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Abstract

In propositional model counting, also named #SAT, the search space needs to be
explored exhaustively, in contrast to SAT, where the task is to determine whether a
propositional formula is satisfiable. While state-of-the-art SAT solvers are based on non-
chronological backtracking, it has also been shown that backtracking chronologically does
not significantly degrade solver performance. Hence investigating the combination of
chronological backtracking with conflict-driven clause learning (CDCL) for #SAT seems
evident. We present a calculus for #SAT combining chronological backtracking with CDCL
and provide a formal proof of its correctness.

1 Introduction

The task of computing the number of models of a propositional formula, also referred to as
#SAT, has various applications in hardware and software verification [5, 4, 12, 15, 11] as well
as cryptography[16]. Classical applications are found in the area of probabilistic reasoning [24]
as well as Bayesian networks [2, 19, 27] which are adopted in medical diagnosis and planning. A
counting characterization of diagnoses is presented in [18]. Propositional model counting finds
further applications in product configuration [32, 17] and planning [1, 31].

Challenges in model counting. In contrast to SAT solving, where the search terminates
as soon as a satisfying variable assignment is found, in #SAT the search space needs to be
explored exhaustively. State-of-the-art SAT solvers implement conflict-driven clause learn-
ing (CDCL) [22, 28], i.e., in case of a conflict they learn a clause which might be used to
backjump or backtrack non-chronologically to a potentially much smaller decision level by unas-
signing all literals at greater decision levels. This allows them to escape search space regions
without solution. In the context of #SAT, however, backjumping might cause an erroneous
model count since already counted models might be found again.

This problem does not occur in the Davis-Putnam-Logeman-Loveland (DPLL) algorithm [9]
where only chronological backtracking, i.e., backtracking to the previous decision level, is applied.
However, the downside of DPLL consists of the fact that the solver is not able to escape regions
of the search space without solution easily.
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One therefore might ask whether chronological backtracking and CDCL might be combined
in order to benefit from the strengths of both methods. A second motivation is given by the
fact that CDCL may lead to redundant work since after backjumping assignments discarded
might be repeated [30] which has a greater negative impact on solver performance in #SAT.

Combining CDCL and chronological backtracking. A partial answer to this question was
provided in [23]. In this paper, chronological backtracking was enabled under certain conditions
violating invariants considered crucial to CDCL. In CDCL with non-chronological backtracking
the current variable assignment is represented by the trail which is a sequence of literals. The
trail is partitioned into subsequences of literals between decisions identified by a decision level
which is assigned to the literals contained in them. One of the violated invariants says that the
literals on the trail are ordered in ascending order with respect to their decision level.

This is not the case in [23] anymore. Assume the formula under consideration evaluates to
false under the current assignment. A clause is learned which is used to determine the jump
level, i.e., the decision level to which the solver backjumps. Let ` be the literal of the learned
clause propagated after backjumping. It is assigned to the jump level which, after backtracking
chronologically to the backtrack level, might be lower than the decision level of another literal
preceding ` on the trail. In this case variable assignments at decision levels higher than the
jump level might conflict with the current assignment. This issue is dealt with by introducing
a variant of backtracking in which no blocks of literals are unassigned but only the literals with
decision level greater than the backtrack level, which need not be consecutive anymore.

To define more precisely the concepts introduced in [23], in [21] we provided a formalization
and formal proof and generalization of the procedure. Our goal was to understand which
invariants are crucial and which are redundant and to empirically confirm the effectiveness of
chronological backtracking. A second motivation, which is explored in depth in this paper, was
the potential use of chronological backtracking for model counting, i.e., #SAT.

In [21], we characterized five invariants, three of which are violated by chronological back-
tracking. Still the procedure remains correct and we proved empirically that always executing
chronological backtracking in combination with CDCL does not degrade significantly solver
performance confirming the suitability of chronological backtracking for model counting.

Exact propositional model counting. The state of the art in exact propositional model
counting goes back to a paradigm presented in [14]. In this method the formula under con-
sideration is split into subformulae over disjoint sets of variables which are then solved inde-
pendently and their results multiplied to yield the model count of the formula. In this work
the need for so-called good learning is identified. Several modern #SAT solvers implement this
paradigm [25, 26, 29], a parallel version [6] as well as a distributed version [7] are available.
Another method is based on knowledge compilation [8] in which the formula is transformed
into another language in which model counting can be executed efficiently.

A totally different approach, inspired by [13, 10], was presented in [3, 20]. It is dual, i.e., it
takes as input a formula together with its negation. The basic idea is based on the fact that a
formula evaluates to > under a given variable assignment if and only if its negation evaluates
to ⊥ under the same assignment. This method also enables the detection of partial models.

Our contribution. In this work we extend our framework [21] to serve propositional model
counting and provide a formal proof of its correctness. We present a counting algorithm based on
model enumeration. Basically, our procedure yields a formula which is logically equivalent to the
formula under consideration. The generated formula is a disjunction of pairwise contradicting
conjunctions of literals, hence its model count can be determined in polynomial time.

While model enumeration and model counting are two different yet related tasks, our method
is based on the first one since it facilitates reasoning about the method’s properties in the fol-
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lowing manner. Our argument is based on the concepts of pending search space, i.e., the variable
assignments not yet tested, and pending models, i.e., the models not yet found. Obviously the
two concepts are related, and the pending models are contained in the pending search space.
In an implementation therefore one might decide to sum up the number of the detected models
instead of recording them explicitly.

