
EPiC Series in Computing
Volume 41, 2016, Pages 1–19

GCAI 2016. 2nd Global
Conference on Artificial Intelligence

A Clausal Normal Form Translation for FOOL∗

Evgenii Kotelnikov1, Laura Kovács1,2, Martin Suda2, and Andrei Voronkov1,3,4

1 Chalmers University of Technology, Gothenburg, Sweden
2 TU Wien, Vienna

3 The University of Manchester
4 EasyChair

Abstract
Automated theorem provers for first-order logic usually operate on sets of first-order clauses. It is

well-known that the translation of a formula in full first-order logic to a clausal normal form (CNF)
can crucially affect performance of a theorem prover. In our recent work we introduced a modification
of first-order logic extended by the first class boolean sort and syntactical constructs that mirror
features of programming languages. We called this logic FOOL. Formulas in FOOL can be translated
to ordinary first-order formulas and checked by first-order theorem provers. While this translation is
straightforward, it does not result in a CNF that can be efficiently handled by state-of-the-art theorem
provers which use superposition calculus. In this paper we present a new CNF translation algorithm
for FOOL that is friendly and efficient for superposition-based first-order provers. We implemented
the algorithm in the Vampire theorem prover and evaluated it on a large number of problems coming
from formalisation of mathematics and program analysis. Our experimental results show an increase
of performance of the prover with our CNF translation compared to the naive translation.

1 Introduction
Automated theorem provers for first-order logic usually operate on sets of first-order clauses.
In order to check a formula in full first-order logic, theorem provers first translate it to clausal
normal form (CNF). It is well-known that the quality of this translation affects the performance
of the theorem prover. While there is no absolute criterion of what the best CNF for a formula
is, theorem provers usually try to make the CNF smaller according to some measure. This
measure can include the number of clauses, the number of literals, the lengths of the clauses
and the size of the resulting signature, i.e. the number of function and predicate symbols.
Implementors of CNF translations commonly employ formula simplification [12], (generalised)
formula naming [12, 1], and other clausification techniques, aimed to make the CNF smaller.

Our recent work [9] presented a modification of many-sorted first-order logic with first-class
boolean sort. We called this logic FOOL, standing for first-order logic (FOL) with boolean
sort. FOOL extends standard FOL by (i) treating boolean terms as formulas, (ii) if-then-
else expressions, (iii) let-in expressions, and (iv) tuple expressions. While if-then-else and

∗This work has been supported by the ERC Starting Grant 2014 SYMCAR 639270, the Wallenberg Academy
Fellowship 2014, the Swedish VR grant D0497701 and the Austrian research project FWF S11409-N23.

C.Benzmüller, G.Sutcliffe and R.Rojas (eds.), GCAI 2016 (EPiC Series in Computing, vol. 41), pp. 1–19

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

let-in expressions are also available in the SMT-LIB core language [3], the standard input
language for SMT solvers, FOOL is a strict superset of SMT-LIB as tuple expressions are
not part of SMT-LIB and let-in expressions in FOOL can define non-constant functions and
predicate symbols.

There is a model-preserving translation of FOOL formulas to FOL (see [9]) that works by
replacing parts of a FOOL formula with applications of fresh function and predicate symbols
and extending the set of assumptions with definitions of these symbols. To reason about a
FOOL formula, one can thus first translate it to a FOL formula and then convert the FOL
formula into a set of clauses using the usual first-order clausification techniques. While this
translation provides an easy way to support FOOL in existing first-order provers, it is not
necessarily efficient. A more efficient translation can convert a FOOL formula directly to a set
of first-order clauses, skipping the intermediate step of converting FOOL to FOL. This way,
the translation can integrate known clausification techniques and improve the quality of the
resulting clausal normal form.

In this paper we present a new clausification algorithm, called VCNFFOOL, that translates
a FOOL formula to an equisatisfiable set of first-order clauses. Our algorithm avoids producing
large numbers of duplicate clauses and new symbols during clausification and also avoids clauses
that can make theorem provers inefficient. We show that in practice this leads to a significant
increase in the performance of a theorem prover).

Our VCNFFOOL algorithm is a non-trivial extension of the recent VCNF clausification
algorithm for FOL [13]. The extension employs several clausification techniques for handling
the non-FOL features of FOOL, namely boolean terms and if-then-else, let-in and tuple
expressions. These techniques comprise the contributions of this work and are listed below.

Contributions. The main contributions of this paper are the following:
1. We present a new clausification algorithm for translating FOOL formulas to an equisatis-

fiable set of first-order clauses.
2. We handle boolean variables in FOOL formulas by skolemising them using skolem predi-

cates instead of skolem functions, thus avoiding the introduction of new boolean equalities.
3. We control the clausification of FOOL formulas with if-then-else and let-in expressions

by a threshold level on the number of formula occurrences. Depending on the threshold,
our algorithms decides on the fly whether to inline if-then-else and let-in expressions
or introduce a new name and definition for them.

4. We handle tuple expressions in FOOL by introducing so-called projection functions and use
these projection functions in the translation of let-in expressions with tuple definition.

5. We implemented our work in the Vampire theorem prover [10], offering this way an auto-
mated support to reason about FOOL formulas.

6. We evaluate our work on three benchmark suites coming from verification and analysis of
software and described in Section 4, and show experimentally that our method significantly
improves over [8] by the number of solved problems and the runtime.

2 Clausal Normal Form for First-Order Logic
Traditional approaches to clausification in FOL [12, 10] produce a clausal normal form in
several stages, where each stage represents a single pass through the formula tree. These
stages may include formula simplification, translation into (equivalence) negation normal form,

2

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

formula naming, elimination of equivalences, skolemisation, and distribution of disjunctions
over conjunctions. The VCNF clausification algorithm of [13] takes a different approach and
employs a single top-down traversal of the formula in which these stages are combined. This
enables optimisations that are not available if the stages of clausification are independent. For
example, compared to the traditional staged approach, VCNF can introduce fewer skolem
functions on formulas with complex nesting of equivalences and quantifiers. Moreover, it can
detect and discard intermediate tautologies, which are much more difficult to recognise by the
staged approach.

In this paper we use the VCNF algorithm and extended it to a new clausification algorithm
for FOOL [9]. The main advantage of VCNF for our work, however, is that its top-down
traversal provides a suitable context not only for clausification of first-order formulas, but also
of the extension of first-order logic with FOOL features. In this section we overview the main
features of VCNF. We will follow the notation used in [13] and in what follows will repeat some
of the definitions.

2.1 Preliminaries
Our setting is that of many-sorted first-order predicate logic with equality.

A signature Σ is a set of predicate and function symbols together with associated sorts. A
term of the sort τ is of the form f(t1, . . . , tn), c or x where f is a function symbol of the sort
τ1 × . . . × τn → τ , t1, . . . , tn are terms of sorts τ1, . . . , τn, respectively, c is a constant of sort
τ and x is a variable of sort τ . An atom is of the form p(t1, . . . , tn), q or t1

.= t2 where p is a
predicate symbol of the sort τ1 × . . . × τn, t1, . . . , tn are terms of sorts τ1, . . . , τn, respectively,
q is a predicate symbol of sort bool and .= is the equality symbol. A literal is an atom or its
negation.

