi that provide complete axiomatizations
for, respectively, �l and �g defined above. In this respect, we achieve a more satisfactory solution than
[5], because the problem of axiomatizing the global consequence (even in the simplest case, the logic of
one finite integral residuated lattice) is left open in [5].

The calculi we introduce are inspired by [5, Definition 4.6] and, as in [5], axioms of a rather technical
nature involving the truth constants play a crucial role. An example is the following:

∼3ϕ →∼3¬∼ϕ (2)

where 3ϕ := ¬2¬ϕ and ∼ϕ := ϕ ⊃ ¬t. As in classical modal logic, the local and the global calculus
share the same axioms, which in our case include schemata such as 2t and (2ϕ ∧2ψ)→ 2(ϕ ∧ψ).
However, the formulas 2> and 2(ϕ → ψ)→ (2ϕ → 2ψ) are not valid: ours are non-normal modal
logics. But again as in the classical case, the only difference between the local and the global calculus is
that so-called monotonicity is only a rule of the global one: ϕ → ψ `g 2ϕ → 2ψ , but not of the local:
ϕ→ψ 6`l 2ϕ→2ψ . The only rule of `l is that of the non-modal fragment of the logic, modus ponens.

Given our proposed axiomatizations, the main steps we needed to prove completeness are the fol-
lowing.

I. Using standard algebraic logic techniques, we develop algebraic semantics corresponding to our
syntactic calculi. This is straightforward in the case of `g as monotonicity rule ensures (the non-modal
fragment being itself algebraizable) that `g is algebraizable. A more delicate passage is to show that, as
in classical modal logic, the two calculi share the same algebraic counterpart. The local calculus is thus
also complete (although in a weaker sense, again as in the classical setting) with respect to the same
class of algebras, which is a variety of N4-lattices [11, 12] with a modal operator that preserves finite
meets, related to the BK-lattices of [14].

II. We look for a convenient representation of our algebraic semantics. As happens with other al-
gebras of many valued logic (N4-lattices, BK-lattices, bilattices [6]), each algebra in our variety can
be represented as a subalgebra (called a twist-structure) of a special square of some simpler algebra.
For instance, each BK-lattice A can be viewed as a subalgebra of a special square of a modal Boolean
algebra B. Each algebraic operation of A is represented component-wise using operations of B. In
particular, for A⊆ B×B, the modal operator 2A of A is given by 2A〈x,y〉= 〈2Bx,3By〉, where 2B,3B
are the modal operators (duals to one another) of B. Similarly, in our case, each algebra A in our variety
can be viewed as a subalgebra of a special square of a bimodal Boolean algebra B = 〈B,u,t,′ ,21

B,2
2
B〉,

i.e., a Boolean algebra 〈B,u,t,′ 〉 that carries two independent finite meet-preserving operators 21
B,2

2
B

(together with the respective duals 31
B,3

2
B). The representation of the modal operator 2A is a general-

ization of [14], as we have 2A〈x,y〉= 〈21
Bxu22

B(y
′),31

By〉. Our proof of this representation result uses
crucially the constants t,> and this is the main reason for including them in the logical signature. The
twist-structure representation is quite powerful, and it can be extended to an equivalence between two
naturally associated algebraic categories. In fact, even if different algebras A1,A2 can be subalgebras
of the square of the same bimodal Boolean algebra B, there is a one-to-one correspondence between
each algebra A in our variety and triples (B,∇,

∇

) where B is a bimodal Boolean algebra and ∇,

∇

are,
respectively, a filter and an ideal of B which encode the information that is needed to uniquely determine
A (see [12, 14]).

III. We develop a topological duality for bimodal Boolean algebras, drawing mainly on Jónsson-
Tarski duality for modal algebras. This is relatively straightforward, as to a modal algebra B corresponds
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a Stone space 〈X(B),τ〉 endowed with a relation R that is used to represent the modal operators. In the
same way, a bimodal Boolean algebra B gives rise to a bimodal Stone space 〈X(B),τ,R1,R2〉 where
each of the two relations R1,R2 corresponds to one of the two independent operators of B. However, we
are not just interested in bimodal Boolean algebras, but in triples (B,∇,

∇

). We thus need to take care of
the subsets ∇ and

∇

, which are represented on the dual space by, respectively, a closed set and an open
set C(∇),O(

∇

) ⊆ X(B). This is the most technically delicate point, and we note that the presence of
these subsets establishes a link between R1 and R2, for instance it holds that p ∈C(∇) and 〈p,q〉 ∈ R2
imply 〈p,q〉 ∈ R1 for all p,q ∈ X(B).