First, we extend the original calculus [21] by one rule, to capture the situation where a model
is found. Second, the states now include all the (partial) models found at any point in time of
the search. Compared to [20] this extension is not dual. It also exclusively uses chronological
backtracking which renders blocking clauses superfluous. As a consequence, it does not need
the concepts of flipping nor discounting, as introduced in [20]. In [20] we also showed by an
example that combining dual reasoning and the use of blocking clauses might result in models
counted twice. We also provided another example in which combining discounting and blocking
clauses leads to the loss of models, i.e., a discounted model m is not detected anymore due to
a blocking clause. These issues do not exist anymore in our new framework.

2 Preliminaries

Let F be a propositional formula over the set of variables V . We call literal a variable v ∈ V
or its negation ¬v. The variable of a literal ` is obtained by V (`). We denote with ` the
complement of the literal `, i.e., ` = ¬`, supposing ¬¬` = `.

A clause is a disjunction of literals, and a cube is a conjunction of literals. A formula
in Conjunctive Normal Form (CNF) is a conjunction of clauses, whereas a Disjoint Sum-
of-Products (DSOP) formula is a disjunction of pairwise contradicting cubes. We interpret
CNF formulae as sets of clauses and DSOP formulae as sets of cubes where convenient. By
writing C ∈ F we refer to a clause or cube C in a formula F . Analogously we write ` ∈ C if ` is
a literal in a clause or cube C. The empty CNF formula and the empty cube are represented
by >, the empty DSOP formula and the empty clause are denoted by ⊥.

A trail, written I = `1 . . . `n, is a sequence of literals with no duplicate variables which may
also be interpreted as the conjunction of its literals. By V (I) the variables of the literals on the
trail I are obtained. We denote the empty trail by ε. Trails may be concatenated, I = JK,
provided V (J)∩V (K) = ∅. We write J 6 I if J is a subsequence of I and J < I if furthermore
J 6= I. The position of literal ` on the trail I is denoted by τ(I, `). We may interpret I as a
set of literals and write ` ∈ I to refer to the literal ` on I. Similarly to [20], the decision literals
on the trail are marked by a superscript, e.g., `d denoting open “left” branches in the sense of
DPLL. Flipping the value of a decision can be seen as closing the corresponding left branch and
starting the “right” branch. Thus its decision literal `d becomes a flipped literal `.

The decision level function δ : V 7→ N ∪ {∞} returns the decision level of a variable v ∈ V .
We define δ(v) = ∞ if v is unassigned, and δ is updated whenever a variable is assigned or
unassigned. The extension to literals `, clauses C and trails I is straightforward by defining
δ(`) = δ(V (`)), δ(C) = max{δ(`) | ` ∈ C} for C 6= ⊥ and δ(I) = max{δ(`) | ` ∈ I} for I 6= ε.
We further define δ(⊥) = δ(ε) = 0. We write δ[` 7→ d] to denote the updated function δ in
which V (`) is assigned to decision level d. Similarly, by δ[I 7→ ∞] all literals on the trail I
are unassigned. We may write δ ≡ ∞ as a shortcut. The function δ is left-associative, i.e.,
δ[I 7→ ∞][` 7→ e] first unassigns all literals on I and then assigns literal ` to decision level e.

By δ(L) = {δ(`) | ` ∈ L} we denote the set containing the decision levels of its elements.
The set of decision literals on the trail I is denoted by decs(I) = {` | `d ∈ I} and the set
containing their complements by decs(I) = {` | ` ∈ decs(I)}. By I6n we refer to the subsequence
of I containing only the literals ` ∈ I where δ(`) 6 n. Analogously, the set decs(I) may be
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Figure 1: In the trail I on the left, from the three trails shown, literals 3 and 5 are placed out
of order. In fact, their decision level δ is lower than the decision level of a literal preceding
them on the trail, i.e., with lower position τ . The trails in the middle and on the right show the
results of backtracking to decision levels 1 and 0. When backtracking to the backtrack level b,
only literals ` with δ(`) > b are removed from the trail, while the assignment order is preserved.

restricted to decision literals ` where δ(`) 6 d by writing decs6d(I) = decs(I6d). We call slice a
subsequence of I containing all literals in I having the same decision level, e.g., slice(I, n) = I=n.
Backtracking to decision level i now amounts to unassigning literals ` ∈ I with decision level
greater than i, i.e., where ` ∈ slice(I, j) for j > i.

We clarify these concepts by means of an example taken from [21]. Consider the trail I on
the left hand side of Fig. 1 over variables {1, . . . , 5} (in DIMACS format) where τ represents the
position of a literal on I and δ represents its decision level. Literals 1 and 3 were propagated
at decision level zero, literal 5 was propagated at decision level one. The literals 3 and 5
are out-of-order literals, i.e., their decision level is smaller than the one of a literal preceding
them: We have δ(2) = 1 > 0 = δ(3), whereas τ(I, 2) = 1 < 2 = τ(I, 3). In a similar
manner, δ(4) = 2 > 1 = δ(5), and τ(I, 4) = 3 < 4 = τ(I, 5). Moreover, I61 = 1 2 3 5,
decs(I) = {2, 4}, decs61(I) = {2}, slice(I, 1) = 2 5. Upon backtracking to decision level one,
the literals in slice(I, 2) are unassigned. The resulting trail is visualized in the middle of Fig. 1.
Note that since the assignment order is preserved, the trail still contains one out-of-order literal,
namely 3. Backtracking to decision level zero unassigns all literals in slice(I, 2) and slice(I, 1)
resulting in the trail in which all literals are placed in order, i.e., they are ordered in ascending
order with respect to their decision level, depicted on the right hand side.

