
Software Defect Density Analysis

Cuauhtémoc López-Martín
Universidad de Guadalajara, Jalisco México

cuauhtemoc@cucea.udg.mx

Abstract

Defect density (DD) is a measure to determine the effectiveness of software

processes. DD is defined as the total number of defects divided by the size of the software.

Software prediction is an activity of software planning. This study is related to the

analysis of attributes of data sets commonly used for building DD prediction models.

The data sets of software projects were selected from the International Software

Benchmarking Standards Group (ISBSG) Release 2018. The selection criteria were

based on attributes such as type of development, development platform, and

programming language generation as suggested by the ISBSG. Since a lower size of

data set is generated as mentioned criteria are observed, it avoids a good generalization

for models. Therefore, in this study, a statistical analysis of data sets was performed

with the objective of knowing if they could be pooled instead of using them as

separated data sets. Results showed that there was no difference among the DD of new

projects nor among the DD of enhancement projects, but there was a difference between

the DD of new and enhancement projects. Results suggest that prediction models can

separately be constructed for new projects and enhancement projects, but not by

pooling new and enhancement ones.

1 Introduction

Software Engineering (SE) consists of several knowledge areas such as Software Quality (SQ),

Software Engineering Process (SEP), and Software Engineering Management (SEM). SQ refers to

“desirable characteristics of software products, to the extent to which a particular software product

possesses those characteristics, and to processes, tools, and techniques used to achieve those

characteristics”. A defect is associated to SQ [1].

In the context of SEP, measures related to the software product are important to determine the

effectiveness of software processes. Among these measures are product complexity, total defects,

defect density, and the quality of requirements [1].

The term defect is used to refer to different types of anomalies; however, this term is not the only

one used to refer to an anomaly. Engineering cultures and standards have used several terms with

different meanings such as computational error, error, defect, fault (or bug), and failure. A person

EPiC Series in Computing

Volume 64, 2019, Pages 139–147

Proceedings of 28th International Conference
on Software Engineering and Data Engineering

F. Harris, S. Dascalu, S. Sharma and R. Wu (eds.), SEDE 2019 (EPiC Series in Computing, vol. 64),
pp. 139–147

committing an error causes a defect. A defect has been defined as an “imperfection or deficiency in a

work product where that work product does not meet its requirements or specifications and needs to

be either repaired or replaced.” [1].

The following three SQ measurements are commonly used [1]:

1. Defect density (DD): number of defects by unit size of software.

2. Fault density: number of faults by a thousand of lines of code.

3. Failure intensity: failures by use-hour or by test-hour

As for SEM, it corresponds to the application of management activities such as software project

planning (SPP), which “addresses the activities undertaken to prepare for a successful software

engineering project from the management perspective” [1]. Software prediction (SP, also termed

software estimation) is an SPP activity. Size, effort, duration and defects have been some variables

commonly predicted [2]. These variables can be predicted from projects whose type of development

has been classified by the ISBSG in new, maintained, re-development, and migration [3]. In observing

the ISBSG Guidelines, in addition to type of development, each software project should be classified

in accordance with its development platform, and programming language generation [3].

The ISBSG defines DD as the number of defects by 1000 functional size units of delivered software

in the first month of use of the software. DD is expressed as defects by 1000 function points (FP). FP

are calculated from the internal logical files, and external interface files, as well as external inputs,

external outputs, and external inquiries of the software project [3].

The software defect prediction has been addressed to predict (1) defect-prone [4] (2) number of

defects [5], and (3) DD [6]; however, I did not find any DD study whose experimental design

including DD data preprocessing from projects classified as suggested in the ISBSG Guidelines, is

statistically compared.

It has been suggested not to mix data sets of software projects with different characteristics because

they could be hard to compare each other as well as difficult to generalize [7]; however, the

assumption of the present study is that they could be mixed to obtain a better generalization if after a

statistical analysis, they do not present a statistical difference. Thus, this study tries to answer the

following question when DD is predicted:

Could DD prediction models be trained and tested using separated project data sets from their type

of development, development platform, and programming language generation or the models should

use pooled data sets?