A formula is of the form ϕ1 ∧ . . . ∧ ϕn, ϕ1 ∨ . . . ∨ ϕn, ϕ1 ⇒ ϕ2, ϕ1 ↔ ϕ2, ϕ1 ⊗ ϕ2, ¬ϕ1,
∃x : τ.ϕ1, ∀x : τ.ϕ1, ⊥, >, or l where ϕi are formulas, x is a variable, τ a sort and l is a literal.
Note that we treat conjunction and disjunction as n-ary operators; we assume that formulas are
kept in flattened form, e.g. (ϕ1 ∧ ϕ2) ∧ ϕ3 is always represented as ϕ1 ∧ ϕ2 ∧ ϕ3. Furthermore,
we assume that usage of > and ⊥ is simplified immediately.

A sign is a either t or f. A signed formula is a pair consisting of a formula ϕ and a sign
? ∈ {t, f}, denoted by ϕ?. The signed formula ϕt (resp. ϕf) means that ϕ is true (resp.
false). We will use the mapping form from signed formulas to formulas defined as follows:
form(ϕt) = ϕ and form(ϕf) = ¬ϕ. We call a sequent a finite set of signed formulas. We say
that a sequent S1, . . . , Sn is true in a FOOL interpretation if so is the universal closure of the
formula form(S1) ∨ . . . ∨ form(Sn). Note that if S1, . . . , Sn are signed atomic FOL formulas,
then form(S1) ∨ . . . ∨ form(Sn) is a clause.

2.2 VCNF
The VCNF algorithm [13] works with finite sets of sequents. During computation the algorithm
may construct substitutions to be applied to existing (signed) formulas. It is convenient for us
to collect these substitutions without immediately applying them. For this reason, instead of
a sequent Dθ, where θ is a substitution, we will use pairs Dθ consisting of a sequent D and a
substitution θ. We will (slightly informally) also refer to such pairs as sequents.

The VCNF algorithm starts with the input first-order formula ϕ and a set C of sequents
that contains a single sequent {ϕt}ε, where ε is the empty substitution. Then it makes a series
of steps replacing sequents in C by other sequents until all sequents in C contain only signed
atomic FOL formulas. Some of the steps introduce fresh (previously unused) symbols. Each

3

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

update of C preserves the following invariants: (1) if an interpretation I satisfies all sequents
after the update, then I also satisfies all sequents before the update; (2) if an interpretation I
satisfies all sequents before the update, then there exists an interpretation I ′ that extends I
on fresh symbols such that I ′ satisfies all sequents after the update.

The replacements of sequents are guided by the structure of ϕ. VCNF traverses ϕ top-
down, processing every non-atomic subformula of ϕ exactly once in an order that respects the
subformula relation. That is, for each two distinct subformulas ψ1 and ψ2 of ϕ such that ψ1 is
a subformula of ψ2, ψ2 is processed before ψ1. For every subformula of ϕ, VCNF maintains
a list of its occurrences as signed formulas in the sequents of C . The occurrences are updated
whenever sequents are removed from and added to C . The main role of the list is to allow
for a fast enumeration and lookup of all the occurrences when a particular subformula is to
be processed. As explained below, the number of occurrences is also used to decided whether
a subformula should be named. The replacements are governed by a set of rules that are,
essentially, the standard tableau rules for first-order logic. We briefly summarise these rules
below, and refer to [13] for details.

We note that except for the rule for negation, which essentially flips the sign of each oc-
currence of ψ = ¬γ and replaces ψ with its immediate sub-formula γ in all the sequents, the
remaining rules come in pairs in which they are dual to each other. For instance, dealing with
a disjunction γ1 ∨ γ2 with a positive ? = t is analogous to dealing with a conjunction with a
negative sign. For simplicity, we only show the versions for ? = t below.

Let ψ be a subformula of ϕ and Dθ be a sequent such that D has an occurrence of ψt. Before
proceeding to the next subformula, VCNF visits and replaces all such sequents D. Depending
on the top-level connective of ψ the algorithm applies the following rules.
• Suppose that ψ is of the form ¬γ. Add a sequent to C obtained from D by replacing the

occurrence of ψt with γf.
• Suppose that ψ is of the form γ1 ∨ γ2. Add a sequent to C obtained from D by replacing

the occurrence of ψt with γ1
t, γ2

t.
• Suppose that ψ is of the form γ1∧γ2. Add two sequents to C obtained from D by replacing

the occurrence of ψt with γ1
t and γ2

t, respectively.
• Suppose that ψ in of the form γ1 ↔ γ2. Add two sequents to C obtained from D by

replacing the occurrence of ψt with γ1
t, γ2

f and γ1
f, γ2

t, respectively.
• Suppose that ψ in of the form γ1 ⊗ γ2. Add two sequents to C obtained from D by

replacing the occurrence of ψt with γ1
t, γ2

t and γ1
f, γ2

f, respectively.
• Suppose that ψ is of the form (∀x : τ)γ. Add a sequent obtained from D by replacing the

occurrence of ψt with γt.
• Suppose that ψ is of the form (∃x : τ)γ. Let y1, . . . , yn be all free variables of ψθ and
τ1, . . . , τn be their sorts. Introduce a fresh Skolem function symbol sk of the sort τ1× . . .×
τn → τ . Add a sequent D′

θ′ , where D′ is obtained from D by replacing the occurrence of
ψt with γt, and θ′ extends θ with x 7→ sk(y1, . . . , yn).

When all subformulas of ϕ are traversed and the respective rules of replacing sequents are
applied, the set C only contains sequents with signed atomic formulas. C is then converted
to a set of first-order clauses by applying the substitution of each sequent to its respective
formulas.

Whenever the number of occurrences of a subformula ψ in sequents in C exceeds a pre-
specified naming threshold, ψ is named as follows. Let y1, . . . , yn be free variables of ψ and
τ1, . . . , τn be their sorts. VCNF introduces a new predicate symbol P of the sort τ1 × . . .× τn.

4

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

Then, each occurrence ψ? in sequents in C is replaced by P (y1, . . . , yn)?. Finally, two sequents
{P (y1, . . . , yn)f

, ψt}ε and {P (y1, . . . , yn)t
, ψf}ε are added to C to serve as a definition of ψ. As

usual, in case ψ always occurs in C only under a single sign, adding only the one respective
defining sequent is sufficient.

Whenever a new sequent Dθ is constructed, VCNF eliminates immediate tautologies and
redundant formulas. It means that

1. if D contains both ψt and ψf, Dθ is not added to C ;
2. if D contains multiple occurrences of a signed formula, only one occurrence is kept in D;
3. if D contains >t or ⊥f, Dθ is not added to C ;
4. if D contains a signed formula ⊥t or >f, this signed formula is removed from D.

These rules are not required for replacing sequents, however they simplify formulas and make
the resulting set of clauses smaller.