A total assignment is a mapping from the set of variables V to the truth values 0 and 1.
The trail I may also be interpreted as a partial assignment where I(`) = 1 iff ` ∈ I and I(`) = 0
iff ¬` ∈ I. Thus, I(`) is undefined if V (`) 6∈ V (I). Analogously, I(C) and I(F ) are defined. We
denote with V − I = V \ V (I) ⊆ V the set of variables in V and not in I. By 2|V−I| we denote
the number of total assignments covered by the partial assignment represented by I.

The residual of a formula F under the trail I is referred to by F |I . It is obtained by
replacing the literals ` ∈ I in F by > and their negation with ⊥. Analogously, C|I for a
clause C is defined. As an example, let F = (a∨b)∧ (b̄∨c) be a formula and I = a b the current
trail. Then the residual of F under I is given by F |I = (c).

We say that the trail I satisfies a formula F , denoted by I |= F , if I(F ) ≡ >, i.e., F |I = >.
Then I is called a model of F . The model count of F , denoted by #F , is given by the number
of total assignments satisfying F . If instead I(F ) ≡ ⊥, i.e., I(C) ≡ ⊥ for a clause C ∈ F , we
say that I falsifies F , call C the conflicting clause and δ(C) the conflict level.

A unit clause is a clause {`} containing one single literal ` called unit literal. By units(F ) we
refer to the set of unit literals in F . Similarly, units(F |I) is defined. By writing ` ∈ units(F |I)
we denote that the unit clause {`} is contained in the residual of F under I.

116



On Backtracking Chronologically in Propositional Model Counting Möhle and Biere

3 Counting via Enumeration with Chronological CDCL

Let F be a CNF formula over variables V . A DSOP representation M of F consists of cubes
representing pairwise disjoint sets of (partial) models of F . Obviously, M is not unique. The
model count of M and hence of F equals the sum of the model counts of the cubes in M :

M is a DSOP representation of F =⇒ #F =
∑
C∈M

2|V−C|

Let I be the current trail. We denote with O(I) the pending search space of I, i.e., the
assignments consistent with the trail not yet tested. It is given by I and its (open) right
branches R(I). Obviously O(I) is not known, but it can be determined from I. Let I be of the
form I = I0`

d
1I1 . . . `

d
mIm. Then the pending search space with respect to the trail I is given by

O(I) = `1 ∧ I<1 ∨ `2 ∧ I<2 ∨ `3 ∧ I<3 ∨ . . . ∨ `m ∧ I<m ∨ I6m
= I=0 ∧ (`1 ∨ I=1 ∧ (`2 ∨ I=2 ∧ (`3 ∨ I=3 ∧ (. . . ∨ I=m−1 ∧ (`m ∨ I=m) . . .))))

which, if multiplied out, obviously is a DSOP (since I=i contains `i). Its cubes represent
pairwise disjoint sets of total assignments. More generally, we define the pending search space
of a trail I as

O(I) = I ∨R(I) where R(I) =
∨

`∈decs(I)

R=δ(`)(I) and R=δ(`)(I) = ` ∧ I<δ(`) for ` ∈ decs(I)

denotes the right branch of the decision ` at decision level δ(`). We also define Ropn(I) =
R(Iopn), where op ∈ {6,>, <,>,=}. Then the pending models of F , i.e., the models of F
contained in O(I), are given by F ∧ O(I). Assuming the models of F already found are
represented by M , then M ∨ (F ∧ O(I)) ≡ F . The pending search space O(I) and the found
models M are both DSOPs as well as their disjunction M ∨ O(I), assuming M ∧ O(I) ≡ ⊥.
The model count of F therefore is given by

#F = # (F ∧O(I)) +
∑
C∈M

2|V−C|

Example 1. Let F be a formula and let the trail be I = abcddefghdijkdlmndopdqrs with
decisions decs(I) = {d, h, k, n, p} where δ(d) = 1, δ(h) = 2, δ(k) = 3, δ(n) = 4, and δ(p) = 5.
Let the further decision levels be δ(a) = δ(b) = δ(c) = δ(f) = 0, δ(e) = δ(g) = δ(m) = 1,
δ(i) = δ(j) = δ(l) = 2, δ(s) = 3, δ(o) = 4, and δ(q) = δ(r) = 5. The slices are I=0 = abcf ,
I=1 = ddegm, I=2 = hdijl, I=3 = kds, I=4 = ndo, I=5 = pdqr. We have

O(I) = I ∨
∨

`∈decs(I)

(` ∧ I<δ(`)) = I ∨ (d ∧ I<1) ∨ (h ∧ I<2) ∨ (k ∧ I<3) ∨ (n ∧ I<4) ∨ (p ∧ I<5)

visualized in Fig. 2. The dashed lines below the decision literals denote the assignments where
the respective decision literal is flipped, i.e., together with I they form the pending search space.