The answer to this question is useful to obtain a better generalization of the conclusions of studies

by involving larger data sets of projects.

The rest of this study is the following: Section 2 describes the analysis of data sets used in studies

related to DD prediction. Section 3 presents the ISBSG Guidelines suggested to select data sets.

Section 4 describes the statistical analysis of data sets by performing three experiments. The

conclusions, limitations and future work of this study are included in Section 5.

2 Related work

Each identified study related to DD prediction is briefly described based on their data set and

variables used:

Knab et al. [8]. Seven releases of the content and layout modules of an open source web browser

project. The variables used are lines of code, number of defined global and local variables, number of

functions/methods, incoming and outgoing function calls, and incoming and outgoing variable

accesses.

Kumar [9]. Two projects from different software industry domains.

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

140

Kutlubay et al. [10]. Module metric data obtained from nine data sets, whose sizes are not reported

(the authors report data sets covering a “wide spectrum of project sizes”).

López Martín et al. [6]. Three datasets having 24, 31 and 26 projects. These data sets are separately

used and classified according to their type of development, development platform, and programming

language generation.

Mandhan et al. [11]. Seven different software static metrics (i.e., coupling, depth, cohesion,

response, weighted methods, comments, and lines of code). The number of projects used is not

reported.

Nagappan and Ball [12]. Data from a commercial software operating system. They analyze lines

of code of 2465 binaries compiled from 96,189 files (some files contribute to more than one binary).

Defects are reported at the binary level.

Rahmani and Khazanchi [13]. Forty-four randomly selected open source projects. The selection

criterion consists in that they have an activity percentile of 95% or more in the platform

SourceForge.net. This percentage means that the project is more active than 95% percent of all other

projects on the mentioned platform during a determined period.

Sherriff et al. [14]. Data obtained from a compiler project coded in Haskell programming

language. They use the following five metrics: test lines of code / source lines of code, number of type

signatures / number of methods in the system, number of test cases / number of requirements, pattern

warnings / KLOC, and monadic instances of code / KLOC.

Verma and Kumar [15]. Sixty-two open source software projects randomly obtained from

SourceForge.net platform. The criteria to be selected are the following: projects having the 80% and

above (users) recommendation, JAVA coded, size calculated for Windows environment, and bugs

data are clearly available.

Yadav and Yadav [16]. Twenty projects selected from a previous study [17]. These projects

developed software embedded in consumer electronics products. They were coded in C programming

language. The variables by project are software size reported in lines of code, effort in person-hours,

and functional defects found during all the independent testing phases.

In the studies described in this section, I did not identify any study in which the projects have been

statistically analyzed in accordance with their type of development, development platform, and

programming language generation, when projects have previously been used in DD prediction

models.

3 Description of data sets

The ISBSG is an international public repository of software projects. Its 2018 release contains

8,261 projects [3]. Table 1 describes the number of projects by applying each ISBSG criterion (i.e.,

attribute and its selected value).

The ISBSG classifies the projects by its data quality. Regarding unadjusted function point (UFP)

rating, “A” means “The unadjusted function point count was assessed as being sound with nothing

being identified that might affect its integrity”, and that of “B” is “The UFP count appears sound, but

integrity cannot be assured as a single figure was provided”; whereas for data quality rating, “A”

means “The data submitted was assessed as being sound with nothing being identified that might

affect its integrity”, whereas the meaning of “B” is “The submission appears fundamentally sound but

there are some factors which could affect the integrity of the submitted data”. The ISBSG suggest the

“A” and “B” classifications for statistical analysis [3].

Since IFPUG V4 projects with V4 and post V4 should not be mixed, and NESMA can be mixed

with IFPUG 4+ [3], only those projects following this observation were selected.

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

141

Attribute Selected value(s) Number of projects

Total delivery defects not null --- 1,035

Adjusted Function Point not null --- 900

Data quality rating A, B 836

Unadjusted Function Point Rating A, B 728

Functional sizing methods IFPUG 4+, NESMA 666

Development platform not null --- 515

Language type not null --- 510

Table 1: Criteria for selecting the data sets from the ISBSG

Among those 510 remaining projects of Table 1, 148, 344, and 18 corresponded to new,

enhancement, and re-development projects, respectively. In Table 2, these 510 projects are classified

in accordance with their development platform: mainframes (MF), Mid Range (MR), Multi platform

(Multi), and personal computer (PC), as well as from their programming language generation: second

(2GL), third (3GL), fourth (4GL), and Application Generator (ApG).

