
Alternating Turing Machines
and the Analytical Hierarchy

Daniel Leivant∗

Indiana University
leivant@indiana.edu

Abstract

We use notions originating in Computational Complexity to provide insight into the analogies
between Computational Complexity and Higher Recursion Theory. We consider alternating Turing
machines, but with a modified, global, definition of acceptance. We show that a language is accepted
by such a machine iff it is inductive (Π1

1). Moreover, total alternating machines, which either ac-
cept or reject each input, accept precisely the hyper-arithmetical (∆1

1) languages. Also, bounding
the permissible number of alternations we obtain a characterization of the levels of the arithmetical
hierarchy.

The novelty of these characterizations lies primarily in the use of finite computing devices, with
finitary, discrete, computation steps. We thereby elucidate the analogy between the polynomial-time
and the arithmetical hierarchies, as well as between their respective limits, namely the classes of the
polynomial-space and Π

1
1 languages.

Keywords: Alternating Turing machines, inductive and hyper-arithmetical sets, arithmetical hierar-
chy, polynomial-time hierarchy, analytical hierarchy.

1 Introduction
Alternation in computational and definitional processes is an idea that has appeared and reappeared in
many guises over the last 50 odd years. Kleene’s definition of the arithmetical hierarchy in terms of
quantifier alternation was an early manifestation, extended by Kleene, Spector, Gandy and others to the
transfinite hyper-arithmetical hierarchy [12, 1].

An even more explicit link with alternation was discovered by Moschovakis [11, 10, 5], who char-
acterized the inductive sets by a game quantifier [10, Theorem 5C2]. Harel and Kozen [3] showed
how this characterization can be expressed in terms of an idealized programming language with random
existential and universal assignments.

Alternation made an entry into Computational Complexity with the definition by Chandra, Kozen
and Stockmeyer of alternating Turing machines [2], where disjunctive and conjunctive variants of non-
determinism co-exist. A state declared existential accepts when some child-configuration accepts,
whereas a universal state accepts if all child-configurations accept. A computation can thus alternate
between existential and universal phases. The striking result of [2], which has become a classic and
made its way to numerous textbooks, is that alternating Turing machines provide a powerful interplay
between time and space complexity: for reasonable functions f the languages accepted by alternating
Turing machines in time O(f) are precisely the languages accepted by deterministic machines in space
O(f), and the languages accepted by alternating machines in space O(f) are those accepted by de-
terministic machines in time 2O(f). In particular, alternating polynomial time is precisely polynomial
space. Moreover, when only up to k alternations are allowed, one obtains the k’th level of the polynomial
time hierarchy.
∗This research was also supported by LORIA Nancy and PPS Université Paris Diderot

204 A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 204–213

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

We establish here a direct link between the logical and the complexity-theoretic developments of
alternation. Our point of departure is a simple and natural modification of the definition of acceptance
by an alternating Turing machine, where acceptance by a universal configuration c refers to all config-
urations that end the universal computation-phase spawned by c, rather than to the immediate children
of c only. We prove that a language is accepted by such a machine iff it is inductive (Π1

1). Moreover,
when only up to k alternations are allowed, we obtain the k’th level of the arithmetical hierarchy. Also,
if a language L is accepted by a machine which is total, in the sense that every input is either accepted
or rejected, then L is hyper-arithmetical (∆1

1).
Note that our machines are no different from traditional alternating Turing machines: the difference

lies only in the definition of acceptance. In particular, no infinitary rules, such as game quantifiers or
random assignments, are used. As a result, the characterization above of ∆

1
1 has a far simpler proof

than for previous characterizations, such as the programming language IND of [3]. Indeed, the latter is
basically a recasting of inductive definability using random assignments to convey first-order quantifi-
cation; in particular, the proof there of a result analogous to 10 below, uses inductive definability and
stage-comparison.

We thus obtain here a simple and direct correspondence between Π
1
1 and polynomial space, and

between the arithmetical hierarchy and the polynomial-time hierarchy. The two sides of this corre-
spondence are characterized by the same alternating Turing machines, but with a global (potentially
infinitary) definition of acceptance for the former, and a local one for the latter.

We hope that this work will lead to new insights into classical results of Higher Recursion Theory,
as did decades ago the characterizations in terms of inductive definitions [1] and game quantifiers.