VCNF takes as an input a first-order formula in equivalence negation normal form (ENNF).
A formula is in ENNF if it does not contain⇒ and negations are only applied to atoms. ENNF
is very convenient for standard FOL, as it reduces the number of cases to consider and makes
checking polarities trivial. At the same time, it is not easy to define a useful extension of ENNF
for FOOL because of let-in expressions and formulas inside terms. It is straightforward,
however, to extend VCNF in order to support formulas in full first-order logic. For that,
we need to add an extra rewriting rule for implications. In what follows we will consider a
modification of VCNF with this extension.

3 Clausal Normal Form for FOOL
In this section we describe our new clausification algorithm for FOOL. The algorithm takes
a FOOL formula as input and produces an equisatisfiable set of first-order clauses. We write
VCNFFOOL to refer to this algorithm, and FOOL2FOL to refer to the algorithm of [9] for
translating FOOL formulas to arbitrary FOL formulas. In what follows, we first briefly overview
the FOOL logic and then describe VCNFFOOL and compare the CNFs produces by it and
FOOL2FOL.

3.1 FOOL
FOOL [9] extends the standard many-sorted FOL with an interpreted boolean sort. Boolean
variables can be used as formulas in FOOL and formulas may be used as arguments to function
and predicate symbols. In addition to its first-class boolean sort, FOOL extends standard FOL
with following constructs:

1. if-then-else expressions that can occur as terms and formulas;
2. let-in expressions that can occur as terms and formulas and can define an arbitrary

number of function and predicate symbols.
Finally, FOOL also includes tuple expressions and let-in expressions with tuple definitions. A
let-in expression with a tuple definition has the form let (c1, . . ., cn) = s in t, where n > 1, t
is a term, c1, . . . , cn are constants, and s is a tuple expression. A tuple expression is inductively
defined as follows:

1. (s1, . . ., sn), where s1, . . . , sn are terms;
2. if ϕ then s1 else s2, where s1 and s2 are tuple expressions;

5

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

3. a let-in expression of the form let D in t, where D is tuple, function, or predicate
definition, and t is a tuple expression.

Note that tuple expressions are not first class terms. They can only occur on the right-hand
side of tuple definitions, but not as arguments to function or predicate symbols. Moreover,
we do not assign sorts to tuple expressions and do not allow nested tuple expressions. It is
however straightforward to extend FOOL with a theory of first class tuples. For that, one
needs to assign tuple sorts of the form (τ1, . . ., τn) to tuple expressions of the form (s1, . . ., sn)
if s1 : τ1, . . . , sn : τn, and allow tuple expression to appear as terms. Such extension is not
considered in this paper.

There are several ways to support the interpreted boolean sort in first-order theorem prov-
ing. The approach taken in [9] proposes to axiomatise it by adding two constants true and
false of this sorts and two axioms: true 6 .= false and (∀x : bool)(x .= true ∨ x .= false). Further-
more, [9] proposes a modification in superposition calculus of first-order provers: it (i) changes
the simplification ordering of first-order prover by making true and false the smallest terms of
boolean sort and (ii) replaces the second axiom with a so-called FOOL paramodulation rule.
These modifications block self-paramodulation of x .= true ∨ x .= false and hence prevent per-
formance problems arising from self-paramodulation in superposition theorem proving. In this
paper, we however argue that neither boolean axiom nor modifications of superposition calculus
are needed to support the interpreted boolean sort. Rather, we propose special processing of
boolean variables and boolean equalities during clausification and avoid the introduction of new
boolean equalities.

3.2 Introducing VCNFFOOL

The VCNFFOOL clausification algorithm introduced in this paper is a non-trivial extension
of the VCNF algorithm. Compared to FOOL2FOL, VCNFFOOL clausifies FOOL formulas
directly, without first translating them to general FOL formulas and only then to CNF. The
VCNFFOOL algorithm extends VCNF by adding support for FOOL formulas, as follows.

• We allow sequents to contain signed FOOL formulas, and not just first-order formulas.

• We extend the VCNF tautology elimination with the support for boolean variables. When-
ever a boolean variable occurs in a sequent twice with the opposite signs, that sequent is
not added to C . Whenever a boolean variable occurs in a sequent multiple times with the
same sign, only one occurrence is kept in the sequent.

• We add extra rules that guide how sequents are replaced in the set C detailed below.
These rules correspond to syntactical constructs available in FOOL but not in ordinary
first-order logic.

• We change the rule that translates existentially quantified formulas to skolemise boolean
variables using skolem predicates and not skolem functions. For that, we also allow sub-
stitutions to map boolean variables to skolem literals.

• We add an extra step of translation. After the input formula has been traversed, we ap-
ply substitutions of boolean variables to every formula in each respective sequent. The
resulting set of sequents might have skolem literals occurring as terms. We run the clausi-
fication algorithm again on this set of sequents. The second run does not introduce new
substitutions and results with a set of sequents that only contain atomic formulas and
substitutions of non-boolean variables.

6

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

In the sequel, we detail the rules of VCNFFOOL for replacing sequents. To simplify the
exposition and without the loss of generality, we make the following assumptions about the
input FOOL formula.
• We do not distinguish formulas used as arguments as a separate syntactical construct,

but rather treat each such formula ϕ as an if-then-else expression of the form if ϕ
then true else false.

• We assume that every let-in expression defines exactly one function or predicate symbol.
Every let-in expression that defines more than one symbol can be transformed to multiple
nested let-in expressions, each defining a single symbol, possibly by renaming some of
the symbols.

• We assume that let-in expressions only occur as formulas. Every atomic formula that
contains a let-in expression can be transformed to a let-in expression that defines the
same symbol and occurs as a formula.

• Finally, we assume that each function or predicate symbol is defined by a let-in expression
at most once. This can be achieved by a standard renaming policy.

3.3 VCNFFOOL Rules
This section presents the rewriting rules of VCNFFOOL for syntactic construct available in
FOOL, but not in standard first-order logic. For each such construct we present a rewriting
rule for it in VCNFFOOL, give an example of a FOOL formula with that construct, and compare
its CNFs obtained using VCNFFOOL and FOOL2FOL.

Let us now fix an input formula ϕ and let ψ be one of its subformulas. In the sequel we
assume that ϕ and ψ are fixed and give all definitions relative to them. Let Dθ be a sequent
such that D has an occurrence of ψ?.

Boolean Variables
Suppose that ψ is a boolean variable x. If θ does map x, VCNFFOOL adds Dθ to C . This
corresponds to the case in which x was an existentially quantified variable skolemised in some
previous step.

If θ does not map x, VCNFFOOL adds the sequent D′
θ′ to C , where D′ is obtained from

D by removing the occurrence of ψ? and θ′ extends θ with x 7→ false if ? = t, and x 7→ true if
? = f. This corresponds to the case in which x was a universally quantified variable. Treating
the boolean universal quantifier as a conjunction, we are implicitly replacing the sequent D
with two extensions, one for x 7→ false and the other for x 7→ true. However, one of them is
always true due to the occurrence of ψ? in D and so is not considered anymore. Thus only D′

θ′

is further processed by VCNFFOOL.