TD DP PLG Projects TD DP PLG Projects TD DP PLG Projects

New MF 3GL 28 E MF 3GL 78 Re-Dev MF 3GL 3

 MF 4GL 8 MF 4GL 12 MF 4GL 2

 MF ApG 4 MF ApG 37 Multi 4GL 9

 MR 3GL 14 MR 3GL 45 PC 3GL 2

 MR 4GL 10 MR 4GL 11 PC 4GL 2

 Multi 3GL 31 Multi 3GL 78

 Multi 4GL 13 Multi 4GL 33

 PC 3GL 12 PC 3GL 32

 PC 4GL 28 PC 4GL 15

 PC ApG 3

Table 2: Projects classified by type of development (TD), development platform (DP), and programming

language generation (PLG). TD: Enhancement (E), New development (New), and Re-development (Re-Dev).

4 Statistical Analysis

In the present study, the following three experiments on projects are performed:

1) Statistical comparison by type of development.

2) Statistical comparison between types of development.

3) Statistical comparison between types of development taking into account development

platform, and programming language generation.

Those data sets of Table 2 containing ten or more projects were selected for these experiments.

First experiment:

a) New projects

Seven of the nine data sets of projects of Table 2 were selected to perform the analysis (two of

them were excluded since they had four and eight projects). All projects are independent, thus, the

136 projects of the seven data sets are pooled to apply the normal statistical tests.

b) Enhancement projects

Nine of the ten data sets of projects of Table 2 were selected to perform the analysis (one of them

had three projects, thus, it was excluded). All projects are independent, thus, the 341 projects of the

nine data sets are pooled to apply the normal statistical tests.

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

142

The number of data sets to be compared, data dependence, and data distribution are criteria to

select a suitable statistical test. Chi-squared (χ
2
), Shapiro-Wilk, skewness, and kurtosis statistical tests

are performed for data distribution. Table 3 shows the results of these four tests by type of

development. Since the smallest p-value amongst the four tests by data set is less than 0.01, the notion

that the data comes from a normal distribution can be rejected with 99% confidence for the two types

of development.

TD χ
2
 S-W Skewness Kurtosis

New 0.0000 0.0000 0.0000 0.0000

Enhancement 0.0000 0.0000 0.0000 0.0000

Table 3: P-values for normality tests

Since more than two data sets are compared by type of development (Table 2), they are

independent, and data are not normality distributed (Table 3), the suitable statistical test to compare

the data sets is Kruskal-Wallis [2], which tests the null hypothesis that the medians within each of the

data sets is the same. Since the p-value of Table 4 is greater than 0.01, there is not a statistically

significant difference amongst the medians of the data sets at the 99.0% confidence level for the two

types of development.

TD p-value

New 0.6748

Enhancement 0.3120

Table 4: Kruskal-Wallis test

As for re-development type, Table 2 includes five data sets of this type; however, all of them have

between two and nine projects, therefore, it could not possible to compare any data set for this type.

Second experiment:

Since two data sets are compared (i.e., new and enhancement ones), they are independent, and the

data are not normality distributed (Table 3), the suitable statistical test to compare the data sets is

Mann-Whitney W [2], which tests the null hypothesis that the medians within each of the two data

sets is the same. The DD median values were 12.5 and 22 for new and enhancement projects,

respectively. The p-value for this test was equal to 0.0000, thus, there is a statistically significant

difference amongst the medians of the two data sets at the 99.0% confidence level.

Third experiment:

Table 5 contains those data sets of Table 2 to be compared having at least ten or more projects by

type of development. Normal statistical tests are performed by data set (some tests were not applied

because of insufficient data). Thirteen of the fourteen data sets of Table 5 show data non-normally

distributed, thus, a Mann-Whitney W test is performed to know if there is statistical difference

between the two data sets in accordance with their medians.