2 Global semantics for alternating computations

2.1 Alternating Turing machines
The following will be used as reserved symbols, which we posit to occur only when explicitly referred
to: t for the blank symbol, + for the cursor-forward command, and − for cursor-backward. For brevity
we consider primarily single-tape machines. Given a finite alphabet Σ, an alternating Turing machine
(ATM) over Σ is a device M consisting of

1. Disjoint finite sets E (existential states) and U (universal states). Elements of Q = E ∪U are the
states.

2. An element s0 ∈ Q, called the start state.

3. A finite alphabet Γ⊇ Σ∪{t} (the machine alphabet).

4. A relation δ ⊆ (Q×Γ) × (A×Q), where A = Γ∪{−,+} is the set of actions.1 One can construe

δ as a multi-valued function, with domain Q×Γ and co-domain A×Q. We write q
γ(a)−−−−→
M

q′

for (q,γ,a,q′) ∈ δ . We omit the subscript M when in no danger of confusion. Thus, the
transition relation can be construed as a finite set of transition rules as above.

A configuration (cfg) (of M) is a tuple (q,u,γ,v) with q ∈Q, u,v ∈ Γ
∗, and γ ∈ Γ. A configuration is

said to be existential or universal according to the state therein. The definition of a yield relation c⇒ c′

between configurations is defined as usual; that is, it is generated inductively by the conditions:2

1We follow here the convention whereby Turing machines either move their cursor or overwrite it, but not both.
2Note that inductive definitions posit implicitly an exclusivity condition, so the “only if” direction is not needed.

205

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

• If q
γ(+)−−−−→

M
q′ then (q,u,γ,τv)⇒ (q′,uγ,τ,v) and (q,u,γ,ε)⇒ (q′,uγ,t,ε);3

• If q
γ(−)−−−−→

M
q′ then (q,uτ,γ,v)⇒ (q′,u,τ,γv) and (q,ε,γ,v)⇒ (q′,ε,γ,v) (i.e. the

cursor does not move); and

• If q
γ(τ)−−−−→
M

q′ then (q,u,γ,v)⇒ (q′,u,τ,v).

Following [6] we dispense here with accepting and rejecting states: when no transition applies to a
universal configuration then it has no children, and so the condition for acceptance is satisfied vacuously.
Dually, a dead-end existential configuration is rejecting.

2.2 Acceptance and rejection
The computation tree of M for configuration c is a finitely-branching (but potentially infinite) tree TM(c)
of cfg-occurrences 〈α,c〉, α being the node-address and c the cfg, where the children of 〈α,c〉 are
〈iα,ci〉 with ci the i-th cfg c′ such that c⇒ c′ (under some fixed ordering of the transition rules of δ).

We write c−→
∃

c′ when c⇒ c′ and c is existential, c−→→
∃

c′ if c−→
∃
∗c′ and c′ is universal. (As usual,

−→
∃
∗ is the reflexive and transitive closure of −→

∃
‘.) In other words, the universal cfg c′ can be reached

from the cfg c by successive applications of the yield relation ⇒, where all intermediate states are
existential.

The definitions of c−→
∀

c′ and c−→→
∀

c′ are similar. We call configurations c′ as above, for either −→→
∃

or −→→
∀

, alternation-pivots (for c).

The set AC of accepted configurations is generated inductively by the following closure conditions:

1. If c is existential and c′ ∈ AC for some c′ such that c−→→
∃

c′, then c ∈ AC.

2. If c is universal and c′ ∈ AC for all c′ such that c−→→
∀

c′, then c ∈ AC.

If S is any set of configurations, we write CC[S] for the conjunction of the conditions above for S. That
is,

1. If c is existential and c′ ∈ S for some c′ such that c−→→
∃

c′, then c ∈ S.

2. If c is universal and c′ ∈ S for all c′ such that c−→→
∀

c′, then c ∈ S.

Thus, AC is generated by the closure conditions CC[AC]. Note that CC[S] is a Π
0
2 formula. For instance,

(2) can be expressed as

∀ cfg c ((∀ traces witnessing a relation c−→→
∀

c′) c′ ∈ S) → c ∈ S

Thus, the set AC of accepted configurations is explicitly definable as the set of configurations c
satisfying the Π

1
1 formula

∀S (CC[S]→ c ∈ S)

Similarly, the set RC of rejected configurations is generated inductively by closure conditions dual to
the ones above:

3We write ε for the empty string.