Example. Let ψ1 = (∀x : bool)(x ∨ P (x)), ψ2 = (∃y : bool)(P (y) ∧ y), where P is a predicate
symbol of the sort bool → bool and let us consider the formula ϕ = ψ1 ∨ ψ2.

To process ϕ, VCNFFOOL first applies the rule for disjunction inherited from VCNF, ob-
taining the sequent {ψt

1, ψ
t
2}ε. The following are the steps corresponding to processing ψ1 and

its subformulas:
{(∀x : bool)(x ∨ P (x))t, ψt

2}ε ⇒
{(x ∨ P (x))t, ψt

2}ε ⇒
{xt, P (x)t, ψt

2}ε ⇒
{xt, P (x)t, ψt

2}{x 7→false}.

7

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

Notice how the substitution is extended by x 7→ false because of the positive occurrence of the
boolean variable x.

Next, we show how ψ2 and its subformulas get processed. We introduce sk, a nullary skolem
predicate symbol for the existential quantifier:

{xt, P (x)t, (∃y : bool)(P (y) ∧ y)t}{x 7→false} ⇒
{xt, P (x)t, (P (y) ∧ y)t}{x 7→false,y 7→sk} ⇒
{xt, P (x)t, P (y)t}{x 7→false,y 7→sk}, {xt, P (x)t, yt}{x 7→false,y 7→sk}.

Recall that dealing with boolean variables in VCNFFOOL requires an extra stage in which
boolean substitutions are applied:

{falset, P (false)t, P (sk)t}ε, {falset, P (false)t, skt}ε.

Next, VCNFFOOL eliminates the tautology falset in both sequents. The literal P (sk) contains a
formula inside, therefore VCNFFOOL translates it as the formula P (if sk then true else false)
according to the rules given in Section 3.3:

{P (false)t, P (if sk then true else false)t}ε, {P (false)t, skt}ε.

Finally, VCNFFOOL converts signed atomic formulas to literals and we obtain the following
three clauses:1

{P (false),¬sk, P (true)}, {P (false), sk}, {P (false), sk}.
FOOL2FOL converts ϕ to the following set of clauses:

{x .= true, P (x), P (sk)}, {x .= true, P (x), sk .= true},

where sk is a skolem constant of the sort bool. o

The FOOL2FOL algorithm of [9] replaces each boolean variable x occurring as formula with
x
.= true and skolemises boolean variables using boolean skolem functions. Unlike FOOL2FOL,

VCNFFOOL skolemises boolean variables using skolem predicates and substitutes boolean vari-
ables that do not need skolemisation with constants true and false. The approach taken in
VCNFFOOL is superior in two regards.

1. FOOL2FOL converts each skolemised boolean variable x occurring as formula to an
equality between skolem terms and true. VCNFFOOL converts x to a skolem literal which
can be handled by standard superposition more efficiently.

2. Substitution of a universally quantified boolean variable with true and false can decrease
the size of the translation. If the boolean variable occurs as formula, after applying
the substitution, the occurrence is either removed or the whole sequent is discarded by
tautology elimination in VCNFFOOL.

Our treatment of boolean variables never introduces new equalities and uses skolem predi-
cates instead of skolem functions. We process boolean equalities as logical equivalences and use
guards to name if-then-else expressions occurring as terms. The usage of these techniques
give the resulting set of clauses the following two properties.

1. It can only contain boolean variables and constants true and false as boolean terms.
Every boolean term that occurs in ϕ is translated as formula and no boolean terms other
than variables, true and false are introduced.

1Notice that the last two clauses are identical and one of them could be dropped. However, VCNFFOOL is
not designed to do that.

8

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

2. It does not contain equalities between boolean terms.
Every boolean equality occurring in the input is translated as equivalence between its
arguments, and no new boolean equalities are eventually introduced.

These two properties ensure that no extra axioms or inference rules are required to handle the
interpreted boolean sort in a theorem prover. In particular, thanks to the second property we
do not need any form of equational reasoning for this sort.

Boolean Equalities
Suppose that ψ is γ1

.= γ2, where γ1 and γ2 are formulas. VCNFFOOL adds a sequent to C
that is obtained from D by replacing the occurrence of ψ? with (γ1 ↔ γ2)?.

In effect, VCNFFOOL reduces the case of boolean equality to that of formula equivalence,
delegating the processing to the respective rule inherited from VCNF.

if-then-else Expressions as Terms
Suppose that ψ is an atomic formula that contains one or more if-then-else expressions
occurring as terms. VCNFFOOL translates each of the expressions either by expanding or
naming it. We first describe this step of VCNFFOOL for a single if-then-else expression and
then generalise for an arbitrary number of if-then-else expressions inside one atomic formula.
Suppose that ψ is an atomic formula L[if γ then s else t].

Expanding. VCNFFOOL adds two sequents to C obtained from D by replacing the occur-
rence of ψ? with γf, L[s]? and γt, L[t]?, respectively.

Naming. Let x1, . . . , xn be all the free variables of γ, and τ1, . . . , τn be their sorts. Let τ be
the common sort of both s and t. Then, the VCNFFOOL algorithm

1. introduces a fresh predicate symbol P of the sort τ × τ1 × . . .× τn;
2. introduces a fresh variable y of the sort τ ;
3. adds a sequent to C that is obtained from D by replacing the occurrence of ψ? with L[y]?,
P (y, x1, . . . , xn)f;

4. adds sequents {γf, P (s, x1, . . . , xn)t}ε and {γt, P (t, x1, . . . , xn)t}ε to C .

Example. Consider a definition of the max function using if-then-else taken from [8]:

(∀x : Z)(∀y : Z)(max(x, y) .= if x ≥ y then x else y). (1)

To translate (1), VCNFFOOL first applies twice the rule for existential quantifier inherited
from VCNF, obtaining the sequent {(max(x, y) .= if x ≥ y then x else y)t}ε. Then, either
expanding or naming processes the result.
• Expanding results in {(x ≥ y)f

, (max(x, y) .= x)t}ε, {(x ≥ y)t
, (max(x, y) .= y)f}ε.

• Naming results in

{(max(x, y) .= z)t
, P (z, x, y)f}ε, {(x ≥ y)f

, P (x, x, y)t}ε, {(x ≥ y)t
, P (y, x, y)t}ε,

where z is a fresh variable of the sort Z and P is a fresh predicate symbol of the sort
Z×Z×Z.

9

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

Finally, VCNF converts signed formulas to literals, and we obtain
• {x 6≥ y,max(x, y) .= x}, {x ≥ y,max(x, y) 6 .= y} in case of expanding;
• {max(x, y) .= z,¬P (z, x, y)}, {x 6≥ y, P (x, x, y)}, {x ≥ y, P (y, x, y)} in case of naming.
FOOL2FOL translates (1) to (∀x : Z)(∀y : Z)(max(x, y) .= g(x, y)), where g is a fresh

function symbol defined by the following formulas:
1. (∀x : Z)(∀y : Z)(x ≥ y ⇒ g(x, y) .= x);
2. (∀x : Z)(∀y : Z)(x 6≥ y ⇒ g(x, y) .= y).