Now assume I(F ) = >. We assume we backtrack chronologically and flip the last decision
literal p. We get J = abcddefghdijkdlmndosp = I<5p as shown at the bottom of Fig. 2 and

O(J) = J ∨
∨

`∈decs(J)

(` ∧ I<δ(`)) = (d ∧ I<1) ∨ (h ∧ I<2) ∨ (k ∧ I<3) ∨ (n ∧ I<4) ∨ (p ∧ I<5)

where δ(p) = 4. Note that O(J) ∨ I = O(I).
We have O(I) = O(J)∨I. Thus F ∧O(I) = F ∧O(J)∨F ∧I = F ∧O(J)∨I since I |= F and

the pending models of F with respect to J are exactly the pending models of F with respect
to I minus the models of F represented by I.
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Figure 2: Trail after backtracking chronologically in Back{True, False}. The trail itself together
with the dashed lines represents the pending search space, i.e., the assignments not yet tested.

4 Calculus

We describe our calculus as a state transition system where non-terminal states are denoted
by (F, I, M, δ) in which F is a CNF formula over variables V , I denotes the current trail and
M the DSOP containing the models found so far. Finally, δ denotes the decision level function.
The initial state is given by (F, ε, ⊥, δ0) where F , ε and ⊥ denote the original formula, the
empty trail and the empty DSOP and δ0 ≡ ∞. The terminal state is equal to M which is a
DSOP representation of F . The rules are listed in Fig. 3. Next we provide explanations of the
rules, and in Sect. 5 we proof their correctness.

EndTrue / EndFalse. If the trail I satisfies F and there are no decision literals left on I, it is
added to M and the search terminates since the search space has been traversed exhaustively.
If the trail I falsifies F , there exists a clause C ∈ F such that I falsifies C. If in addition
the conflict level δ(C) is zero, the pending search space is given by O(I) = I60. We have
I60(F ) = ⊥, i.e., there are no more assignments to be tested, and the search terminates.

Unit. The trail I neither satisfies nor falsifies F and there exists a clause C ∈ F that becomes a
unit clause {`} under I. The trail I is extended by ` which is assigned to decision level δ(C\{`}).
BackTrue. The trail I is a model of F and is added to M . We define D as the clause consisting
of all negated decision literals on I. There exist subsequences P and Q of I such that I = PQ
and δ(P ) = δ(I) − 1 = e and a literal ` ∈ D such that D|P = {`}. We use D as a kind
of “reason” and backtrack chronologically to decision level e. This involves unassigning all
literals with decision level greater than e. For instance, ` ∈ decs(I) and δ(`) = e + 1 and
upon backtracking ` is unassigned. After backtracking we propagate ` and assign it decision
level δ(D \ {`}) = e resulting in the trail PK` where δ(PK`) = e.

BackFalse. There exists a clause C ∈ F such that C|I = ⊥. The conflict level is δ(C) > 0,
i.e., there is a decision left on I. We can determine (usually by way of conflict analysis1 or just
using the negated decisions) a clause D for which F ∧M |= D such that δ(D) = c > 0 and
whose residual is unit, e.g., {`}, at jump level j = δ(D \ {`}) < c. In fact, upon backtracking
to any decision level b where j 6 b < c the residual of D under the trail becomes unit. This
holds in particular for b = c− 1. There exist subsequences P and Q of I such that I = PQ and
δ(P ) = b and a literal ` ∈ D such that D|P = {`}. We backtrack to decision level b using D as
a reason. As for rule BackTrue, all literals with decision level greater than b are unassigned

1In contrast to [21] we require ` to be the negation of the last decision which corresponds to learning the
decision clause instead of the more common first UIP clause. Lifting this restriction is part of future work.
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EndTrue: (F, I, M, δ) ;EndTrue M ∨ I if F |I = > and decs(I) = ∅

EndFalse: (F, I, M, δ) ;EndFalse M if exists C ∈ F and C|I = ⊥ and δ(C) = 0

Unit: (F, I, M, δ) ;Unit (F, I`, M, δ[` 7→ a]) if F |I 6= > and ⊥ 6∈ F |I and

exists C ∈ F with {`} = C|I and a = δ(C \ {`})

BackTrue: (F, I, M, δ) ;BackTrue (F, PK`, M ∨ I, δ[L 7→ ∞][` 7→ e]) if F |I = > and

PQ = I and D = decs(I) and e+ 1 = δ(D) = δ(I) and ` ∈ D and

e = δ(D \ {`}) = δ(P ) and K = Q6e and L = Q>e

BackFalse: (F, I, M, δ) ;BackFalse (F, PK`, M, δ[L 7→ ∞][` 7→ j]) if exists C ∈ F and

exists D with PQ = I and C|I = ⊥ and c = δ(C) = δ(D) > 0 such that

` ∈ D and ` ∈ decs(I) and `|Q = ⊥ and F ∧M |= D and

j = δ(D \ {`}) and b = δ(P ) = c− 1 and K = Q6b and L = Q>b

Decide: (F, I, M, δ) ;Decide (F, I`d, M, δ[` 7→ d]) if F |I 6= > and ⊥ 6∈ F |I and

units(F |I) = ∅ and V (`) ∈ V and δ(`) =∞ and d = δ(I) + 1

Figure 3: Rules for propositional model enumeration with chronological backtracking. The
formula F takes variables in V . If I satisfies F and there is no decision at conflict level left,
the search terminates (rule EndTrue). Otherwise the last decision literal is flipped (BackTrue).
In case of a conflict at conflict level zero the search terminates (EndFalse). If I falsifies F at
conflict level c > 0, a clause D is learned. The solver backtracks chronologically to decision
level c−1 where D becomes unit and propagates its unit literal (BackFalse). If the residual of F
under I is undefined, either unit propagation is applied (Unit) or a decision taken (Decide).

after which ` is propagated obtaining the trail PK` where δ(PK`) = b.