206

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

1. If c is existential and c′ ∈ RC for all c′ such that c−→→
∃

c′, then c ∈ RC.

2. If c is universal and c′ ∈ RC for some c′ such that c−→→
∀

c′, then c ∈ RC.

Again, RC is explicitly definable by a Π
1
1 formula.

We call a state a dead-end if no transition rule applies to it. We dub a universal dead-end state an
accept-state, and an existential dead-end state a reject-state.

The initial configuration of the machine M for input w is 〈s0,ε,t,w〉. M accepts an input string w
if the initial configuration for w is in the set AC of accepted configurations, as defined above. Dually, M
rejects w if that configuration is in RC. For example, if M has only universal states, then no computation
tree can have an alternation-pivot, and so every w is accepted. The computation tree for w may well
have leaves, that is dead-end configurations, but since here these are all universal configurations with
no children, they are accepted. Dually, if M has only existential states, then no input can be accepted.
These examples are merely consequences of our choice to represent acceptance and rejection by dead-
end universal and existential configurations, respectively. For example, a usual non-deterministic Turing
machine can be obtained simply by considering each accept-state as a universal state with no applicable
transition rule.

The language accepted by an ATM M is

L (M) = {w ∈ Σ
∗ |M accepts w}

and the language rejected by M is

L (M) = {w ∈ Σ
∗ |M rejects w}

It is easy to see that L (M)∩L (M) = /0. Our definitions of acceptance and rejection of configurations
conform to the local closure conditions of acceptance (and rejection) of usual ATMs, as we point out
in the next Proposition. However, those conditions cannot be used to define acceptance and rejection,
because we allow infinite computation trees.

PROPOSITION 1. Let M be an ATM, T a computation tree of M for input w. If c is a configuration in
the tree, with children c1 . . .cm, then

1. If c is existential, then c is accepted iff some ci is accepted, and c is rejected iff all ci’s are rejected.

2. If c is universal, then c is accepted iff all ci’s are accepted, and c is rejected iff some ci is rejected.

Proof. Let c be existential. If c is an accepted cfg, i.e. c−→→
∃

c′ for some accept-state c′, then ci−→→
∃
∗c′

for some ci, since c itself is existential. If that ci is existential, then it is accepted, by definition; and if it
is not, then ci = c′, which is accepted by assumption.

Conversely, suppose that some ci is accepted. If ci is universal, then c−→→
∃

c′, and so c is accepted,

by definition of acceptance. If ci is existential, then there must be an accepted c′ such that ci−→→
∃
∗c′; but

then c−→→
∃
∗c′, so c is accepted.

Other cases are proved similarly.

207

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

2.3 Divergence and totality
Note that if M has only existential states, and has for a given input only infinite computation traces, then
that input is rejected: since there are no alternation-pivots, it is vacuously true that all alternation pivots
are rejected. Still, an ATM may well neither accept nor reject an input string w. For example, if the
computation tree of M for a given input has infinitely many alternation-pivots along each computation-
trace (a situation that we can engineer fairly easily), then M neither accepts nor rejects that input, as is
clear from the second-order definitions of acceptance and rejection. Indeed, the empty set satisfies the
closure conditions for acceptance, and also the closure conditions for rejection.

We say that an ATM M is total if every input is either accepted or rejected by M. Let us identify a
simple condition that guarantees totality. We say that a computation tree is alternation well-founded if
no branch has infinitely many alternation-pivots. An ATM is alternation well-founded if all its compu-
tations are alternation well-founded.

PROPOSITION 2. If an ATM is alternation well-founded then it is total.

Proof. We prove the contra-positive: if a configuration c is neither accepted nor rejected, then the
computation tree T that it spawns has a branch with infinitely many alternation-pivots.

Suppose c is universal. Since c is not accepted, we must have c−→→
∀

c′ for some alternation-pivot c′

which is not accepted. And since c is also not rejected, all of its alternation-pivots, and in particular
c′, are not rejected. If c is existential, a dual argument shows that c−→→

∀
c′ for some alternation-pivot c′

which is neither accepted nor rejected.
Iterating the argument we obtain a branch with an infinite sequence c0 = c,c1 = c′, . . . of alternation-

pivots, all of which are neither accepted nor rejected.