This translation ultimately yields the set of three clauses with two new equalities

{max(x, y) .= g(x, y)}, {x 6≥ y, g(x, y) .= x}, {x ≥ y, g(x, y) .= y}.

o

Both excessive expanding and excessive naming can result in a big CNF. Expanding if-
then-else expressions in VCNFFOOL doubles the number of sequents with occurrences of
L, but does not introduce fresh symbols. Naming, on the other hand, adds exactly two new
sequents, but introduces a fresh symbol. Both expanding and naming duplicate the condition of
the if-then-else expression. As discussed previously, VCNFFOOL keeps track of the number
of occurrences of this condition and names it if this number exceeds the naming threshold.
At the same time, expanding constructs two new literals that cannot be named because they
might be syntactically distinct and VCNFFOOL does not count occurrences of literals. If the
constructed literals contain more if-then-else expressions inside, rewriting them might cause
exponential increase of the number of sequents.

To balance between these two strategies, we introduce a parameter to VCNFFOOL called the
if-then-else expansion threshold. By default, we heuristically set the if-then-else expansion
threshold of VCNFFOOL to log2 n, where n is the naming threshold of VCNF. The if-then-
else expansion threshold of VCNFFOOL limits the maximal number of expanded if-then-else
expressions inside one atomic formula. We start by expanding all if-then-else expression
and once the expansion threshold is reached, VCNFFOOL names the remaining if-then-else
expressions.

Similarly to the naming threshold inherited from VCNF, the expansion threshold provides a
trade-off between the increase of the number of sequents and the number of introduced symbols.
For a large number of if-then-else expressions it avoids the exponential increase in the number
of sequents. For a small number of if-then-else expressions inside an atomic formula it avoids
growing the signature.

To compare to FOOL2FOL, we recall that FOOL2FOL replaces each non-boolean if-
then-else expression with an application of a fresh function symbol and adds the definition
of the symbol to the set of assumptions. The definition is expressed as an equality. Un-
like FOOL2FOL, our new VCNFFOOL algorithm avoids introducing new equalities and uses
predicate guards for naming, thus avoiding possible self-paramodulation triggered by equality
literals.

if-then-else Expressions as Formulas
Suppose that ψ is of the form if χ then γ1 else γ2. Then, VCNFFOOL adds two sequents to
C obtained from D by replacing the occurrence of ψ? with χf, γ1

? and χt, γ2
?, respectively.

If done unconditionally, the translation of nested if-then-else expressions could lead to
an exponential increase in the number of sequents, as the condition formula χ is being copied.

10

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

However, VCNFFOOL inherits from VCNF the mechanism for naming subformulas with many
occurrences (as explained in the previous section) which prevents such blowup.

Example. Consider the following property of the max function

(∀x : Z)(∀y : Z)(if max(x, y) .= x then x ≥ y else y ≥ x). (2)

To process (2), VCNFFOOL first applies twice the rule for existential quantifier inher-
ited from VCNF, obtaining the sequent {(if max(x, y) .= x then x ≥ y else y ≥ x)t}ε. Then,
VCNFFOOL applies the rule for the if-then-else expression:

{(max(x, y) .= x)f
, (x ≥ y)t}ε, {(max(x, y) .= x)t

, (x ≥ y)f}ε.

Finally, VCNFFOOL converts signed formulas to literals and obtains the resulting set of clauses

{max(x, y) 6 .= x, x ≥ y}, {max(x, y) .= x, y 6≥ y}.

In contrast, FOOL2FOL introduces a name for the if-then-else expression and translates
(2) to (∀x : Z)(∀y : Z)P (x, y), where P is a fresh predicate symbol of the sort Z× Z with the
following definitions:

1. (∀x : Z)(∀y : Z)(max(x, y) .= x⇒ P (x, y)↔ x ≥ y);
2. (∀x : Z)(∀y : Z)(max(x, y) 6 .= x⇒ P (x, y)↔ y ≥ x).

These three formulas ultimately yield the following set of clauses:

{P (x, y)}, {max(x, y) 6 .= x,¬P (x, y), x ≥ y}, {max(x, y) 6 .= x, P (x, y), x 6≥ y},
{max(x, y) .= y,¬P (x, y), y ≥ x}, {max(x, y) .= y, P (x, y), y 6≥ x}.

o

let-in Expressions
Suppose that ψ is let f(x1 : τ1, . . . , xn : τn) = t in γ. The VCNFFOOL algorithms translates
ψ either by inlining or by naming, as discussed below. The choice of inlining or naming of
let-in expressions in the problem is determined by a pre-specified boolean parameter of the
algorithm.

Inlining. VCNFFOOL adds a sequent to C that is obtained from D by replacing the occur-
rence of ψ? with γ′?. γ′ is obtained from γ by replacing each application f(s1, . . . , sn) of an
occurrence of f in γ with t′ and renaming of binding variables. t′ is obtained from t by replacing
each free occurrence of x1, . . . , xn in t with s1, . . . , sn, respectively. We point out that inlining
predicate symbols of zero arity does not hinder identification of tautologies thanks to tautology
removal inside sequents.

Naming. VCNFFOOL adds a sequent to C that is obtained from D by replacing the oc-
currence of ψ? with γ?. Further, VCNFFOOL also adds the sequent {f(x1, . . . , xn) .= t}ε to
C .

Naming introduces a fresh function or predicate symbol and does not multiply the number
of resulting clauses. Inlining, on the other hand, does not introduce any symbols, but can
drastically increase the number of clauses. Either of the translations might make a theorem

11

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

prover inefficient. We point out that the number of clauses and the size of the resulting signature
are not the only factors in that. For example, consider inlining of a let-in expression that
defines a non-boolean term. It does not introduce a fresh function symbol and does not increase
the number of clauses. However, the inlined definition might increase the size of the term with
respect to the simplification ordering. This affects the order in which literals will be selected
during superposition, and ultimately the performance of the prover.

let-in Expressions with Tuple Definitions
Suppose that ψ is let (c1, . . ., cn) = s in γ where n > 1. Let τ1, . . . , τn be the sorts of
c1, . . . , cn, respectively. Then, the VCNFFOOL algorithm

1. introduces a fresh sort τ , a fresh function symbol t of the sort τ , a fresh function symbol
g of the sort τ1 × . . .× τn → τ , and n fresh function symbols π1, . . . , πn (called projection
functions), where for each 1 ≤ i ≤ n, πi is of the sort τ → τi;

2. adds a sequent to C that is obtained from D by replacing every occurrence of ψ? with
(let t = s′ in γ′)?. γ′ is obtained from γ by replacing each free occurrence of ci with πi(t)
for each 1 ≤ i ≤ n. s′ is obtained from s by replacing every tuple expression (s1, . . ., sn)
with g(s1, . . . , sn);

3. adds sequents to C that axiomatise functions g, π1, . . . , πn. In particular, these state that
πi(g(s1, . . . , sn)) .= si for every i = 1, . . . , n and that t1

.= t2 ↔
∧n
i=1 πi(t1) .= πi(t2).