Decide. The trail I neither satisfies nor falsifies F and there are no unit literals in F |I . An
unassigned variable is chosen and assigned to decision level d = δ(I) + 1.

Example 2. We now explain our calculus by a small example, precisely, the one for which our
calculus in [20] would fail if incorrectly blocking clauses and dual reasoning were combined.

Let our formula be F = (1∨2)∧(1∨2) over variables V = {1, 2, 3} similar to DIMACS. The
execution trace is shown in Fig. 4. The procedure starts with the empty trail and M = ⊥ and by
assigning all variables in V to decision level ∞ (step 0). Then, literal 3 is decided and assigned
to decision level d = 1 (step 1). After literal 2 is decided and assigned to decision level d = 2,
the model 32 is found (step 2). Now rule BackTrue is executed with D = (3 ∨ 2) and e = 1.
We backtrack chronologically by unassigning literal 2 and then propagate its complement 2 by
assigning it to decision level 1. The found model is recorded and M = 32 (step 3). The unit
literal 1 is propagated at decision level a = 1 due to the reason clause (1 ∨ 2) resulting in a
conflict (step 4). The conflicting clause is C = (1 ∨ 2) and the conflict level is c = 1. Conflict
analysis yields the clause (3) and the jump level j = 0. We backtrack to decision level b = 0 by
unassigning literals 1, 2 and 3 and propagate 3 by assigning it to decision level j = 0 (step 5),
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Step Rule I δ(1) δ(2) δ(3) F |I M

0 ε ∞ ∞ ∞ (1 ∨ 2) ∧ (1 ∨ 2) ⊥
1 Decide 3d ∞ ∞ 1 (1 ∨ 2) ∧ (1 ∨ 2) ⊥
2 Decide 3d2d ∞ 2 1 > ⊥
3 BackTrue 3d2 ∞ 1 1 (1) ∧ (1) 32
4 Unit 3d21 1 1 1 ⊥ 32
5 BackFalse 3 ∞ ∞ 0 (1 ∨ 2) ∧ (1 ∨ 2) 32
6 Decide 31d 1 ∞ 0 (2) 32
7 Unit 31d2 1 1 0 > 32
8 BackTrue 31 0 ∞ 0 (2) 32 ∨ 312
9 Unit 312 0 0 0 > 32 ∨ 312
10 EndTrue 32 ∨ 312 ∨ 312

Figure 4: Execution trace for Ex. 1.

after which literal 1 is decided and assigned to decision level d = 1 (step 6). Due to the reason
clause C = (1 ∨ 2) with decision level a = 1, literal 2 is propagated by assigning it to decision
level 1 and model 312 is found (step 7). Rule BackTrue is executed with D = (1) and e = 0.
We backtrack chronologically by unassigning literals 2 and 1 and propagating literal 1 assigning
it to decision level 0 (step 8). Literal 2 is propagated, the reason clause is (1 ∨ 2) at decision
level a = 0, and model 312 is found (step 9). There are no decisions left on I, and the model
found in step 9 is added to M . The search terminates with M = 32 ∨ 312 ∨ 312 (step 10).

The choice of the decision literal is non-deterministic and might have a significant impact
on the trace length as we are going to show. Assume in step 1 we decide literal 2 assigning
it decision level 1. We immediately find model 2 and apply rule BackTrue with D = (2) and
e = 0, i.e., we flip the last decision literal 2 by unassigning it and assigning its complement to
decision level 0. The residual of F under the trail is (1) ∧ (1), hence we apply rule Unit with
C = (1∨2) and propagate literal 1 at decision level a = 0. We get a conflict with C = (1∨2) at
decision level 0 and our procedure terminates with M = 2 after only four steps. If we start by
deciding 2 instead, in the next step we might propagate literal 1 which leads to a conflict as in
the last example. Rule BackFalse yields D = (2) with j = b = 0 and after applying rule Unit and
propagating literal 2 at decision level 0, we find model 2. Since the trail contains no decision
literal, the procedure terminates by means of rule EndTrue in state M = 2 after four steps as
well. Now let us decide literal 1 first. Then I = 1d and F |I = (2), literal 2 is propagated
due to reason (1 ∨ 2) at decision level 1 and model 12 is found. By means of rule BackTrue
backtracking occurs to decision level 0 and the decision literal 1 is flipped. We now have I = 1
and F |I = (2). Again, literal 2 is propagated resulting in I = I2 which satisfies F . The trail
contains no decision literals, and rule EndTrue is applied. Hence, after five steps the procedure
terminates in state M = 12 ∨ 12. If the first decision is 1, analogously the following steps
are executed: propagation of literal 2 finding the model 12 (Unit), backtracking and flipping
decision 1 (BackTrue), propagating literal 2 (Unit), finding model 12 and terminating with
M = 12 ∨ 12 (EndTrue). In total, five steps are required.