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

143

DP PLG New Normality

test

p-value Enhancement Normality

test

p-value

MF 3GL 28 χ
2
 ID 78 χ

2
 0.0000

 S-W 0.0000 S-W 0.0000

 Skewness 0.0000 Skewness 0.0004

 Kurtosis 0.0000 Kurtosis 0.0019

MR 3GL 14 χ
2
 ID 45 χ

2
 0.0000

 S-W 0.0000 S-W 0.0000

 Skewness 0.0010 Skewness 0.0000

 Kurtosis ID Kurtosis 0.0000

MR 4GL 10 χ
2
 ID 11 χ

2
 0.0000

 S-W 0.0019 S-W 0.0230

 Skewness 0.1466 Skewness 0.2889

 Kurtosis ID Kurtosis 0.0000

Multi 3GL 31 χ
2
 0.0000 78 χ

2
 0.0000

 S-W 0.0000 S-W 0.0000

 Skewness 0.0000 Skewness 0.0000

 Kurtosis 0.0000 Kurtosis 0.0000

Multi 4GL 13 χ
2
 ID 33 χ

2
 0.0337

 S-W 0.0565 S-W 0.0034

 Skewness 0.6254 Skewness 0.1724

 Kurtosis ID Kurtosis 0.6390

PC 3GL 12 χ
2
 ID 32 χ

2
 0.0005

 S-W 0.0000 S-W 0.0000

 Skewness 0.0000 Skewness 0.0014

 Kurtosis ID Kurtosis 0.0002

PC 4GL 28 χ
2
 ID 15 χ

2
 ID

 S-W 0.0000 S-W 0.0000

 Skewness 0.0000 Skewness 0.0000

 Kurtosis 0.0000 Kurtosis ID

Table 5: Normality statistical tests obtained from data sets of TD by DP and PLG (ID: Insufficient data, S-

W: Shapiro-Wilk)

In accordance with Table 6, all medians for new projects are lower than those ones for

enhancement projects. Moreover, three of the seven comparisons of Table 6 have statistical difference

at 95% of confidence.

DP PLG
New Enhancement

p-value
NP Median NP Median

MF 3GL 28 10 78 30 0.0133

MR 3GL 14 10 45 25 0.0449

MR 4GL 10 9 11 11 0.5962

Multi 3GL 31 16 78 18 0.6720

Multi 4GL 13 11 33 23 0.0897

PC 3GL 12 11 32 24 0.0500

PC 4GL 28 9 15 18 0.1321

Table 6: Mann-Whitney W test

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

144

5 Conclusions

A higher data set size, a better generalization from their data is possible for DD prediction models.

A common guideline on software engineering data sets is separate projects in accordance with their

attributes such as type of development, development platform, and programming language generation.

Data sets of software projects have commonly been used for either analyzing productivity or building

prediction models. In this study, defect density of software projects was statistically analyzed to know

if there was any difference between projects taking into account the three mentioned attributes.

After the analysis based on statistical significance for the three experiments described in Section 4,

the following conclusions can be written from projects developed on platforms and coded in

programming languages included in those data sets of Table 2 having ten or more projects:

First experiment:

 There is no difference among the DD of new projects.

 There is no difference among the DD of enhancement projects.

Second experiment:

 There is difference between the DD of new and enhancement projects.

Third experiment:

 There is difference between the DD of new and enhancement projects when developed on MF

and coded in 3GL, MR and coded in 3GL, and PC and 3GL.

 There is no difference between the DD of new and enhancement projects when developed on

MR and coded in 4GL, Multi and coded in 3GL, Multi and coded in 4GL, and PC and 4GL.

Based on these results, in a software business scenario, the manager having few data obtained from

his own software projects developed on different development platforms and coded in programming

language generations can (1) statistically analyze his data sets to conclude if they could be pooled, or

(2) use data of the projects used in the present study as a reference, such that the manager generates

prediction models or analyzes productivity.

Regarding limitations of this study, the ISBSG Release 2018 data set used has more than eight

thousand software projects; however, after applying criteria included in Tables 1 and 2, only 136 new

and 341 enhancement software projects could be selected.