Example. Consider a formula that uses a tuple let-in expression to swap two constants x
and y of the sort Z before applying a predicate P of the sort Z×Z to them:

let (x, y) = (y, x) in P (x, y).

To clausify this formula, VCNFFOOL firstly converts it to the formula

let t = g(y, x) in P (π1(t), π2(t)),

where t is a fresh term of the fresh sort τ , and g is a fresh function symbol of the sort Z×Z→ τ ,
and π1 and π2 are projection functions with appropriate axiomatisation. Then, depending on
whether inlining or naming is enabled, VCNFFOOL result with clauses

{P (π1(g(y, x)), π2(g(y, x)))} or {P (π1(t′), π2(t′))}, {t′ .= g(y, x)}

respectively, where t′ is a fresh constant symbol of the sort τ . o

FOOL2FOL, as described in [9], cannot handle let-in expression with tuple definitions.

4 Experimental Results
We extended Vampire’s VCNF clausification algorithm for standard FOL with our VCNFFOOL
clausification algorithm for FOOL formulas. The implementation of VCNFFOOL comprised
about 500 lines of C++ code. Our implementation, benchmarks and results are available at
www.cse.chalmers.se/˜evgenyk/fool-cnf-experiments/.

In what follows, we report on our experimental results obtained by running Vampire on
FOOL problems. Whenever we refer to Vampire, we mean the Vampire version extended
with our new VCNFFOOL clausification algorithm for FOOL. We will write Vampire ? for the

12

www.cse.chalmers.se/~evgenyk/fool-cnf-experiments/

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

Table 1: Runtimes in seconds of provers on the set of 57 unsatisfiable algebraic datatypes
problems.

Prover Solved Total time on solved problems
Vampire 56 23.470
Vampire ? 56 31.121
Z3 53 3.615
CVC4 53 25.480

previous version of Vampire with the FOOL2FOL algorithm of [8]; Vampire ? translates FOOL
formulas to FOL (after which they are clausified in a standard way) and uses a special inference
rule to avoid FOOL self-paramodulation.

For our experiments, we used three sets of benchmarks: (i) problems taken from [14] on
reasoning about (co)algebraic datatypes (see Sect. 4.1), (ii) examples with both quantifiers and
uninterpreted functions taken from the SMT-LIB library [4] (see Sect. 4.2), and (iii) benchmarks
on proving the partial correctness of loop-free programs (see Sect. 4.3). The last benchmark
suite is constructed by us to illustrate the use of FOOL in program analysis and verification. As
Vampire is the only automated first-order theorem prover supporting FOOL, and in particular
if-then-else and let-in expressions, we could not compare Vampire with any other first-order
prover. Further, Vampire ? did not yet support tuple expressions in FOOL. Tuple expressions
are also not supported by state-of-the-art SMT solvers. For these reasons, we compared Vampire
against Vampire ? and the SMT solvers CVC4 [2] and Z3 [6] only on the experiments from
Sect. 4.1–4.2.

4.1 Experiments with Algebraic Datatypes Problems

We used 152 problems about (co)algebraic datatypes taken from [14]. These examples were
generated by Isabelle and translated by us to the TPTP syntax [18]. These examples are
expressed in FOOL, as they use boolean variables occurring as formulas, formulas occurring as
arguments to function and predicate symbols, and if-then-else expressions. None of the 152
problems use let-in expressions.

We evaluated the performance of Vampire, Vampire ?, CVC4 and Z3 on the unsatisfiable
problems in this set. In order to filter out satisfiable problems, we run all the provers on all the
problems and only recorded the runs where at least one of the provers reported unsatisfiability.
That gave us 57 problems.

We ran both Vampire and Vampire ? with the option --mode casc. For the runs of Vampire,
the naming threshold was set to 8. We run CVC4 and Z3 with their default options.

Table 1 summarises our results. They were obtained on a MacBook Pro with a 2,9 GHz
Intel Core i5 and 8 Gb RAM, with a 60 seconds time limit for each benchmark. Vampire
and Vampire ? solved the largest number of problems, both provers solved the same problems.
51 problems were solved by all provers. Both Vampire and Vampire ? solved 3 problems, not
solved by either CVC4 or Z3. CVC4 and Z3 solved one problem, not solved by either Vampire
or Vampire ?. Compared to Vampire ?, Vampire showed significantly smaller runtime. We
therefore conclude that our clausification algorithm for FOOL improved the performance of
Vampire on this set of problems.

13

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

Table 2: Runtimes in seconds of provers on the set of 2191 unsatisfiable SMT-LIB problems.

Prover Solved Uniquely solved Total time on solved problems
CVC4 2084 55 26,309.47
Vampire 2076 12 22,920.50
Vampire ? 1984 9 19,911.69
Z3 1729 4 18,102.96

4.2 Experiments with SMT-LIB Problems
As explained in more detail later on (see Section 5), FOOL can be regarded as a superset
of the SMT-LIB core logic. A theorem prover that supports FOOL can be straightforwardly
extended to read problems written in the SMT-LIB syntax. For our experiments using SMT-
LIB problems, we used problems in quantified predicate logic with uninterpreted functions
stored in the UF subspace of SMT-LIB. These problems use if-then-else expressions, let-in
expressions that define constants, and formulas occurring as arguments to equality. None of the
problems use quantifiers over the boolean sort. The problems taken from SMT-LIB are written
in the SMT-LIB 2 syntax. In order to read these problems, we implemented a parser for a
sufficient subset of the SMT-LIB 2 language in Vampire. The implementation of the parser
comprised about 2,500 lines of C++ code.

We evaluated the performance of Vampire, Vampire ?, and CVC4 on unsatisfiable problems
of the UF subspace. Each problem in the SMT-LIB library is marked with one of the statuses
sat, unsat and unknown. A problem is marked as sat or unsat when at least two SMT solvers
proved it to be satisfiable or unsatisfiable, respectively. Otherwise, a problem is marked as
unknown. In order to filter out satisfiable problems, we ran Vampire, Vampire ?, and CVC4
on the problems marked as unsat and unknown and then recorded the results on the problems
that were proven unsatisfiable by at least one prover. That gave us 2191 problems.

We ran Vampire twice on each problem: once with naming of let-in expressions and once
with inlining (see Sect. 3.3). For each run the naming threshold was set to 8. In both runs we
also used the option --mode casc. For each problem, we recorded the fastest successful run of
Vampire. We ran Vampire ? once on each problem with the option --mode casc.

Table 2 summarises the results of our experiments on the SMT-LIB problems. These results
were obtained on the StarExec compute cluster [17] using the time limit of 5 minutes per
problem. CVC4 solved the largest number of problems, Vampire solved significantly more than
Vampire ?, and Z3 solved the least number of problems. None of the provers solved a superset
of problems solved by another prover. The “Uniquely solved” column of Table 2 shows the
number of problems that were solved by each of the provers, but not any of the other ones.
1675 problems were solved by all of the provers, and 2190 problems were solved by at least one
of the provers. Vampire solved 111 problems not solved by Vampire ?, and Vampire ? solved 19
problems not solved by Vampire.