IV. We join the results of the previous items in order to build our proof of completeness. We assume,
by contradiction, that our calculus (either the global or the local one, the reasoning is essentially the
same) does not prove Γ ` ϕ . Then, by algebraic completeness (I), we can find an algebraic counter-
model, that is, an algebra A together with a set of designated elements F ⊆ A (a lattice filter with some
additional properties) and a valuation h : Fm→ A (a homomorphism from the algebra of formulas
into A) such that h(γ) ∈ F for all γ ∈ Γ but h(ϕ) /∈ F . By (II) we know that A can be represented
as a twist-structure over a bimodal Boolean algebra B, but it is essential here that we have a way of
decomposing not only A but also F and h component-wise, thus obtaining a different algebraic counter-
model based on B, which is easier to handle. This is done essentially by taking projections, so we
obtain two valuations h1 and h2 (the second projection of F does not actually play any role due to the
particular properties of this lattice filter). Now we use (III) to obtain a topological counter-model, in
the same way as in classical logic (using the ultrafilter theorem). Finally, we show that a topological
counter-model based on a bimodal Stone space 〈X(B),τ,R1,R2〉 can be turned into a four-valued Kripke
model of the type introduced when we defined our Kripke semantics. This is relatively easy, as we can
take X(B) itself as the set of points and, in order to define a four-valued relation R, we let R(p,q) = t
iff 〈p,q〉 ∈ R1 ∩R2, R(p,q) = > iff 〈p,q〉 ∈ R1/R2, etc. for all p,q ∈ X(B). In this way we have
a four-valued Kripke frame 〈X(B), R〉 and we can compose the above-mentioned valuations h1 and h2
with the embedding of B into the algebra of clopens of X(B) given by Stone duality, to define a pair
of two-valued valuations v1,v2 : Fm×X(B)→ {1,0}. These are turned into one four-valued valuation
v : Fm×X(B)→ {FOUR} in the way to be expected, i.e., we define v(ψ, p) := t iff v1(ψ, p) = 1
and v2(ψ, p) = 0, v(ψ, p) := > iff v1(ψ, p) = v2(ψ, p) = 1, etc. The twist-structure construction
guarantees that v acts homomorphically at the points of X(B). We thus have a Truth Lemma that allows
us to conclude that 〈X(B), R,v〉 is indeed a four-valued Kripke model. This is the counter-model we
were looking for to establish that Γ 6� ϕ , so our proof is finished.

Let us conclude by discussing the role played by constants. We presented in [10] a result which can
now be viewed as a special case of the above, the main differences being that in [10] the non-modal
base logic was the bilattice logic of [2] in which, moreover, all constants (t,>, f,⊥) were included in
the language. As a consequence, the axiomatization of [10] can be easily obtained (at least for the
local consequence) from that of [5], and the algebraic/topological analysis involved in the completeness
proof is also more straightforward. It seems, semantically speaking, that the increased expressivity
gained thanks to the constants is needed to restrict and classify the algebraic and topological models
of the logic. In fact, [5] requires the presence in the language of all constants (one for each element
of a fixed finite lattice), and it is interesting to note that the completeness proofs of [5] are based on a
completely different strategy from ours.

However, the present work shows that in the case of FOUR we do not need all the constants, as
we can dispense with ⊥. This slight generalization is all but trivial, as it involves conjecturing and
interpreting new axioms (such as (2) above) whose meaning is only clarified by a close analysis of the
algebraic and topological models. We do not know whether it is possible (in the case of FOUR or,
more in general, of a finite lattice) to obtain a method for proving completeness that does not require
any constant. In our case, the main difficulty lies in steps (II)-(III). In the absence of constants, in fact,
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we may still be able to obtain an algebraic counter-model, which can then be turned into a topological
one by applying Jónsson-Tarski duality together with the duality for N4-lattices introduced by Odintsov
[13]. However, such model will be a topological space X endowed with a two-valued relation R. In
order to turn this structure into a four-valued Kripke model (thus concluding our completeness proof),
we would need to view R as a four-valued relation (or, equivalently, as a pair of relations R1,R2) defined
on (a subset of) X as described in [10]. This is the crucial step, which somehow corresponds to the
twist-structure representation (II) on the algebraic side. Unfortunately, for the time being it seems that
only using (some) constants we can express properties which ensure that, algebraically, models are
representable as twist-structures and, on the topological side, that the two-valued relation R can be
viewed as a four-valued one.
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