Future work will be related to the proposal of models for the new or enhancement software projects

analyzed in this study, that is, the models will be trained and tested from the 136 new projects, and

from the 341 enhancement projects. Two types of models will be proposed: classifiers and regression

models. As for the first one mentioned, the ISBSG Release 2018 classifies the size of projects

according their size (measured in function points) in categories such as extra-small, small, medium,

large, and extra-large, accordingly, our future work will propose models based on Bidirectional

Associative Memories [18], ontologies [19], Alpha-Beta models [20], associative models [21] for

classifying projects in accordance with their effectiveness value based on DD. Regarding second type,

regression models such as [22] [23] [24] [25] will be applied to predict the DD of new and

enhancement projects.

Aknowledgment

The author would like to thank CUCEA of Universidad de Guadalajara, Jalisco, México, Programa

para el Desarrollo Profesional Docente (PRODEP), as well as to Consejo Nacional de Ciencia y

Tecnología (CONACYT).

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

145

References

[1] P. Bourque and R. Fairley, “Guide to the Software Engineering Body of Knowledge,

SWEBOK V3.0”, IEEE Computer Society, 2014.

[2] C. López-Martín, “Predictive Accuracy Comparison between Neural Networks and Statistical

Regression for Development Effort of Software Projects”, Applied Soft Computing, Elsevier,

vol. 27, 2015, pp. 434-449. DOI: 10.1016/j.asoc.2014.10.033

[3] ISBSG, “Guidelines for use of the ISBSG data, Release 2018”, International Software

Benchmarking Standards Group, 2018.

[4] L. Kumar, S.K. Sripada, A. Sureka, S.K. Rath, “Effective fault prediction model developed

using Least Square Support Vector Machine (LSSVM)”, The Journal of Systems and Software,

Elsevier, vol. 137, 2018, pp. 686–712. DOI: 10.1016/j.jss.2017.04.016

[5] S.S. Rathore and S. Kumar, S., “Towards an ensemble based system for predicting the number

of software faults”, Expert Systems With Applications, Elsevier, vol. 82, 2017, pp. 357–382.

DOI: 10.1016/j.eswa.2017.04.014

[6] C. López-Martín, M. Azzeh, A. Bou-Nassif, S. Banitaan, “ʋ-SVR Polynomial Kernel for

Predicting the Defect Density in New Software Projects”, in Proceedings of the 16th IEEE

International Conference on Machine Learning and Applications, 2017. DOI:

10.1109/ICMLA.2017.0-101

[7] I. Myrtveit and E. Stensrud, “Validity and reliability of evaluation procedures in comparative

studies of effort prediction models”, Empirical Software Engineering, Springer. Vol. 17, 2017,

pp. 23-33. DOI: 10.1007/s10664-011-9183-7

[8] P. Knab, M. Pinzger, B. Bernstein, “Predicting Defect Densities in source code files with

Decision Tree Learners”, in Proceedings of the International workshop on Mining software

Repositories, 2006. DOI: 10.1145/1137983.1138012

[9] V. Kumar, “Applying soft computing approaches to predict defect density in software product

releases: an empirical study”, Computing and Informatics, Vol. 32, 2013, pp. 203-224.

[10] O. Kutlubay, B. Turhan, A.B. Bener, “A Two-Step Model for Defect Density Estimation”, in

Proceedings of the 33rd EUROMICRO Conference on Software Engineering and Advanced

Applications (EUROMICRO), 2007. DOI: 10.1109/EUROMICRO.2007.13

[11] N. Mandhan, D.K. Verma, S. Kumar, “Analysis of Approach for Predicting Software Defect

Density using Static Metrics”, in Proceedings of the IEEE International Conference on

Computing, Communication and Automation, 2015. DOI: 10.1109/CCAA.2015.7148499

[12] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures to Predict System Defect

Density”, in Proceedings of 27th international conference on Software engineering, 2005, pp.

284–292. DOI: 10.1145/1062455.1062514

[13] C. Rahmani and D. Khazanchi, “A Study on Defect Density of Open source software”, in

Proceedings of the 9th International conference on Computer and Information Science, 2010.