The converse of Proposition 2 fails. Indeed, it is easy to construct a total ATM that is not alternation
well-founded, by inserting innocuous computation traces with infinitely many alternation-pivots, with
no impact on the acceptance or rejection of the input. See the proof of Proposition 4 below.

2.4 Duality and one-sidedness
The dual of an ATM M is the machine M̄ whose transition relation is that of M, but with the sets of
universal and existential states interchanged, that is with M’s sets U and E as the sets of existential and
universal states, respectively.

Directly from the definitions we have

PROPOSITION 3. Let M̄ be the dual of M. Then L (M̄) = L̄ (M), and so L̄ (M̄) = L (M).

A machine M is one-sided if it either has no accepted configurations, or no rejected configurations.

PROPOSITION 4. For every machine M there are one-sided machines M+ and M− such that L (M) =
L (M+), and L (M) = L (M−).

Proof. The proof is analogous to the conversion of a deterministic TM to a TM that diverges for any
input it does not accept.

Let M+ be obtained from M by expanding its transition relation as follows. Using auxiliary states
and transitions, we add for every existential state a transition into an auxiliary universal state that starts
an infinite trace (using auxiliary states) of alternation-pivots. That is, we create a fresh alternation-pivot
following each existential configuration, where that alternation-pivot is neither accepted nor rejected.
Thus, a set of configurations is closed under the closure conditions for AC in M iff it is closed under

208

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

those conditions in M+. So the two machines accept the same language. But M+ has no rejected con-
figurations: existential configurations cannot be rejected because they have an alternation-pivot, namely
the one introduced by the definition of M+, which is not rejected. And then universal configurations
cannot be rejected, because all their alternation-pivots, which are existential, are non-rejected.

The construction of M− is dual.

2.5 The Arithmetical Hierarchy
We say that an ATM M is Σk if its initial state is existential, and for every w ∈ Σ

∗, all branches of the
computation-tree for w have ≤ k alternation-pivots. For Σ1 machines we further posit that the universal
states have no applicable transitions, so they are accept-states without further ado. This is no loss of
generality, since a Σ

0
1 ATM that does not satisfy this condition can be converted to an equivalent one

(i.e. accepting the same language) which does, simply by removing all transitions that apply to universal
states.

The definition of Πk machines is the same, but with the initial state universal. Here again we posit
that the existential states of Π1 machines have no applicable transition rules.

THEOREM 5. Let k ≥ 1. A language is Σ
0
k (Π0

k) iff it is accepted by a Σk (Πk, respectively) ATM.

Proof. The proof is by induction on k. For the base case for Σ
0
1, let L be a language defined by a Σ

0
1

formula, that is
L = {x ∈ Σ

∗ | ϕ[x]}

where
ϕ[x] ≡ ∃w1, . . . ,wr ϕ0[~w,x]

with ϕ0 a bounded formula, i.e. with all quantifiers restricted to substrings of a given string. Define a
Σ1 machine M that accepts L, as follows. M branches existentially to choose a string w = w1# · · ·#wr,
then proceeds to check deterministically that ϕ0[w1 . . .wr]. (We classify the states for that deterministic
process to be universal, so that dead-end states are accepted.)

Conversely, if L = L (M) where M is a Σ1 machine, then L is definable by a Σ
0
1 formula that states,

for input w, the existence of a finite computation tree for w.
For the base case Π

0
1, suppose L is defined by a Π

0
1 formula

ϕ[x] ≡ ∀w1 . . .wr ϕ0[w1, . . . ,wr,x]

Define a Π1 machine M that accepts L, as follows. M generates strings w1# · · ·#wr in successive lex-
icographic order. After each such choice M branches universally to the next string as well as to a
deterministic module that accepts x iff ϕ0[~w,x] for the current value of w1# · · ·#wr.

Conversely, if L = L (M) where M is an Π1 machine, then L is definable by a formula that states
that for all (finite) computation traces, the trace’s last configuration is not existential (i.e. rejected).