We conclude this example by remarking that the trail is shortest if first literals are decided
which occur either positively or negatively in all models. The worst case with respect to trail
length is if literals are decided first whose variable does not appear in the formula at all. This
effect is due to the nature of chronological backtracking.
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(1) ∀k, ` ∈ decs(I) . τ(I, k) < τ(I, `) =⇒ δ(k) < δ(`)

(2) δ(decs(I)) = {1, . . . , δ(I)}

(3) ∀n ∈ N . F ∧M ∧ decs6n(I) |= I6n

(4) M ∨O(I) is a DSOP

(5) M ∨ F ∧O(I) ≡ F

Figure 5: Invariants for propositional model counting with conflict-driven clause learning and
chronological backtracking.

5 Proofs

For proving the correctness of our method, we make use of the invariants listed in Fig. 5 the first
two of which were introduced in [21], while the third one is Inv. (3) in [21] strengthened by the
negation of M . This strengthening is required to show that after backtracking upon finding a
model (rule BackTrue) the propagated literals are indeed implied. Their “reason” is the clause D
consisting of the negated literals of the model just found. In contrast to rule BackFalse, D is not
implied by the formula F but subsumed by the negation of a cube in its DSOP representation M
instead, namely the model just found.

Invariants (4) and (5) represent statements concerning the pending search space needed
to show that in the end state M is logically equivalent to the formula and thus their model
counts coincide. Invariant (4) states that M is DSOP, hence, its model count equals the sum
of the number of models of its cubes. Invariant (5) says that all models of F are represented
by the formula obtained by the disjunction of M and the pending models of F . Thus, upon
termination of the procedure the second disjunct is empty, i.e., M contains all models of F .

5.1 Invariants in Non-Terminal States

Lemma 1. Invariants (1) – (5) hold in non-terminal states.

The proof is carried out by induction over the number of rule applications. Assuming that
Inv. (1) – (5) hold in a non-terminal state (F, I, M, δ), we show that they are met after the
transition to another non-terminal state for all rules.

Unit

Invariants (1) and (2): Except for the DSOP M contained in the state, rule Unit matches
the one in [21], hence Inv. (1) and (2) are met.

Invariant (3): The argument is the same as for Inv. (3) in [21] replacing F by F ∧M where
M remains unaltered, hence Inv. (3) also holds after the application of rule Unit.

Invariant (4): We have that M ∨ O(I) is a DSOP and we need to show that M ∨ O(I`) is
a DSOP as well. According to its definition, O(I`) is a DSOP. We have O(I`) = I` ∨R(I`) =
I` ∨ R6a(I`) ∨ R>a(I`). Since δ(`) = a and ` 6∈ decs(I`), ` does not occur in R6a(I`), hence
O(I`) = I` ∨R6a(I) ∨R>a(I) ∧ `. Since M ∨O(I) is a DSOP, M ∨O(I`) is a DSOP as well.

Invariant (5): Since F∧I |= `, we have F∧O(I) ≡ F∧O(I`). From this we getM∨F∧O(I) ≡
M ∨ F ∧O(I`) ≡ F , and Inv. (5) holds after executing Unit.
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BackTrue

Invariants (1) and (2): We need to prove that the order of the decisions left on the trail
remains unaltered and no new decisions are taken. We show that (A) K contains no decision
literal and (B) in the post state ` is not a decision literal either.

(A) We have I = PQ and K = Q6e, i.e., K is obtained from Q by removing all literals with
decision level greater than e. Furthermore, for all k ∈ K, p ∈ P , we have τ(PK, p) < τ(PK, k)
and δ(K) 6 δ(P ) = e. By the definition of decision literal and since Inv. (1) holds before
applying BackTrue, the decision literal with decision level e is contained in P . Since K contains
no literal with decision level greater than e, K contains no decision literal.

(B) It is sufficient to consider the case where δ(I) > 0. We have δ(D \ {`}) = e = δ(P )
and δ(D) = e + 1. According to Inv. (1) and (2) there exists exactly one decision literal for
each decision level, and since D = decs(I) and ` ∈ D, ` ∈ decs(I). Furthermore, ` ∈ Q,
hence ` is unassigned upon backtracking, i.e., {`, `} 6∈ PK, and D|PK = {`}. Due to the
definition of D there exists a literal k ∈ D where k 6= ` such that δ(k) = δ(`) = e for which
τ(PK, k) < τ(PK, `). Due to Inv. (1) and the definition of decision literal, ` is not a decision
literal. The order of the decision literals left on the trail is not affected, hence Inv. (1) holds.
Also, the remaining decisions remain unaltered, and Inv. (2) holds as well.

Invariant (3): We need to show F ∧ (M ∨ I) ∧ decs6n(PK`) |= (PK`)6n for all n. First
note that the decision levels of all the literals in PK do not change while applying the rule.
Only the decision level of the variable of ` is decremented from e + 1 to e. It also stops
being a decision variable. Since δ(PK`) = e, we can assume n 6 e. Observe F ∧ (M ∨ I) ∧
decs6n(PK`) ≡ I ∧ (F ∧ M ∧ decs6n(I)) since ` is not a decision in PK` and I6e = PK
and thus I6n = (PK)6n by definition. Now the induction hypothesis is applied and we get

F ∧ (M ∨ I) ∧ decs6n(PK`) |= I6n. Again using I6n = (PK)6n this almost closes the proof

except that we are left to prove F ∧ (M ∨ I) ∧ decs6e(PK`) |= ` as ` has decision level e in
PK` after applying the rule and thus ` disappears in the proof obligation for n < e. To see
this note that F ∧ D |= I using again the induction hypothesis for n = e + 1. This gives
F ∧ decs6e(PK) ∧ ` |= I and thus F ∧ decs6e(PK) ∧ I |= ` by conditional contraposition.