We also recorded how different translations of let-in affected the performance of Vampire.
Vampire with inlining of let-in expressions solved 61 problems not solved by Vampire with-
out inlining of let-in expressions. Vampire without inlining of let-in expressions solved 45
problems not solved by Vampire without inlining of let-in expressions.

Based on the results of this experiment we make the following observations. Vampire solved
new problems by inlining let-in expressions and expanding if-then-else expressions. Vampire
could not solve some of the problems that were solved by Vampire ?, we explain it by the fact

14

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

int a[];
int x = 0, y = 0;
for (int i = 0; i < n; i++) {

if (a[i] > 0) x++; else y++;
}
assert(x + y == n);

Figure 1: The count two program.

int a[];
int x = 0, y = 0;
if (a[0] > 0) x++; else y++;
if (a[1] > 0) x++; else y++;
if (a[2] > 0) x++; else y++;
assert(x + y == 3);

Figure 2: The benchmark obtained by
unrolling Figure 1 three times.

that Vampire ? always names if-then-else expressions, which turns out to be important for
solving some problems. Both inlining and naming of let-in expressions can make a prover
inefficient.

4.3 Experiments with FOOL Reasoning about Programs
In this experiment we evaluated Vampire on FOOL problems that express partial correctness
property of imperative programs. We obtained these problems manually from a collection
of loop-free programs that we in turn generated from a small set of programs with loops by
unrolling their loops. Both the benchmarks and the results are available at www.cse.chalmers.
se/˜evgenyk/fool-tuple-experiments/.

We used five small programs with loops annotated with a safety property using the assert
command. They are listed in Appendix A. Each program contains one loop with one or more if-
then-else expressions, assignments and tests over integers, integer arrays and booleans. Table 3
summarises the programs used in our experiments: the programs count_two, count_two_flag
and count_three implement versions of counting elements in an input array using different
criteria and ensure that the sum of counted elements equal to the array length; two_arrays
and three_arrays sort and compare two, and respectively three arrays element-wise. We
unrolled these program loops 2, 3, 4 and 5 times, resulting in a set of 20 annotated loop-free
programs. Figure 2 shows the program obtained by unrolling three times the loop of count_two.

For each one of the 20 loop-free benchmarks, we expressed its partial correctness as a TPTP
problem using FOOL in the combination of the theory of linear integer arithmetic and the
polymorphic theory of arrays [8]. To this end, (i) we formulated the safety assertion as a TPTP
conjecture and (ii) expressed the transition relation of the program as a FOOL formula with
tuple expressions and let-in expressions with tuple definitions. We refer to [8] for the details
of the translation of a program’s transition relation to FOOL. In particular, the correctness
of this translation is stated in Theorem 1 of that work. Each FOOL formula produces by the
translation is linear in the size of the program. Figure 3 shows the TPTP translation of the
safety property of the cout_two_tptp program. It uses the thf subset of the TPTP language,
which is the standard subset that contains features of FOOL.

The results of the experiments are summarised in Table 3. These results were obtained on
a MacBook Pro with a 2,9 GHz Intel Core i5 and 8 Gb RAM, and using the time limit of 60
seconds per problem. The first column of the table lists the names of the programs with loops,
and columns 2–5 indicate how many time the program loop was unrolled and gives the time
needed by Vampire to prove the correctness of the corresponding loop-free program.

Based on the results of this experiment we conclude that Vampire can be used for verification
of bounded safety properties of imperative programs.

15

www.cse.chalmers.se/~evgenyk/fool-tuple-experiments/
www.cse.chalmers.se/~evgenyk/fool-tuple-experiments/

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

thf(a, type, a: $array($int, $int)).
thf(x, type, x: $int).
thf(y, type, y: $int).

thf(count_two, conjecture,
$let(x := 0,
$let(y := 0,
$let([x, y] := $ite($greater($select(a, 0), 0),

$let(x := $sum(x, 1), [x, y]),
$let(y := $sum(y, 1), [x, y])),

$let([x, y] := $ite($greater($select(a, 1), 0),
$let(x := $sum(x, 1), [x, y]),
$let(y := $sum(y, 1), [x, y])),

$let([x, y] := $ite($greater($select(a, 2), 0),
$let(x := $sum(x, 1), [x, y]),
$let(y := $sum(y, 1), [x, y])),

$sum(x, y) = 3)))))).

Figure 3: A FOOL translation of Fig. 2 written in the TPTP language.

Table 3: Runtimes in seconds of Vampire on 20 problems encoding partial program correctness.

Problem 2 3 4 5
count_two 0.011 0.016 0.030 0.053
count_two_flag 0.011 0.017 0.028 0.041
count_three 0.023 0.042 0.128 0.522
two_arrays 0.026 0.091 0.237 0.263
three_arrays 0.446 5.368 8.719 14.886

5 Related Work
FOOL is a relatively new extension of FOL. We are not aware of any work that explicitly deals
with clausifying formulas in this logic. However, connections can be found in work focusing on
related fragments and extensions.

Most notably, Wisniewski et al. propose in [20] methods for normalising formulas in higher-
order logic (HOL). Similarly to FOOL, HOL natively contains the boolean sort. Wisniewski et
al. deal with formulas occurring at argument positions by a technique called argument extraction
which, similarly to our naming schemes, extends the signature and defines a new symbol outside
the original formula. Moreover, also Wisniewski et al. introduce skolem predicates instead of
skolem functions when dealing with existential boolean quantifiers. This happens implicitly for
them, since in HOL there is no fundamental distinction between formulas and terms.

FOOL can be regarded as a superset of SMT-LIB [3] core logic and formulas of SMT-LIB
core logic can be directly expressed in FOOL. The language of FOOL extends the SMT-LIB
core language with local function definitions, using let-in expressions defining functions of
arbitrary, and not just zero, arity.

Despite the similarity of the languages, the technology used by modern SMT solvers [11]

16

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

differs greatly from that of first-order theorem provers and so do the approaches to normalising
the input formula. In particular, as SMT solvers pass the propositional abstraction of the
input formula to an efficient SAT solver there is no great need to optimise extensions of the
signature and clausification usually follows the simple Tseitin encoding [19] of the formula tree.
Moreover, modern SMT solvers employ an alternative approach to dealing with quantifiers over
interpreted sorts such as the booleans, which is complementary to skolemisation and relies on
a guidance by counter-examples [15] or on model-based projections [5].

Finally, it is interesting to note that our VCNFFOOL algorithm naturally translates a quan-
tified boolean formula (QBF), as realised in the FOOL language, into a CNF in effectively
propositional logic (EPR). Specifically, every literal in this translation is a skolem predicate
applied to boolean variables and constants true and false. This result is very close to the one
proposed in [16], where the authors explicitly focus on QBF as the source and EPR as the tar-
get language, respectively. Obtaining a formula in EPR is a desirable property since there are
first-order proving methods known to be efficient for dealing with the fragment (see e.g. [7]).