The induction step on k generalizes the induction basis, in referring to a sub-computation for k−1,
using IH, rather than to a deterministic sub-computation.

3 Alternation and the analytical hierarchy

3.1 Accepted languages are inductive (Π1
1)

Fix an alphabet Σ. Consider formulas over the vocabulary (i.e. similarity type) with an identifier for each
letter in Σ as well as for the empty-string, a binary function-identifier for concatenation, and a binary

209

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

relation for the substring relation. We write ϕ0 for bounded formulas, i.e. with all quantifiers restricted
to substrings of a given string.

PROPOSITION 6. The following conditions are equivalent for a language L⊆ Σ
∗.

I1 L is defined by a formula of the form ϕ[w]≡ ∀ f ϕ0[w, f], where f is ranging over Σ
∗→ Σ

∗.

I2 L is defined by a formula of the form ∀ f ∃x ϕ0[w, f ,x].

I3 L is defined by a formula of the form ∀ f ∃x ϕ0[w, f̄ (x),x], where f̄ (x) abbreviates the string
f (0)$ · · ·$ f (|x|) (with $ a fresh symbol, used as a textual separator).

I4 L is defined by a formula of the form ∀S ∃x ∀y ϕ0[w, f ,x,y], where S ranges over subsets of Σ
∗.

Proof. I1 implies I2 by the Kuratowski-Tarski algorithm [9]. I2 implies I3 by the boundedness of
ϕ0. I1 implies I4 by an interpretation of functions by relations (and hence sets, since we are talking
about languages), and I3 and I4 each implies I1 trivially. Note that the
use of a set quantifier in I4 implies the need to have an alternation of first-order quantifiers, not needed
in I1. This is essential: without the presence of the first-order universal quantifier ∀y we get Kreisel’s
strict-Π1

1 formulas, which are no more powerful than Σ
0
1 [7, 8].

A language L⊆ Σ
∗ is inductive (Π1

1) when it satisfies the equivalent conditions of Proposition 6 (see
e.g. [4]).

Recall that our definition above of acceptance by an ATM refer to the set AC of accepted configura-
tions, which is Π

1
1 definable. We therefore have:

PROPOSITION 7. Every language accepted by an ATM is inductive.

3.2 Inductive languages are accepted

PROPOSITION 8. Every inductive language is accepted by an ATM.

Proof. We refer to characterization (I3) of Π
1
1 languages. Let L be a language defined by

∀ f∃x ϕ0[w, f̄ (x),x]

which we write momentarily as
∀ f ∃x ϕ0[w, z0$ · · ·$zn, x]

where n = |x| and zi = f (i). This is equivalent to the infinite formula

∀z0 (∃xϕ0[w,z0,x])
∨ ∀z1 (∃xϕ0[w,z0 $z1,x])

∨ ∀z2 (∃xϕ0[w,z0 $z1 $z2,x])
∨ ∀z3 (∃xϕ0[w,z0 $z1 $z2 $z3,x])

∨ · ··

(1)

We use here infinitary formulas for informal expository purpose; compare [10, 11].
Formula (1) is captured by an ATM which, on input w,

1. chooses by universal nondeterminism a value z0;4

4Recall from the introduction that such a choice, for our finitely-branching machine, involves a computation tree with an
infinite branch.

210

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

2. for each such choice for z0, branches by existential nondeterminism to

(a) guess (by existential nondeterminism) an x, then attempt to verify (deterministically) that
ϕ0[w,z0,x];

(b) proceed to choose by universal nondeterminism a z1;

(c) etc.

Combining Propositions 7 and 8 we conclude:

THEOREM 9. L is inductive iff it is accepted by an ATM.

3.3 Total machines and hyper-arithmetical languages
Recall that a language is ∆

1
1 when it is both Π

1
1 and Σ

1
1.

THEOREM 10. A language is ∆
1
1 iff it is accepted by a total ATM.

Proof. If a language L is accepted by a total ATM M, then it is inductive, by Theorem 9. Also, by
Proposition 3, M̄ accepts L̄, which is therefore inductive as well.

For the converse, assume that L = L (M0) and L̄ = L (M1). By Proposition 4 we may assume
that neither machine has rejected configurations. Thus L̄ is rejected by the machine M̄1, which has no
accepted configuration.