Invariant (4): We assume M ∨O(I) is a DSOP and need to show that (M ∨ I)∨O(PK`) is
a DSOP as well. Now O(I) = I ∨ R6e+1(I) since δ(I) = e + 1. Further, O(I) = I ∨ R6e(I) ∨
R=e+1(I). The pending search space of PK` is equal to O(PK`) = PK` ∨ R6e(PK`). But
PK = I6e and PK` = I6e` = R=e+1(I) since ` ∈ decs(I) and δ(`) = e + 1. In addition,
R6e(PK`) = R6e(PK) since ` 6∈ decs(PK`) and δ(`) = e which gives us R6e(PK`) = R6e(I).
We have O(PK`) = R=e+1(I) ∨R6e(I). From this we get O(PK`) ∨ I = O(I) and (M ∨ I) ∨
O(PK`) = M ∨ (I ∨O(PK`)) = M ∨O(I) which is a DSOP, and Inv. (4) holds.

Invariant (5): Given M∨(F ∧O(I)) ≡ F , we need to show that (M∨I)∨(F ∧O(PK`)) ≡ F .
From O(PK`)∨I = O(I) we get M ∨F ∧O(I) = M ∨F ∧(O(PK`)∨I) = M ∨(F ∧O(PK`))∨
(F ∧ I). But I |= F and F ∧ I ≡ I. Therefore M ∨ F ∧ O(I) = M ∨ (F ∧ O(PK`)) ∨ I =
(M ∨ I) ∨ F ∧O(PK`) ≡ F , and Inv. (5) is met.

BackFalse

Invariant (1) and (2): Except for the DSOP M added to the state, the fact that clause D
is not added to F and that F ∧ M |= D, rule BackFalse corresponds to rule Jump in [21]
where b = c− 1. Therefore, rule BackFalse is a special case of rule Jump and Inv. (1) – (2) still
hold after the execution of rule BackFalse.

Invariant (3): Let n be arbitrarily fixed. Before executing BackFalse, F ∧M ∧ decs6n(I) |=
I6n. We need to show that F ∧M ∧decs6n(PK`) |= (PK`)6n. We have I = PQ and PK < I,
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i.e., F ∧M ∧ decs6n(PK) |= (PK)6n. From j = δ(D \ {`}), c = δ(D) and δ(P ) = c − 1 we

get D|PK = {`}. On the one hand F ∧M ∧ decs6n(PK) |= D \ {`} and on the other hand
F ∧M ∧ decs6n(PK) |= D, therefore, by modus ponens, F ∧M ∧ decs6n(PK) |= `. Since
` is not a decision literal, as shown above, F ∧M ∧ decs6n(PK) ≡ F ∧M ∧ decs6n(PK`) and
F ∧M ∧ decs6n(PK`) |= (PK`)6n. So, Inv. (3) holds after applying rule BackFalse.

Invariant (4): Given that M∨O(I) is a DSOP, we need to show that M∨O(PK`) is a DSOP
as well. As shown for rule BackTrue, O(PK`)∨ I = O(I) if ` ∈ decs(I). Due to the premise, we
have M ∧O(I) ≡ ⊥. Therefore, M ∧O(I) = M ∧(O(PK`)∨I) ≡ (M ∧O(PK`))∨(M ∧I) ≡ ⊥,
in particular M ∧O(PK`) ≡ ⊥, and Inv. (4) holds.

Invariant (5): Given that M ∨(F ∧O(I)) ≡ F , we need to show that M ∨(F ∧O(PK`)) ≡ F
as well. Analogously to rule BackTrue we have M ∨ F ∧O(I) = M ∨ (F ∧O(PK`)) ∨ (F ∧ I).
But F ∧ I ≡ ⊥, hence M ∨ F ∧O(I) = M ∨ F ∧O(PK`) ≡ F , and Inv. (5) is met.

Decide

Invariant (1) and (2): Except for the DSOP M contained in the state, rule Decide matches
exactly the one in [21], and, following the argument given there, Inv. (1) – (2) are met.

Invariant (3): Let n be arbitrarily fixed. Note that literal ` is a decision literal. Therefore
F ∧M ∧ decs6n(I`) ≡ F ∧M ∧ decs6n(I) ∧ ` |= I6n(I) ∧ ` ≡ (I`)6n, and Inv. (3) holds.

Invariant (4): Assuming M ∨O(I) is a DSOP, we need to show that M ∨O(I`) with decision
literal ` is a DSOP as well. We have O(I`) = O6d(I`) where d = δ(I)+1 since ` ∈ decs(I`) and
δ(`) = d. Further, O(I`) = I`∨R6d(I`) = I`∨R6d−1(I`)∨R=d(I`) = I`∨R6d−1(I`)∨`∧I6d−1
where δ(I) = d− 1. Observing that ` 6∈ (I`)=i for i < d, i.e., (I`)6i = I6i for i 6 d− 1 = δ(I),

we get O(I`) = I`∨R(I)∨ `I = I(`∨ `)∨R(I) = I ∨R(I) = O(I). This gives us M ∨O(I`) =
M ∨O(I) which due to our premise is a DSOP, and Inv. (4) holds.