6 Conclusion and Future Work

Applications of program analysis and verification rely on SAT/SMT solvers and/or theorem
provers to reason about program properties formulated in various logics. The efficiency of
SAT/SMT solvers and theorem provers critically depends on the used clausification algorithm.
In this paper we presented a new clausification algorithm, called VCNFFOOL, for formulas
expressed in FOOL. Our algorithm is a non-trivial extension of the recent VCNF clausification
algorithm for standard first-order logic. VCNFFOOL for FOOL introduces skolem predicates
over boolean variables, avoids equalities over boolean variables, and uses formula naming and
tautology elimination on complex formulas. It also avoids excessively duplicating clauses and
introducing too many new symbols. Thanks to the our new VCNFFOOL algorithm, proving
FOOL formulas requires neither an axiomatisation of the boolean sort nor modifications in
superposition calculus. We implemented our work in Vampire and experimentally showed its
benefits on a large number of examples. For future work we are interested in developing further
criteria for controlling naming and inlining expressions during clausification. Using FOOL for
more complex applications of program analysis is another interesting venue to exploit.

Acknowledgments

We thank Andrew Reynolds for an explanation on how state-of-the-art SMT solvers deal with
clausification and quantifiers.

References
[1] Noran Azmy and Christoph Weidenbach. Computing tiny clause normal forms. In Automated

Deduction – CADE-24, pages 109–125. Springer, 2013.
[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim

King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings of CAV, pages 171–177, 2011.
[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org, 2016.

17

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. Tech-
nical report, Department of Computer Science, The University of Iowa, 2010. Available at
www.SMT-LIB.org.

[5] Nikolaj Bjorner and Mikolas Janota. Playing with quantified satisfaction. In Ansgar Fehnker,
Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov, editors, LPAR-20. 20th International
Conferences on Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations,
volume 35 of EPiC Series in Computing, pages 15–27. EasyChair, 2015.

[6] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Proceedings
of TACAS, volume 4963 of LNCS, pages 337–340, 2008.

[7] Konstantin Korovin. Inst-gen - A modular approach to instantiation-based automated reasoning.
In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics - Essays in Memory
of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science, pages 239–270. Springer,
2013.

[8] Evgenii Kotelnikov, Laura Kovács, Giles Reger, and Andrei Voronkov. The Vampire and the
FOOL. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs, 2016, pages
37–48, 2016.

[9] Evgenii Kotelnikov, Laura Kovács, and Andrei Voronkov. A First Class Boolean Sort in First-
order Theorem Proving and TPTP. In Intelligent Computer Mathematics, pages 71–86. Springer,
2015.

[10] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Proceedings
of CAV, volume 8044 of LNCS, pages 1–35, 2013.

[11] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo The-
ories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM,
53(6):937–977, 2006.

[12] Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. Handbook
of Automated Reasoning, 1:335–367, 2001.

[13] Giles Reger, Martin Suda, and Andrei Voronkov. New techniques in clausal form generation. In
Christoph Benzmüller, Raul Rojas, and Geoff Sutcliffe, editors, GCAI 2016. Global Conference on
Artificial Intelligence, EasyChair Proceedings in Computing. EasyChair, 2016.

[14] Andrew Reynolds and Jasmin C. Blanchette. A Decision Procedure for (Co)datatypes in SMT
Solvers. In Proceedings of CADE, volume 9195 of LNCS, pages 197–213, 2015.

[15] Andrew Reynolds, Tim King, and Viktor Kuncak. An instantiation-based approach for solving
quantified linear arithmetic. CoRR, abs/1510.02642, 2015.

[16] Martina Seidl, Florian Lonsing, and Armin Biere. qbf2epr: A tool for generating EPR formulas
from QBF. In Pascal Fontaine, Renate A. Schmidt, and Stephan Schulz, editors, Third Workshop
on Practical Aspects of Automated Reasoning, PAAR-2012, Manchester, UK, June 30 - July 1,
2012, volume 21 of EPiC Series in Computing, pages 139–148. EasyChair, 2012.

[17] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-community infrastructure for
logic solving. In Automated Reasoning – 7th International Joint Conference, IJCAR 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings,
pages 367–373, 2014.

[18] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure. Journal of Automated
Reasoning, 43(4):337–362, 2009.

[19] G.S. Tseitin. On the complexity of derivation in propositional calculus. In Jörg H. Siekmann and
Graham Wrightson, editors, Automation of Reasoning, Symbolic Computation, pages 466–483.
Springer Berlin Heidelberg, 1983.

[20] Max Wisniewski, Alexander Steen, Kim Kern, and Christoph Benzmüller. Effective normaliza-
tion techniques for HOL. In Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning
- 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016,
Proceedings, volume 9706 of Lecture Notes in Computer Science, pages 362–370. Springer, 2016.

18

A Clausal Normal Form Translation for FOOL Kotelnikov, Kovács, Suda, Voronkov

A Imperative Programs with Loops and if-then-else

int a[];
int x = 0, y = 0;
for (int i = 0; i < n; i++) {

if (a[i] > 0) {
x++;

} else {
y++;

}
}
assert(x + y == n);

count two

int a[];
bool b;
int x = 0, y = 0;
for (int i = 0; i < n; i++) {

b = a[i] > 0;
if (b) {

x++;
} else {

y++;
}

}
assert(x + y == n);

count two flag

int a[];
int x = 0, y = 0, z = 0;
for (int i = 0; i < n; i++) {

if (a[i] < 0) {
x++;

} else {
if (a[i] > 5) {

y++;
} else {

z++;
}

}
}
assert(x + y + z == n);

count three

int a[], b[];
for (int i = 0; i < n; i++) {

if (a[i] > b[i]) {
int t = a[i];
a[i] = b[i];
b[i] = t;

}
}
for (int i = 0; i < n; i++) {

assert(a[i] <= b[i]);
}

two arrays

int a[], b[], c[];
for (int i = 0; i < n; i++) {

if (a[i] > b[i]) {
int t = a[i];
a[i] = b[i];
b[i] = t;

}
if (b[i] > c[i]) {

int t = b[i];
b[i] = c[i];
c[i] = t;

if (a[i] > b[i]) {
t = a[i];
a[i] = b[i];
b[i] = t;

}
}

}
for (int i = 0; i < n; i++) {

assert(a[i] <= b[i]);
assert(b[i] <= c[i]);

}

three arrays

19

	Introduction
	Clausal Normal Form for First-Order Logic
	Preliminaries
	VCNF

	Clausal Normal Form for FOOL
	FOOL
	Introducing VCNFFOOL
	VCNFFOOL Rules

	Experimental Results
	Experiments with Algebraic Datatypes Problems
	Experiments with SMT-LIB Problems
	Experiments with FOOL Reasoning about Programs

	Related Work
	Conclusion and Future Work
	Imperative Programs with Loops and if-then-else