We wish to construct out of M0 and M̄1 a total machine M that accepts L, and thus rejects L̄. An
initial idea is to emulate the classical proof that a language which is both semi-decidable (i.e. RE) and co-
semi-decidable must be decidable. This would consist in combining the two machines, by constructing
a two-tape machine whose states are are tuples 〈q0,q1, j〉, with q0 a state of M0 and q1 a state of M̄1, and
where j ∈ {0,1} indicates which machine moves next. The type of 〈q0,q1, j〉 is the type of q j, and the
states take turns in operating on their respective tapes. Acceptance of a configuration is determined (or
so it seems...) by the M0 portion of the combined machine, since M̄1 has no accepted configuration, and
rejection is determined by the M̄1 portion, since M0 has no rejected configurations. The initial state of
the combined machine M, say s, starts a preliminary computation phase, which copies the input, given
say on M0’s tape, to the tape associated with M̄1. This phase leads to the state 〈s0,s1,0〉, where s0 and
s1 are the initial states of M0 and M̄1, respectively.

One problem with that tentative construction is that the acceptance semantics of each portion is in
fact impacted by the other, since the latter may introduce alternation-pivots. Consider, for example,
a universal configuration c of M0 which is accepted in M0, because all its alternation-pivots in M0
are accepted. When c is paired with a configuration of M̄1 we get a compound configuration which
might have, via the operation of M̄1, additional alternation-pivots whose “M0-portion” is not accepted
in M0. Thus the combined configuration will not be accepted in the combined machine, even though c
is accepted in M. A dual problem might occur with existential configurations of M̄1.

We address the issue above by refining the construction of the combined machine M. We also include
in M the states of M0 and of M̄1 as given (assuming of course that the two machines have no state in
common). A state q0 of M0 behaves in M exactly as in M0, but disregarding the tape associated with
M̄1; and similarly for states of M̄1.

A state 〈q0,q1,0〉 which is universal (i.e. where q0 is universal in M0), rather than transitioning (for a
given tape-values) to a configuration with a state of the form 〈p0,q1,1〉, is first switching to an existential
state 〈q′0,q1,0〉 (with q′0 a fresh auxiliary state), branching then to 〈p0,q1,1〉 and to the state p0 itself.

211

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

Thus we create an alternation pivot above the current configuration, which is accepted iff the 0-part of
the current configuration is accepted by M0.

We refine dually the behavior of M for existential states 〈q0,q1,1〉.
It is easy to see that in the revised machine M a configuration with state 〈q0,q1, j〉 and tape-values

〈w0,w1〉 is accepted with j = 0 iff the configuration (q0,w0) is accepted in M0, and is rejected with j = 1
iff (q1,w1) is rejected in M̄1. Thus 〈s0,s1,0〉 is accepted with tape-values 〈w,w〉 iff w ∈ L, and rejected
iff w ∈ L̄; it follows that M (with initial configuration (s,〈w,ε〉)) is a total ATM that accepts L.

We are not aware of proofs of similar results that do not refer to a calibration of transfinite computing
via Kleene’s set O of recursive ordinals. This is the case, in particular, for a theorem analogous to the
above, in [3], for a programming languages IND with random assignments. In contrast, our proof above
does not address infinitely-branching computation, and consequently does not depend on transfinite
stage-comparison methods.

3.4 The Analytical Hierarchy
We further generalize ATMs with negation gates. That is, in addition to existential and universal states
such machines may have negation states, with a unique transition for each symbol scanned.

Negation-gates are traditionally defined locally, by the boolean condition: a configuration with a
negation state is accepted (rejected) when its child-configuration is rejected (accepted, respectively).
Such states can be dispensed with as in [2], using a duality construction. We consider instead nega-
tion gates with a stronger semantics: a negation configuration is accepted (rejected) when its child-
configuration is not rejected (not accepted, respectively). Thus, our semantics is based on asserting
acceptance and rejection on a “no contest” basis, and referring to the behavior of the computation tree
as a whole, much as we have done for the semantics of universal nondeterminism.

Contrary to the definition of acceptance and rejection so far, our semantics of negation is not mono-
tonic, because the closure condition defining negation refers to the absence of acceptance, a condition
that may turn from true to false as the set of accepted configuration is generated. We therefore restrict
attention to computation trees with a finite bound k on the number of negation configuration permissible
along each branch. For such computation trees we can define the semantics of negation by induction on
k.