Invariant (5): As just shown, O(I`) ≡ O(I). Therefore, M ∨F ∧O(I`) ≡M ∨F ∧O(I) ≡ F ,
and after executing rule Decide Inv. (5) still holds.

5.2 Equivalence and Model Count

Proposition 1. If Enumerate reaches a terminal state M , then M ≡ F and the model count
of F is given by #F =

∑
C∈M 2|V−C|.

Due to Inv. (4) and (5), in every non-terminal state M is a DSOP of models of F , but we
still need to show that the resulting I ∨M in EndTrue and M in EndFalse are equivalent to F .

EndTrue. Prior to applying rule EndTrue, M ∨O(I) is a DSOP and M ∨ F ∧O(I) ≡ F . Since
decs(I) = ∅, we have R(I) = ⊥ and O(I) = I, i.e., M ∨ I is a DSOP as well. Since I |= F , we
have F ∧ I ≡ I and M ∨ (F ∧O(I)) ≡M ∨ (F ∧ I) ≡M ∨ I ≡ F due to the premise.

EndFalse. For showing that M ∨ F ∧ O(I) ≡ F we observe that R(I) = R6δ(C)(I) = ⊥. We
therefore have O(I) = I ∨ R(I) = I ∨ ⊥ = I. Furthermore, I falsifies F , i.e., F ∧ I ≡ ⊥. This
gives us M ∨ F ∧O(I) ≡M ∨ F ∧ I ≡M ≡ F due to the premise.

5.3 Progress

Proposition 2. Enumerate always makes progress, i.e., in every non-terminal state a rule
is applicable.

The proof is conducted by induction over the number of rule applications. We show that in
any non-terminal state (F, I, M, δ) a rule can be executed.
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Assume F |I = >. If decs(I) = ∅, rule EndTrue can be applied. Otherwise we choose
D = decs(I). We have δ(D) = δ(I) = e+ 1 and due to Inv. (2) D contains exactly one decision
literal ` such that δ(`) = e + 1 and therefore δ(D) \ {`}) = e. We choose P and Q such that
I = PQ and e = δ(P ) and in particular `|Q = ⊥. After backtracking to decision level e, we
have I6e = PK where K = Q6e and D|PK = {`}. All preconditions of rule BackTrue are met.

If instead F |I = ⊥, there exists a clause C ∈ F such that C|I = ⊥. If δ(C) = 0, rule EndFalse
is applicable. Otherwise, by Inv. (3) we have F ∧M∧decs6c(I) ≡ F ∧M∧decs6c(I)∧I6c |= I6c.
Since I6c(F ) ≡ ⊥, also F∧M∧decs6c(I)∧I6c ≡ F∧M∧decs6c(I) ≡ ⊥. We choose D = decs(I)
obtaining F ∧M ∧D ∧ I6c ≡ ⊥, thus F ∧M |= D. Similarly to the proof of progress given in
Prop. 2 in [21], but for b = c− 1, it can be shown that all preconditions of rule BackFalse hold.
Note that we do not explicitly add D to F since in CDCL with chronological backtracking we
need no blocking clauses. We use D exclusively to determine ` instead.

The proof for the case where F |I 6∈ {>,⊥} is identical to the one for Prop. 2 in [21], since
apart from M in non-terminal states rules Unit and Decide are equal in both frameworks.

Since all possible cases are covered by this argument, in every non-terminal state a rule is
applicable, i.e., Enumerate always makes progress.

5.4 Termination

Proposition 3. Enumerate always terminates, i.e., no infinite state sequence is generated.

The proof is analogous to the one in [21] with rule BackFalse replacing Jump and the addi-
tional rule BackTrue to which the observations concerning BackFalse apply as well.

6 Conclusion

The results for combining chronological backtracking with CDCL presented in [23] and its
potential for propositional model counting conjectured in [21] provided the main motivation for
our work. We have presented a formal calculus for propositional model counting based on these
ideas and provided a formal proof of its correctness.

For our framework we chose a model enumeration approach. The main motivation therefore
was the following. Let F be a formula and I the current trail. A statement of an invariant
taking into account the model count alone would be something like MC + MO = MF where
MC denotes the number of total models of F found so far, MO denotes the number of pending
total models of F and MF denotes the model count of F . But only one of the three quantities
is known, namely MC, whereas the newly introduced Invariants (4) and (5) allow first for a
precise characterization of both the found and pending models and second to show that the
union of the two yields the models of F .

The preconditions F |I 6= > and ⊥ 6∈ F |I may be omitted in rules Unit and Decide without
compromising the procedure’s correctness. The most important remaining open question is
whether literal ` in rule BackFalse needs to be a flipped decision.

We plan to implement our rules to experimentally validate their effectiveness and to investi-
gate possible applications in SMT and QBF. Our hope is to avoid the overhead of introducing
blocking clauses in order to make use of learning. We want to extend the presented approach
to projected model counting, also in combination with dual reasoning [20]. We further target
component-based reasoning.
Acknowledgments Supported by Austrian Science Fund (FWF) grant S11408-N23 (RiSE)
and by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.
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