DOI: 10.1109/ICIS.2010.11

[14] M. Sherriff, N. Nagappan, L. Williams, M. Vouk, “Early Estimation of Defect Density Using

an In-Process Haskell Metrics Model”, ACM SIGSOFT Software Engineering Notes, vol. 30,

2005. DOI: 10.1145/1082983.1083285

[15] D. Verma and S. Kumar, “Prediction of defect density for open source software using

repository metrics”, Journal of Web Engineering, Rinton, vol. 16, issue 3-4, 2017, pp. 93-310.

[16] H.B. Yadav and D.K. Yadav, “A fuzzy logic based approach for phase-wise software defects

prediction using software metrics”, Information and Software Technology, Elsevier, vol. 63,

2015, pp. 44–57. DOI: 10.1016/j.infsof.2015.03.001

[17] N.E. Fenton and M. Neil, On the effectiveness of early life cycle defect prediction with

Bayesian Nets, Empirical Software Engineering, Vol. 13, Issue 5, 2008, pp. 499–537. DOI:

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

146

10.1007/s10664-008-9072-x

[18] M.E. Acevedo, C. Yáñez-Márquez, M.A. Acevedo, “Bidirectional Associative Memories:

Different Approaches”, ACM Computing Surveys, Association for Computing Machinery, Vol.

45, No. 2, 2013, pp. 1-30. DOI:10.1145/2431211.2431217

[19] S. Cerón-Figueroa, I. López-Yáñez, W. Alhalabi, O. Camacho-Nieto, Y. Villuendas-Rey, M.

Aldape-Pérez, C. Yáñez-Márquez, “Instance-based ontology matching for e-learning material

using an associative pattern classifier”, Computers in Human Behavior, Elsevier, Vol. 69,

2017, pp. 218-225. DOI:10.1016/j.chb.2016.12.039

[20] López-Yáñez, I., Yáñez-Márquez, Cornelio, Camacho-Nieto, O., Aldape-Pérez, M., Argüelles-

Cruz, A.J. (2015). Collaborative learning in postgraduate level courses, Computers in Human

Behavior, Elsevier, Vol. 51, Part B, pp. 938-944. DO:10.1016/j.chb.2014.11.055

[21] I. López-Yáñez, L. Sheremetov, C. Yáñez-Márquez, “A Novel Associative Model for Time

Series Data Mining”, Pattern Recognition Letters, Elsevier, Vol. 41, 2014, pp. 23-33.

DOI:10.1016/j.patrec.2013.11.008

[22] J.A. Antón-Vargas, Y. Villuendas-Rey, C. Yáñez-Márquez, I. López-Yáñez, O. Camacho-

Nieto, “Improving the performance of an associative classifier by Gamma Rough Sets based

instance selection”, International Journal of Pattern Recognition and Artificial Intelligence,

World Scientific, Vol. 32, No. 1, 2018, pp. 1860009. DOI:10.1142/S0218001418600091

[23] A.V. Uriarte-Arcia, C. Yáñez-Márquez, J. Gama, J., I. López-Yáñez, O. Camacho-Nieto,

“Data Stream Classification Based on The Gamma Classifier”, Mathematical Problems in

Engineering, Hindawi, Volume 2015, Article 939175, 17 pages. DOI:10.1155/2015/939175

[24] C. Yáñez-Márquez, I. López-Yáñez, M. Aldape-Pérez, O. Camacho-Nieto, Y. Villuendas-Rey,

“Theoretical Foundations for the Alpha-Beta Associative Memories: 10 Years of Derived

Extensions, Models, and Applications”, Neural Processing Letters, Springer, Vol. 48, Issue 2,

2018, pp. 811-847. DOI:https://doi.org/10.1007/s11063-017-9768-2

[25] I. López-Yáñez, A.J. Argüelles-Cruz, O. Camacho-Nieto, C. Yáñez-Márquez, “Pollutants time

series prediction using the Gamma classifier”, International Journal of Computational

Intelligence Systems, Atlantis Press, Vol. 4, Issue 4, 2011, pp. 680-711.

DOI:10.2991/ijcis.2011.4.4.23

Software Defect Density Analysis Cuauhtémoc López-Mart́ın

147