From Theorem 9 we obtain that every Σ
1
1 language is accepted by an ATM with a single negation

state. Using such a machine as oracle to an ATM without negation, we obtain ATMs (with at most one
negation gate along every computation trace) that accepts the Π

1
2 languages. More generally, we have

THEOREM 11. The languages accepted by ATMs with negation, using < k negation gates along every
computation trace, are precisely the Π

1
k languages of the analytical hierarchy.

4 Conclusion
The combined use of existential and universal nondeterminism has been of interest primarily in Compu-
tational Complexity theory, but has not been viewed as a tool in the foundations of computing. This is
because the semantics of acceptance has been defined “locally”, that is in terms of the relation between
computational configurations and their immediate descendants. This implies that acceptance (and re-
jection) are witnessed by finite computation trees, and thus cannot lead us beyond the semi-decidable
(RE) languages. Viewed from another angle, the closure properties involved are Π

0
1, and so the accepted

languages are defined by strict-Π1
1 formulas (see §3.1 above).

We showed here that a very natural alternative semantics for universal nondeterminism changes
the picture radically, as the languages accepted are precisely the Π

1
1 ones. This further illustrates the

212

Alternating Turing Machines and the Analytical Hierarchy Daniel Leivant

foundational analogy between alternation in feasible time with local semantics, which yields PSpace as
a limit of the PTime Hierarchy (starting with PTime), and alternation for arbitrary computations with
global semantics, which yields Π

1
1 as a limit of the arithmetical hierarchy (starting with Σ

0
1).

Generalized models of computation that go beyond computability have been studied extensively, of
course. The novelty of the approach here is that it refers to the very same hardware as traditional Turing
machines (albeit with both modes of nondeterminism), but redefines the notion of acceptance, in a way
that remains consistent with the underlying, intuitive, intent.

The ability to refer to both computational complexity and higher recursion theory using the same
machine models has the potential of suggesting analogies between results, and thereby transfer of re-
sults. These might provide insights and machine-based proofs for Higher Recursion Theory. A potential
example is the Spector-Gandy-Kleene Theorem, stating that a language is inductive iff it has a definition
of the form (∃S ∈ ∆

1
1) (∀w) ϕ[S,w,x], with ϕ recursive. We shall return to this connection elsewhere.

References
[1] Jon Barwise. Admissible Sets and Structures, volume 7 of Perspectives in Mathematical Logic. Springer-

Verlag, Berlin, 1975.
[2] Ashok Chandra, Dexter Kozen, and Larry Stockmeyer. Alternation. Journal of the ACM, 28:114–133, 1981.
[3] David Harel and Dexter Kozen. A programming language for the inductive sets, and applications. Information

and Control, 63:118–139, 1984.
[4] Stephen C. Kleene. Introduction to Metamathematics. Wolters-Noordhof, Groningen, 1952.
[5] Phokion Kolaitis. Game quantification. In Model-Theoretic Logics, pages 365–421. Springer-Verlag, New

York, 1985.
[6] Dexter Kozen. Theory of Computation. Springer, London, 2006.
[7] G. Kreisel. La prédicativité. Bull. Soc. math. France, 88:371–391, 1960.
[8] Georg Kreisel. Survey of proof theory. Journal of symbolic Logic, 33:321–388, 1968.
[9] Kazimierz Kuratowski and Alfred Tarski. Les opérations logiques et les ensembles projectifs. Fund. Math.,

17:240–248, 1931.
[10] Y. Moschovakis. Elementary Induction on Abstract Structures. North-Holland, Amsterdam, 1974.
[11] Yianis Moschovakis. The game quantifier. Proc. AMS, 31:245–250, 1971.
[12] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

213

	Introduction
	Global semantics for alternating computations
	Alternating Turing machines
	Acceptance and rejection
	Divergence and totality
	Duality and one-sidedness
	The Arithmetical Hierarchy

	Alternation and the analytical hierarchy
	Accepted languages are inductive (11)
	Inductive languages are accepted
	Total machines and hyper-arithmetical languages
	The Analytical Hierarchy

	Conclusion

